lemon/csp.h
author deba
Mon, 05 Mar 2007 17:10:58 +0000
changeset 2392 4bbeaf115cdb
parent 2386 81b47fc5c444
child 2401 7f20ec638bc2
permissions -rw-r--r--
Bug whit Parent typedef in SplitGraphAdaptor::CombinedEdgeMap
Fixing graph to eps parameters for demo
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CSP_H
    20 #define LEMON_CSP_H
    21 
    22 ///\ingroup approx
    23 ///\file
    24 ///\brief Algorithm for the Resource Constrained Shortest Path problem.
    25 ///
    26 ///
    27 ///\todo dijkstraZero() solution should be revised.
    28 
    29 #include <lemon/list_graph.h>
    30 #include <lemon/graph_utils.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/tolerance.h>
    34 #include <lemon/dijkstra.h>
    35 #include <lemon/path.h>
    36 #include <lemon/counter.h>
    37 namespace lemon {
    38 
    39   ///\ingroup approx
    40   
    41   ///Algorithms for the Resource Constrained Shortest Path Problem
    42   
    43   ///The Resource Constrained Shortest (Least Cost) Path problem is the
    44   ///following. We are given a directed graph with two additive weightings
    45   ///on the edges, referred as \e cost and \e delay. In addition,
    46   ///a source and a destination node \e s and \e t and a delay
    47   ///constraint \e D is given. A path \e p is called \e feasible
    48   ///if <em>delay(p)\<=D</em>. Then, the task is to find the least cost
    49   ///feasible path.
    50   ///
    51   template<class Graph,
    52 	   class CM=typename Graph:: template EdgeMap<double>,
    53 	   class DM=CM>
    54   class ConstrainedShortestPath 
    55   {
    56   public:
    57     
    58     GRAPH_TYPEDEFS(typename Graph);
    59     
    60     typedef SimplePath<Graph> Path;
    61     
    62     Graph &_g;
    63     Tolerance<double> tol;
    64 
    65     CM &_cost;
    66     DM &_delay;
    67 
    68     class CoMap 
    69     {
    70       CM &_cost;
    71       DM &_delay;
    72       double _lambda;
    73     public:
    74       typedef typename CM::Key Key;
    75       typedef double Value;
    76       CoMap(CM &c,DM &d) :_cost(c), _delay(d), _lambda(0) {}
    77       double lambda() const { return _lambda; }
    78       void lambda(double l)  { _lambda=l; }
    79       Value operator[](Key &e) const 
    80       {
    81 	return _cost[e]+_lambda*_delay[e];
    82       }
    83     } _co_map;
    84     
    85     
    86     Dijkstra<Graph, CoMap> _dij;
    87     ///\e
    88     
    89     ///\e
    90     ///
    91     ConstrainedShortestPath(Graph &g, CM &ct, DM &dl)
    92       : _g(g), _cost(ct), _delay(dl),
    93 	_co_map(ct,dl), _dij(_g,_co_map) {}
    94     
    95 
    96     ///Compute the cost of a path
    97     double cost(const Path &p) 
    98     {
    99       double s=0;
   100       //      Path r;  
   101       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_cost[e];
   102       return s;
   103     }
   104 
   105     ///Compute the delay of a path
   106     double delay(const Path &p) 
   107     {
   108       double s=0;
   109       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_delay[e];
   110       return s;
   111     }
   112     
   113     ///Runs the LARAC algorithm
   114     
   115     ///This function runs a Lagrange relaxation based heuristic to find
   116     ///a delay constrained least cost path.
   117     ///\param s source node
   118     ///\param t target node
   119     ///\retval lo_bo a lower bound on the optimal solution
   120     ///\return the found path or an empty 
   121     Path larac(Node s, Node t, double delta, double &lo_bo) 
   122     {
   123       NoCounter cnt("LARAC iterations: ");
   124       double lambda=0;
   125       double cp,cq,dp,dq,cr,dr;
   126       Path p;
   127       Path q;
   128       Path r;
   129       {
   130 	Dijkstra<Graph,CM> dij(_g,_cost);
   131 	dij.run(s,t);
   132 	cnt++;
   133 	if(!dij.reached(t)) return Path();
   134 	p=dij.path(t);
   135 	cp=cost(p);
   136 	dp=delay(p);
   137       }
   138       if(delay(p)<=delta) return p;
   139       {
   140 	Dijkstra<Graph,DM> dij(_g,_delay);
   141 	dij.run(s,t);
   142 	cnt++;
   143 	q=dij.path(t);
   144 	cq=cost(q);
   145 	dq=delay(q);
   146       }
   147       if(delay(q)>delta) return Path();
   148       while (true) {
   149 	lambda=(cp-cq)/(dq-dp);
   150 	_co_map.lambda(lambda);
   151 	_dij.run(s,t);
   152 	cnt++;
   153 	r=_dij.path(t);
   154 	cr=cost(r);
   155 	dr=delay(r);
   156 	if(!tol.less(cr+lambda*dr,cp+lambda*dp)) {
   157 	  lo_bo=cq+lambda*(dq-delta);
   158 	  return q;
   159 	}
   160 	else if(tol.less(dr,delta)) 
   161 	  {
   162 	    q=r;
   163 	    cq=cr;
   164 	    dq=dr;
   165 	  }
   166 	else if(tol.less(delta,dr))
   167 	  {
   168 	    p=r;
   169 	    cp=cr;
   170 	    dp=dr;
   171 	  }
   172 	else return r;
   173       }
   174     }
   175   };
   176   
   177 
   178 } //END OF NAMESPACE LEMON
   179 
   180 #endif