src/lemon/dijkstra.h
author alpar
Fri, 04 Mar 2005 23:14:36 +0000
changeset 1196 4bebc22ab77c
parent 1193 c3585aec8cb3
child 1201 cb26a6250401
permissions -rw-r--r--
- Bugfix in setting the previous Node
- Bugfix in DijkstraWizard _source member initialization
     1 /* -*- C++ -*-
     2  * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/bin_heap.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 namespace lemon {
    31 
    32 
    33   
    34   ///Default traits class of Dijkstra class.
    35 
    36   ///Default traits class of Dijkstra class.
    37   ///\param GR Graph type.
    38   ///\param LM Type of length map.
    39   template<class GR, class LM>
    40   struct DijkstraDefaultTraits
    41   {
    42     ///The graph type the algorithm runs on. 
    43     typedef GR Graph;
    44     ///The type of the map that stores the edge lengths.
    45 
    46     ///The type of the map that stores the edge lengths.
    47     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    48     typedef LM LengthMap;
    49     //The type of the length of the edges.
    50     typedef typename LM::Value Value;
    51     ///The heap type used by Dijkstra algorithm.
    52 
    53     ///The heap type used by Dijkstra algorithm.
    54     ///
    55     ///\sa BinHeap
    56     ///\sa Dijkstra
    57     typedef BinHeap<typename Graph::Node,
    58 		    typename LM::Value,
    59 		    typename GR::template NodeMap<int>,
    60 		    std::less<Value> > Heap;
    61 
    62     ///\brief The type of the map that stores the last
    63     ///edges of the shortest paths.
    64     /// 
    65     ///The type of the map that stores the last
    66     ///edges of the shortest paths.
    67     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    68     ///
    69     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    70     ///Instantiates a PredMap.
    71  
    72     ///This function instantiates a \ref PredMap. 
    73     ///\param G is the graph, to which we would like to define the PredMap.
    74     ///\todo The graph alone may be insufficient for the initialization
    75     static PredMap *createPredMap(const GR &G) 
    76     {
    77       return new PredMap(G);
    78     }
    79     ///\brief The type of the map that stores the last but one
    80     ///nodes of the shortest paths.
    81     ///
    82     ///The type of the map that stores the last but one
    83     ///nodes of the shortest paths.
    84     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    85     ///
    86     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    87     ///Instantiates a PredNodeMap.
    88     
    89     ///This function instantiates a \ref PredNodeMap. 
    90     ///\param G is the graph, to which
    91     ///we would like to define the \ref PredNodeMap
    92     static PredNodeMap *createPredNodeMap(const GR &G)
    93     {
    94       return new PredNodeMap();
    95     }
    96 
    97     ///The type of the map that stores whether a nodes is reached.
    98  
    99     ///The type of the map that stores whether a nodes is reached.
   100     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   101     ///By default it is a NullMap.
   102     ///\todo If it is set to a real map, Dijkstra::reached() should read this.
   103     ///\todo named parameter to set this type, function to read and write.
   104     typedef NullMap<typename Graph::Node,bool> ReachedMap;
   105     ///Instantiates a ReachedMap.
   106  
   107     ///This function instantiates a \ref ReachedMap. 
   108     ///\param G is the graph, to which
   109     ///we would like to define the \ref ReachedMap
   110     static ReachedMap *createReachedMap(const GR &G)
   111     {
   112       return new ReachedMap();
   113     }
   114     ///The type of the map that stores the dists of the nodes.
   115  
   116     ///The type of the map that stores the dists of the nodes.
   117     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   118     ///
   119     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   120     ///Instantiates a DistMap.
   121  
   122     ///This function instantiates a \ref DistMap. 
   123     ///\param G is the graph, to which we would like to define the \ref DistMap
   124     static DistMap *createDistMap(const GR &G)
   125     {
   126       return new DistMap(G);
   127     }
   128   };
   129   
   130   ///%Dijkstra algorithm class.
   131   
   132   /// \ingroup flowalgs
   133   ///This class provides an efficient implementation of %Dijkstra algorithm.
   134   ///The edge lengths are passed to the algorithm using a
   135   ///\ref concept::ReadMap "ReadMap",
   136   ///so it is easy to change it to any kind of length.
   137   ///
   138   ///The type of the length is determined by the
   139   ///\ref concept::ReadMap::Value "Value" of the length map.
   140   ///
   141   ///It is also possible to change the underlying priority heap.
   142   ///
   143   ///\param GR The graph type the algorithm runs on. The default value is
   144   ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
   145   ///is only passed to \ref DijkstraDefaultTraits.
   146   ///\param LM This read-only
   147   ///EdgeMap
   148   ///determines the
   149   ///lengths of the edges. It is read once for each edge, so the map
   150   ///may involve in relatively time consuming process to compute the edge
   151   ///length if it is necessary. The default map type is
   152   ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
   153   ///The value of LM is not used directly by Dijkstra, it
   154   ///is only passed to \ref DijkstraDefaultTraits.
   155   ///\param TR Traits class to set various data types used by the algorithm.
   156   ///The default traits class is
   157   ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
   158   ///See \ref DijkstraDefaultTraits for the documentation of
   159   ///a Dijkstra traits class.
   160   ///
   161   ///\author Jacint Szabo and Alpar Juttner
   162   ///\todo A compare object would be nice.
   163 
   164 #ifdef DOXYGEN
   165   template <typename GR,
   166 	    typename LM,
   167 	    typename TR>
   168 #else
   169   template <typename GR=ListGraph,
   170 	    typename LM=typename GR::template EdgeMap<int>,
   171 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   172 #endif
   173   class Dijkstra {
   174   public:
   175     /**
   176      * \brief \ref Exception for uninitialized parameters.
   177      *
   178      * This error represents problems in the initialization
   179      * of the parameters of the algorithms.
   180      */
   181     class UninitializedParameter : public lemon::UninitializedParameter {
   182     public:
   183       virtual const char* exceptionName() const {
   184 	return "lemon::Dijsktra::UninitializedParameter";
   185       }
   186     };
   187 
   188     typedef TR Traits;
   189     ///The type of the underlying graph.
   190     typedef typename TR::Graph Graph;
   191     ///\e
   192     typedef typename Graph::Node Node;
   193     ///\e
   194     typedef typename Graph::NodeIt NodeIt;
   195     ///\e
   196     typedef typename Graph::Edge Edge;
   197     ///\e
   198     typedef typename Graph::OutEdgeIt OutEdgeIt;
   199     
   200     ///The type of the length of the edges.
   201     typedef typename TR::LengthMap::Value Value;
   202     ///The type of the map that stores the edge lengths.
   203     typedef typename TR::LengthMap LengthMap;
   204     ///\brief The type of the map that stores the last
   205     ///edges of the shortest paths.
   206     typedef typename TR::PredMap PredMap;
   207     ///\brief The type of the map that stores the last but one
   208     ///nodes of the shortest paths.
   209     typedef typename TR::PredNodeMap PredNodeMap;
   210     ///The type of the map indicating if a node is reached.
   211     typedef typename TR::ReachedMap ReachedMap;
   212     ///The type of the map that stores the dists of the nodes.
   213     typedef typename TR::DistMap DistMap;
   214     ///The heap type used by the dijkstra algorithm.
   215     typedef typename TR::Heap Heap;
   216   private:
   217     /// Pointer to the underlying graph.
   218     const Graph *G;
   219     /// Pointer to the length map
   220     const LengthMap *length;
   221     ///Pointer to the map of predecessors edges.
   222     PredMap *_pred;
   223     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   224     bool local_pred;
   225     ///Pointer to the map of predecessors nodes.
   226     PredNodeMap *_predNode;
   227     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   228     bool local_predNode;
   229     ///Pointer to the map of distances.
   230     DistMap *_dist;
   231     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   232     bool local_dist;
   233     ///Pointer to the map of reached status of the nodes.
   234     ReachedMap *_reached;
   235     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   236     bool local_reached;
   237 
   238     ///The source node of the last execution.
   239     Node source;
   240 
   241     ///Creates the maps if necessary.
   242     
   243     ///\todo Error if \c G or are \c NULL. What about \c length?
   244     ///\todo Better memory allocation (instead of new).
   245     void create_maps() 
   246     {
   247       if(!_pred) {
   248 	local_pred = true;
   249 	_pred = Traits::createPredMap(*G);
   250       }
   251       if(!_predNode) {
   252 	local_predNode = true;
   253 	_predNode = Traits::createPredNodeMap(*G);
   254       }
   255       if(!_dist) {
   256 	local_dist = true;
   257 	_dist = Traits::createDistMap(*G);
   258       }
   259       if(!_reached) {
   260 	local_reached = true;
   261 	_reached = Traits::createReachedMap(*G);
   262       }
   263     }
   264     
   265   public :
   266  
   267     ///\name Named template parameters
   268 
   269     ///@{
   270 
   271     template <class T>
   272     struct DefPredMapTraits : public Traits {
   273       typedef T PredMap;
   274       static PredMap *createPredMap(const Graph &G) 
   275       {
   276 	throw UninitializedParameter();
   277       }
   278     };
   279     ///\ref named-templ-param "Named parameter" for setting PredMap type
   280 
   281     ///\ref named-templ-param "Named parameter" for setting PredMap type
   282     ///
   283     template <class T>
   284     class DefPredMap : public Dijkstra< Graph,
   285 					LengthMap,
   286 					DefPredMapTraits<T> > { };
   287     
   288     template <class T>
   289     struct DefPredNodeMapTraits : public Traits {
   290       typedef T PredNodeMap;
   291       static PredNodeMap *createPredNodeMap(const Graph &G) 
   292       {
   293 	throw UninitializedParameter();
   294       }
   295     };
   296     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   297 
   298     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   299     ///
   300     template <class T>
   301     class DefPredNodeMap : public Dijkstra< Graph,
   302 					    LengthMap,
   303 					    DefPredNodeMapTraits<T> > { };
   304     
   305     template <class T>
   306     struct DefDistMapTraits : public Traits {
   307       typedef T DistMap;
   308       static DistMap *createDistMap(const Graph &G) 
   309       {
   310 	throw UninitializedParameter();
   311       }
   312     };
   313     ///\ref named-templ-param "Named parameter" for setting DistMap type
   314 
   315     ///\ref named-templ-param "Named parameter" for setting DistMap type
   316     ///
   317     template <class T>
   318     class DefDistMap : public Dijkstra< Graph,
   319 					LengthMap,
   320 					DefDistMapTraits<T> > { };
   321     
   322     template <class T>
   323     struct DefReachedMapTraits : public Traits {
   324       typedef T ReachedMap;
   325       static ReachedMap *createReachedMap(const Graph &G) 
   326       {
   327 	throw UninitializedParameter();
   328       }
   329     };
   330     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   331 
   332     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   333     ///
   334     template <class T>
   335     class DefReachedMap : public Dijkstra< Graph,
   336 					LengthMap,
   337 					DefReachedMapTraits<T> > { };
   338     
   339     struct DefGraphReachedMapTraits : public Traits {
   340       typedef typename Graph::template NodeMap<bool> ReachedMap;
   341       static ReachedMap *createReachedMap(const Graph &G) 
   342       {
   343 	return new ReachedMap(G);
   344       }
   345     };
   346     ///\brief \ref named-templ-param "Named parameter"
   347     ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
   348     ///
   349     ///\ref named-templ-param "Named parameter"
   350     ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
   351     ///If you don't set it explicitely, it will be automatically allocated.
   352     template <class T>
   353     class DefReachedMapToBeDefaultMap :
   354       public Dijkstra< Graph,
   355 		       LengthMap,
   356 		       DefGraphReachedMapTraits> { };
   357     
   358     ///@}
   359 
   360 
   361   private:
   362     typename Graph::template NodeMap<int> _heap_map;
   363     Heap _heap;
   364   public:      
   365     
   366     ///Constructor.
   367     
   368     ///\param _G the graph the algorithm will run on.
   369     ///\param _length the length map used by the algorithm.
   370     Dijkstra(const Graph& _G, const LengthMap& _length) :
   371       G(&_G), length(&_length),
   372       _pred(NULL), local_pred(false),
   373       _predNode(NULL), local_predNode(false),
   374       _dist(NULL), local_dist(false),
   375       _reached(NULL), local_reached(false),
   376       _heap_map(*G,-1),_heap(_heap_map)
   377     { }
   378     
   379     ///Destructor.
   380     ~Dijkstra() 
   381     {
   382       if(local_pred) delete _pred;
   383       if(local_predNode) delete _predNode;
   384       if(local_dist) delete _dist;
   385       if(local_reached) delete _reached;
   386     }
   387 
   388     ///Sets the length map.
   389 
   390     ///Sets the length map.
   391     ///\return <tt> (*this) </tt>
   392     Dijkstra &lengthMap(const LengthMap &m) 
   393     {
   394       length = &m;
   395       return *this;
   396     }
   397 
   398     ///Sets the map storing the predecessor edges.
   399 
   400     ///Sets the map storing the predecessor edges.
   401     ///If you don't use this function before calling \ref run(),
   402     ///it will allocate one. The destuctor deallocates this
   403     ///automatically allocated map, of course.
   404     ///\return <tt> (*this) </tt>
   405     Dijkstra &predMap(PredMap &m) 
   406     {
   407       if(local_pred) {
   408 	delete _pred;
   409 	local_pred=false;
   410       }
   411       _pred = &m;
   412       return *this;
   413     }
   414 
   415     ///Sets the map storing the predecessor nodes.
   416 
   417     ///Sets the map storing the predecessor nodes.
   418     ///If you don't use this function before calling \ref run(),
   419     ///it will allocate one. The destuctor deallocates this
   420     ///automatically allocated map, of course.
   421     ///\return <tt> (*this) </tt>
   422     Dijkstra &predNodeMap(PredNodeMap &m) 
   423     {
   424       if(local_predNode) {
   425 	delete _predNode;
   426 	local_predNode=false;
   427       }
   428       _predNode = &m;
   429       return *this;
   430     }
   431 
   432     ///Sets the map storing the distances calculated by the algorithm.
   433 
   434     ///Sets the map storing the distances calculated by the algorithm.
   435     ///If you don't use this function before calling \ref run(),
   436     ///it will allocate one. The destuctor deallocates this
   437     ///automatically allocated map, of course.
   438     ///\return <tt> (*this) </tt>
   439     Dijkstra &distMap(DistMap &m) 
   440     {
   441       if(local_dist) {
   442 	delete _dist;
   443 	local_dist=false;
   444       }
   445       _dist = &m;
   446       return *this;
   447     }
   448 
   449   private:
   450     void finalizeNodeData(Node v,Value dst)
   451     {
   452       _reached->set(v,true);
   453       _dist->set(v, dst);
   454       if((*_pred)[v]!=INVALID) _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
   455     }
   456 
   457   public:
   458     ///\name Excetution control
   459     ///The simplest way to execute the algorithm is to use
   460     ///one of the member functions called \c run(...).
   461     ///\n
   462     ///It you need more control on the execution,
   463     ///first you must call \ref init(), then you can add several source nodes
   464     ///with \ref addSource(). Finally \ref start() will perform the actual path
   465     ///computation.
   466 
   467     ///@{
   468 
   469     ///Initializes the internal data structures.
   470 
   471     ///Initializes the internal data structures.
   472     ///
   473     ///\todo _heap_map's type could also be in the traits class.
   474     void init()
   475     {
   476       create_maps();
   477       
   478       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   479 	_pred->set(u,INVALID);
   480 	_predNode->set(u,INVALID);
   481 	///\todo *_reached is not set to false.
   482 	_heap_map.set(u,Heap::PRE_HEAP);
   483       }
   484     }
   485     
   486     ///Adds a new source node.
   487 
   488     ///Adds a new source node to the priority heap.
   489     ///
   490     ///The optional second parameter is the initial distance of the node.
   491     ///
   492     ///It checks if the node has already been added to the heap and
   493     ///It is pushed to the heap only if either it was not in the heap
   494     ///or the shortest path found till then is longer then \c dst.
   495     void addSource(Node s,Value dst=0)
   496     {
   497       source = s;
   498       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   499       else if(_heap[s]<dst) {
   500 	_heap.push(s,dst);
   501 	_pred->set(s,INVALID);
   502       }
   503     }
   504     
   505     ///Processes the next node in the priority heap
   506 
   507     ///Processes the next node in the priority heap.
   508     ///
   509     ///\warning The priority heap must not be empty!
   510     void processNextNode()
   511     {
   512       Node v=_heap.top(); 
   513       Value oldvalue=_heap[v];
   514       _heap.pop();
   515       finalizeNodeData(v,oldvalue);
   516       
   517       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   518 	Node w=G->target(e); 
   519 	switch(_heap.state(w)) {
   520 	case Heap::PRE_HEAP:
   521 	  _heap.push(w,oldvalue+(*length)[e]); 
   522 	  _pred->set(w,e);
   523 //  	  _predNode->set(w,v);
   524 	  break;
   525 	case Heap::IN_HEAP:
   526 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   527 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   528 	    _pred->set(w,e);
   529 // 	    _predNode->set(w,v);
   530 	  }
   531 	  break;
   532 	case Heap::POST_HEAP:
   533 	  break;
   534 	}
   535       }
   536     }
   537 
   538     ///Returns \c false if there are nodes to be processed in the priority heap
   539 
   540     ///Returns \c false if there are nodes to be processed in the priority heap
   541     ///
   542     bool emptyHeap() { return _heap.empty(); }
   543     ///Returns the number of the nodes to be processed in the priority heap
   544 
   545     ///Returns the number of the nodes to be processed in the priority heap
   546     ///
   547     int heapSize() { return _heap.size(); }
   548     
   549     ///Executes the algorithm.
   550 
   551     ///Executes the algorithm.
   552     ///
   553     ///\pre init() must be called and at least one node should be added
   554     ///with addSource() before using this function.
   555     ///
   556     ///This method runs the %Dijkstra algorithm from the root node(s)
   557     ///in order to
   558     ///compute the
   559     ///shortest path to each node. The algorithm computes
   560     ///- The shortest path tree.
   561     ///- The distance of each node from the root(s).
   562     ///
   563     void start()
   564     {
   565       while ( !_heap.empty() ) processNextNode();
   566     }
   567     
   568     ///Executes the algorithm until \c dest is reached.
   569 
   570     ///Executes the algorithm until \c dest is reached.
   571     ///
   572     ///\pre init() must be called and at least one node should be added
   573     ///with addSource() before using this function.
   574     ///
   575     ///This method runs the %Dijkstra algorithm from the root node(s)
   576     ///in order to
   577     ///compute the
   578     ///shortest path to \c dest. The algorithm computes
   579     ///- The shortest path to \c  dest.
   580     ///- The distance of \c dest from the root(s).
   581     ///
   582     void start(Node dest)
   583     {
   584       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   585       if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
   586     }
   587     
   588     ///Executes the algorithm until a condition is met.
   589 
   590     ///Executes the algorithm until a condition is met.
   591     ///
   592     ///\pre init() must be called and at least one node should be added
   593     ///with addSource() before using this function.
   594     ///
   595     ///\param nm must be a bool (or convertible) node map. The algorithm
   596     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   597     template<class NM>
   598     void start(const NM &nm)
   599     {
   600       while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   601       if ( !_heap.empty() ) finalizeNodeData(_heap.top());
   602     }
   603     
   604     ///Runs %Dijkstra algorithm from node \c s.
   605     
   606     ///This method runs the %Dijkstra algorithm from a root node \c s
   607     ///in order to
   608     ///compute the
   609     ///shortest path to each node. The algorithm computes
   610     ///- The shortest path tree.
   611     ///- The distance of each node from the root.
   612     ///
   613     ///\note d.run(s) is just a shortcut of the following code.
   614     ///\code
   615     ///  d.init();
   616     ///  d.addSource(s);
   617     ///  d.start();
   618     ///\endcode
   619     void run(Node s) {
   620       init();
   621       addSource(s);
   622       start();
   623     }
   624     
   625     ///Finds the shortest path between \c s and \c t.
   626     
   627     ///Finds the shortest path between \c s and \c t.
   628     ///
   629     ///\return The length of the shortest s---t path if there exists one,
   630     ///0 otherwise.
   631     ///\note Apart from the return value, d.run(s) is
   632     ///just a shortcut of the following code.
   633     ///\code
   634     ///  d.init();
   635     ///  d.addSource(s);
   636     ///  d.start(t);
   637     ///\endcode
   638     Value run(Node s,Node t) {
   639       init();
   640       addSource(s);
   641       start(t);
   642       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   643     }
   644     
   645     ///@}
   646 
   647     ///\name Query Functions
   648     ///The result of the %Dijkstra algorithm can be obtained using these
   649     ///functions.\n
   650     ///Before the use of these functions,
   651     ///either run() or start() must be called.
   652     
   653     ///@{
   654 
   655     ///The distance of a node from the root.
   656 
   657     ///Returns the distance of a node from the root.
   658     ///\pre \ref run() must be called before using this function.
   659     ///\warning If node \c v in unreachable from the root the return value
   660     ///of this funcion is undefined.
   661     Value dist(Node v) const { return (*_dist)[v]; }
   662 
   663     ///Returns the 'previous edge' of the shortest path tree.
   664 
   665     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   666     ///i.e. it returns the last edge of a shortest path from the root to \c
   667     ///v. It is \ref INVALID
   668     ///if \c v is unreachable from the root or if \c v=s. The
   669     ///shortest path tree used here is equal to the shortest path tree used in
   670     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   671     ///this function.
   672     ///\todo predEdge could be a better name.
   673     Edge pred(Node v) const { return (*_pred)[v]; }
   674 
   675     ///Returns the 'previous node' of the shortest path tree.
   676 
   677     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   678     ///i.e. it returns the last but one node from a shortest path from the
   679     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   680     ///\c v=s. The shortest path tree used here is equal to the shortest path
   681     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   682     ///using this function.
   683     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   684 				  G->source((*_pred)[v]); }
   685     
   686     ///Returns a reference to the NodeMap of distances.
   687 
   688     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   689     ///be called before using this function.
   690     const DistMap &distMap() const { return *_dist;}
   691  
   692     ///Returns a reference to the shortest path tree map.
   693 
   694     ///Returns a reference to the NodeMap of the edges of the
   695     ///shortest path tree.
   696     ///\pre \ref run() must be called before using this function.
   697     const PredMap &predMap() const { return *_pred;}
   698  
   699     ///Returns a reference to the map of nodes of shortest paths.
   700 
   701     ///Returns a reference to the NodeMap of the last but one nodes of the
   702     ///shortest path tree.
   703     ///\pre \ref run() must be called before using this function.
   704     const PredNodeMap &predNodeMap() const { return *_predNode;}
   705 
   706     ///Checks if a node is reachable from the root.
   707 
   708     ///Returns \c true if \c v is reachable from the root.
   709     ///\warning If the algorithm is started from multiple nodes,
   710     ///this function may give false result for the source nodes.
   711     ///\pre \ref run() must be called before using this function.
   712     ///
   713     bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
   714     
   715     ///@}
   716   };
   717 
   718   /// Default traits used by \ref DijkstraWizard
   719 
   720   /// To make it easier to use Dijkstra algorithm
   721   ///we have created a wizard class.
   722   /// This \ref DijkstraWizard class needs default traits,
   723   ///as well as the \ref Dijkstra class.
   724   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   725   /// \ref DijkstraWizard class.
   726   template<class GR,class LM>
   727   class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
   728   {
   729 
   730     typedef DijkstraDefaultTraits<GR,LM> Base;
   731   protected:
   732     /// Pointer to the underlying graph.
   733     void *_g;
   734     /// Pointer to the length map
   735     void *_length;
   736     ///Pointer to the map of predecessors edges.
   737     void *_pred;
   738     ///Pointer to the map of predecessors nodes.
   739     void *_predNode;
   740     ///Pointer to the map of distances.
   741     void *_dist;
   742     ///Pointer to the source node.
   743     void *_source;
   744 
   745     /// Type of the nodes in the graph.
   746     typedef typename Base::Graph::Node Node;
   747 
   748     public:
   749     /// Constructor.
   750     
   751     /// This constructor does not require parameters, therefore it initiates
   752     /// all of the attributes to default values (0, INVALID).
   753     DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
   754 		       _dist(0), _source(0) {}
   755 
   756     /// Constructor.
   757     
   758     /// This constructor requires some parameters,
   759     /// listed in the parameters list.
   760     /// Others are initiated to 0.
   761     /// \param g is the initial value of  \ref _g
   762     /// \param l is the initial value of  \ref _length
   763     /// \param s is the initial value of  \ref _source
   764     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   765       _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
   766 		  _dist(0), _source((s==INVALID)?0:(void *)&s) {}
   767 
   768   };
   769   
   770   /// A class to make easier the usage of Dijkstra algorithm
   771 
   772   /// \ingroup flowalgs
   773   /// This class is created to make it easier to use Dijkstra algorithm.
   774   /// It uses the functions and features of the plain \ref Dijkstra,
   775   /// but it is much simpler to use it.
   776   ///
   777   /// Simplicity means that the way to change the types defined
   778   /// in the traits class is based on functions that returns the new class
   779   /// and not on templatable built-in classes.
   780   /// When using the plain \ref Dijkstra
   781   /// the new class with the modified type comes from
   782   /// the original class by using the ::
   783   /// operator. In the case of \ref DijkstraWizard only
   784   /// a function have to be called and it will
   785   /// return the needed class.
   786   ///
   787   /// It does not have own \ref run method. When its \ref run method is called
   788   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   789   /// method of it.
   790   template<class TR>
   791   class DijkstraWizard : public TR
   792   {
   793     typedef TR Base;
   794 
   795     ///The type of the underlying graph.
   796     typedef typename TR::Graph Graph;
   797     //\e
   798     typedef typename Graph::Node Node;
   799     //\e
   800     typedef typename Graph::NodeIt NodeIt;
   801     //\e
   802     typedef typename Graph::Edge Edge;
   803     //\e
   804     typedef typename Graph::OutEdgeIt OutEdgeIt;
   805     
   806     ///The type of the map that stores the edge lengths.
   807     typedef typename TR::LengthMap LengthMap;
   808     ///The type of the length of the edges.
   809     typedef typename LengthMap::Value Value;
   810     ///\brief The type of the map that stores the last
   811     ///edges of the shortest paths.
   812     typedef typename TR::PredMap PredMap;
   813     ///\brief The type of the map that stores the last but one
   814     ///nodes of the shortest paths.
   815     typedef typename TR::PredNodeMap PredNodeMap;
   816     ///The type of the map that stores the dists of the nodes.
   817     typedef typename TR::DistMap DistMap;
   818 
   819     ///The heap type used by the dijkstra algorithm.
   820     typedef typename TR::Heap Heap;
   821 public:
   822     /// Constructor.
   823     DijkstraWizard() : TR() {}
   824 
   825     /// Constructor that requires parameters.
   826 
   827     /// Constructor that requires parameters.
   828     /// These parameters will be the default values for the traits class.
   829     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   830       TR(g,l,s) {}
   831 
   832     ///Copy constructor
   833     DijkstraWizard(const TR &b) : TR(b) {}
   834 
   835     ~DijkstraWizard() {}
   836 
   837     ///Runs Dijkstra algorithm from a given node.
   838     
   839     ///Runs Dijkstra algorithm from a given node.
   840     ///The node can be given by the \ref source function.
   841     void run()
   842     {
   843       if(Base::_source==0) throw UninitializedParameter();
   844       Dijkstra<Graph,LengthMap,TR> 
   845 	Dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   846       if(Base::_pred) Dij.predMap(*(PredMap*)Base::_pred);
   847       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   848       if(Base::_dist) Dij.distMap(*(DistMap*)Base::_dist);
   849       Dij.run(*(Node*)Base::_source);
   850     }
   851 
   852     ///Runs Dijkstra algorithm from the given node.
   853 
   854     ///Runs Dijkstra algorithm from the given node.
   855     ///\param s is the given source.
   856     void run(Node s)
   857     {
   858       Base::_source=(void *)&s;
   859       run();
   860     }
   861 
   862     template<class T>
   863     struct DefPredMapBase : public Base {
   864       typedef T PredMap;
   865       static PredMap *createPredMap(const Graph &G) { return 0; };
   866       DefPredMapBase(const Base &b) : Base(b) {}
   867     };
   868     
   869     ///\brief \ref named-templ-param "Named parameter"
   870     ///function for setting PredMap type
   871     ///
   872     /// \ref named-templ-param "Named parameter"
   873     ///function for setting PredMap type
   874     ///
   875     template<class T>
   876     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   877     {
   878       Base::_pred=(void *)&t;
   879       return DijkstraWizard<DefPredMapBase<T> >(*this);
   880     }
   881     
   882 
   883     template<class T>
   884     struct DefPredNodeMapBase : public Base {
   885       typedef T PredNodeMap;
   886       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
   887       DefPredNodeMapBase(const Base &b) : Base(b) {}
   888     };
   889     
   890     ///\brief \ref named-templ-param "Named parameter"
   891     ///function for setting PredNodeMap type
   892     ///
   893     /// \ref named-templ-param "Named parameter"
   894     ///function for setting PredNodeMap type
   895     ///
   896     template<class T>
   897     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
   898     {
   899       Base::_predNode=(void *)&t;
   900       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
   901     }
   902    
   903     template<class T>
   904     struct DefDistMapBase : public Base {
   905       typedef T DistMap;
   906       static DistMap *createDistMap(const Graph &G) { return 0; };
   907       DefDistMapBase(const Base &b) : Base(b) {}
   908     };
   909     
   910     ///\brief \ref named-templ-param "Named parameter"
   911     ///function for setting DistMap type
   912     ///
   913     /// \ref named-templ-param "Named parameter"
   914     ///function for setting DistMap type
   915     ///
   916     template<class T>
   917     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
   918     {
   919       Base::_dist=(void *)&t;
   920       return DijkstraWizard<DefDistMapBase<T> >(*this);
   921     }
   922     
   923     /// Sets the source node, from which the Dijkstra algorithm runs.
   924 
   925     /// Sets the source node, from which the Dijkstra algorithm runs.
   926     /// \param s is the source node.
   927     DijkstraWizard<TR> &source(Node s) 
   928     {
   929       Base::_source=(void *)&s;
   930       return *this;
   931     }
   932     
   933   };
   934   
   935   ///\e
   936 
   937   /// \ingroup flowalgs
   938   ///\todo Please document...
   939   ///
   940   template<class GR, class LM>
   941   DijkstraWizard<DijkstraWizardBase<GR,LM> >
   942   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
   943   {
   944     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
   945   }
   946 
   947 /// @}
   948   
   949 } //END OF NAMESPACE LEMON
   950 
   951 #endif
   952