lemon/hao_orlin.h
author alpar
Wed, 04 Feb 2009 14:42:31 +0000
changeset 2633 4f47c0f6be04
parent 2553 bfced05fa852
permissions -rw-r--r--
Remove a faulty include from elevator.h
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HAO_ORLIN_H
    20 #define LEMON_HAO_ORLIN_H
    21 
    22 #include <vector>
    23 #include <list>
    24 #include <limits>
    25 
    26 #include <lemon/maps.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/tolerance.h>
    29 
    30 /// \file
    31 /// \ingroup min_cut
    32 /// \brief Implementation of the Hao-Orlin algorithm.
    33 ///
    34 /// Implementation of the Hao-Orlin algorithm class for testing network 
    35 /// reliability.
    36 
    37 namespace lemon {
    38 
    39   /// \ingroup min_cut
    40   ///
    41   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    42   ///
    43   /// Hao-Orlin calculates a minimum cut in a directed graph
    44   /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
    45   /// consists of two phases: in the first phase it determines a
    46   /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
    47   /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
    48   /// out-degree) and in the second phase it determines a minimum cut
    49   /// with \f$ source \f$ on the sink-side (i.e. a set 
    50   /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
    51   /// out-degree). Obviously, the smaller of these two cuts will be a
    52   /// minimum cut of \f$ D \f$. The algorithm is a modified
    53   /// push-relabel preflow algorithm and our implementation calculates
    54   /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
    55   /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
    56   /// purpose of such algorithm is testing network reliability. For an
    57   /// undirected graph you can run just the first phase of the
    58   /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
    59   /// which solves the undirected problem in 
    60   /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the
    61   /// NagamochiIbaraki algorithm class.
    62   ///
    63   /// \param _Graph is the graph type of the algorithm.
    64   /// \param _CapacityMap is an edge map of capacities which should
    65   /// be any numreric type. The default type is _Graph::EdgeMap<int>.
    66   /// \param _Tolerance is the handler of the inexact computation. The
    67   /// default type for this is Tolerance<typename CapacityMap::Value>.
    68   ///
    69   /// \author Attila Bernath and Balazs Dezso
    70 #ifdef DOXYGEN
    71   template <typename _Graph, typename _CapacityMap, typename _Tolerance>
    72 #else
    73   template <typename _Graph,
    74 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
    75             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
    76 #endif
    77   class HaoOrlin {
    78   private:
    79 
    80     typedef _Graph Graph;
    81     typedef _CapacityMap CapacityMap;
    82     typedef _Tolerance Tolerance;
    83 
    84     typedef typename CapacityMap::Value Value;
    85 
    86     GRAPH_TYPEDEFS(typename Graph);
    87     
    88     const Graph& _graph;
    89     const CapacityMap* _capacity;
    90 
    91     typedef typename Graph::template EdgeMap<Value> FlowMap;
    92     FlowMap* _flow;
    93 
    94     Node _source;
    95 
    96     int _node_num;
    97 
    98     // Bucketing structure
    99     std::vector<Node> _first, _last;
   100     typename Graph::template NodeMap<Node>* _next;
   101     typename Graph::template NodeMap<Node>* _prev;    
   102     typename Graph::template NodeMap<bool>* _active;
   103     typename Graph::template NodeMap<int>* _bucket;
   104     
   105     std::vector<bool> _dormant;
   106 
   107     std::list<std::list<int> > _sets;
   108     std::list<int>::iterator _highest;
   109     
   110     typedef typename Graph::template NodeMap<Value> ExcessMap;
   111     ExcessMap* _excess;
   112 
   113     typedef typename Graph::template NodeMap<bool> SourceSetMap;
   114     SourceSetMap* _source_set;
   115 
   116     Value _min_cut;
   117 
   118     typedef typename Graph::template NodeMap<bool> MinCutMap;
   119     MinCutMap* _min_cut_map;
   120 
   121     Tolerance _tolerance;
   122 
   123   public: 
   124 
   125     /// \brief Constructor
   126     ///
   127     /// Constructor of the algorithm class. 
   128     HaoOrlin(const Graph& graph, const CapacityMap& capacity, 
   129              const Tolerance& tolerance = Tolerance()) :
   130       _graph(graph), _capacity(&capacity), _flow(0), _source(),
   131       _node_num(), _first(), _last(), _next(0), _prev(0), 
   132       _active(0), _bucket(0), _dormant(), _sets(), _highest(),
   133       _excess(0), _source_set(0), _min_cut(), _min_cut_map(0), 
   134       _tolerance(tolerance) {}
   135 
   136     ~HaoOrlin() {
   137       if (_min_cut_map) {
   138         delete _min_cut_map;
   139       } 
   140       if (_source_set) {
   141         delete _source_set;
   142       }
   143       if (_excess) {
   144         delete _excess;
   145       }
   146       if (_next) {
   147 	delete _next;
   148       }
   149       if (_prev) {
   150 	delete _prev;
   151       }
   152       if (_active) {
   153 	delete _active;
   154       }
   155       if (_bucket) {
   156 	delete _bucket;
   157       }
   158       if (_flow) {
   159         delete _flow;
   160       }
   161     }
   162     
   163   private:
   164 
   165     void activate(const Node& i) {
   166       _active->set(i, true);
   167 
   168       int bucket = (*_bucket)[i];
   169 
   170       if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;	    
   171       //unlace
   172       _next->set((*_prev)[i], (*_next)[i]);
   173       if ((*_next)[i] != INVALID) {
   174 	_prev->set((*_next)[i], (*_prev)[i]);
   175       } else {
   176 	_last[bucket] = (*_prev)[i];
   177       }
   178       //lace
   179       _next->set(i, _first[bucket]);
   180       _prev->set(_first[bucket], i);
   181       _prev->set(i, INVALID);
   182       _first[bucket] = i;
   183     }
   184 
   185     void deactivate(const Node& i) {
   186       _active->set(i, false);
   187       int bucket = (*_bucket)[i];
   188 
   189       if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
   190       
   191       //unlace
   192       _prev->set((*_next)[i], (*_prev)[i]);
   193       if ((*_prev)[i] != INVALID) {
   194 	_next->set((*_prev)[i], (*_next)[i]);
   195       } else {
   196 	_first[bucket] = (*_next)[i];
   197       }
   198       //lace
   199       _prev->set(i, _last[bucket]);
   200       _next->set(_last[bucket], i);
   201       _next->set(i, INVALID);
   202       _last[bucket] = i;
   203     }
   204 
   205     void addItem(const Node& i, int bucket) {
   206       (*_bucket)[i] = bucket;
   207       if (_last[bucket] != INVALID) {
   208 	_prev->set(i, _last[bucket]);
   209 	_next->set(_last[bucket], i);
   210 	_next->set(i, INVALID);
   211 	_last[bucket] = i;
   212       } else {
   213 	_prev->set(i, INVALID);
   214 	_first[bucket] = i;
   215 	_next->set(i, INVALID);
   216 	_last[bucket] = i;
   217       }
   218     }
   219     
   220     void findMinCutOut() {
   221 
   222       for (NodeIt n(_graph); n != INVALID; ++n) {
   223 	_excess->set(n, 0);
   224       }
   225 
   226       for (EdgeIt e(_graph); e != INVALID; ++e) {
   227 	_flow->set(e, 0);
   228       }
   229 
   230       int bucket_num = 1;
   231       
   232       {
   233 	typename Graph::template NodeMap<bool> reached(_graph, false);
   234 	
   235 	reached.set(_source, true);
   236 
   237 	bool first_set = true;
   238 
   239 	for (NodeIt t(_graph); t != INVALID; ++t) {
   240 	  if (reached[t]) continue;
   241 	  _sets.push_front(std::list<int>());
   242 	  _sets.front().push_front(bucket_num);
   243 	  _dormant[bucket_num] = !first_set;
   244 
   245 	  _bucket->set(t, bucket_num);
   246 	  _first[bucket_num] = _last[bucket_num] = t;
   247 	  _next->set(t, INVALID);
   248 	  _prev->set(t, INVALID);
   249 
   250 	  ++bucket_num;
   251 	  
   252 	  std::vector<Node> queue;
   253 	  queue.push_back(t);
   254 	  reached.set(t, true);
   255 	  
   256 	  while (!queue.empty()) {
   257 	    _sets.front().push_front(bucket_num);
   258 	    _dormant[bucket_num] = !first_set;
   259 	    _first[bucket_num] = _last[bucket_num] = INVALID;
   260 	    
   261 	    std::vector<Node> nqueue;
   262 	    for (int i = 0; i < int(queue.size()); ++i) {
   263 	      Node n = queue[i];
   264 	      for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   265 		Node u = _graph.source(e);
   266 		if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   267 		  reached.set(u, true);
   268 		  addItem(u, bucket_num);
   269 		  nqueue.push_back(u);
   270 		}
   271 	      }
   272 	    }
   273 	    queue.swap(nqueue);
   274 	    ++bucket_num;
   275 	  }
   276 	  _sets.front().pop_front();
   277 	  --bucket_num;
   278 	  first_set = false;
   279 	}
   280 
   281 	_bucket->set(_source, 0);
   282 	_dormant[0] = true;
   283       }
   284       _source_set->set(_source, true);	  
   285 	  
   286       Node target = _last[_sets.back().back()];
   287       {
   288 	for (OutEdgeIt e(_graph, _source); e != INVALID; ++e) {
   289 	  if (_tolerance.positive((*_capacity)[e])) {
   290 	    Node u = _graph.target(e);
   291 	    _flow->set(e, (*_capacity)[e]);
   292 	    _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
   293 	    if (!(*_active)[u] && u != _source) {
   294 	      activate(u);	      
   295 	    }
   296 	  }
   297 	}
   298 
   299 	if ((*_active)[target]) {
   300 	  deactivate(target);
   301 	}
   302 	
   303 	_highest = _sets.back().begin();
   304 	while (_highest != _sets.back().end() && 
   305 	       !(*_active)[_first[*_highest]]) {
   306 	  ++_highest;
   307 	}
   308       }
   309 
   310       while (true) {
   311 	while (_highest != _sets.back().end()) {
   312 	  Node n = _first[*_highest];
   313 	  Value excess = (*_excess)[n];
   314 	  int next_bucket = _node_num;
   315 
   316 	  int under_bucket;
   317 	  if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   318 	    under_bucket = -1;
   319 	  } else {
   320 	    under_bucket = *(++std::list<int>::iterator(_highest));
   321 	  }
   322 
   323 	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   324 	    Node v = _graph.target(e);
   325 	    if (_dormant[(*_bucket)[v]]) continue;
   326 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   327 	    if (!_tolerance.positive(rem)) continue;
   328 	    if ((*_bucket)[v] == under_bucket) {
   329 	      if (!(*_active)[v] && v != target) {
   330 		activate(v);
   331 	      }
   332 	      if (!_tolerance.less(rem, excess)) {
   333 		_flow->set(e, (*_flow)[e] + excess);
   334 		_excess->set(v, (*_excess)[v] + excess);
   335 		excess = 0;
   336 		goto no_more_push;
   337 	      } else {
   338 		excess -= rem;
   339 		_excess->set(v, (*_excess)[v] + rem);
   340 		_flow->set(e, (*_capacity)[e]);
   341 	      }
   342 	    } else if (next_bucket > (*_bucket)[v]) {
   343 	      next_bucket = (*_bucket)[v];
   344 	    }
   345 	  }
   346 
   347 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   348 	    Node v = _graph.source(e);
   349 	    if (_dormant[(*_bucket)[v]]) continue;
   350 	    Value rem = (*_flow)[e];
   351 	    if (!_tolerance.positive(rem)) continue;
   352 	    if ((*_bucket)[v] == under_bucket) {
   353 	      if (!(*_active)[v] && v != target) {
   354 		activate(v);
   355 	      }
   356 	      if (!_tolerance.less(rem, excess)) {
   357 		_flow->set(e, (*_flow)[e] - excess);
   358 		_excess->set(v, (*_excess)[v] + excess);
   359 		excess = 0;
   360 		goto no_more_push;
   361 	      } else {
   362 		excess -= rem;
   363 		_excess->set(v, (*_excess)[v] + rem);
   364 		_flow->set(e, 0);
   365 	      }
   366 	    } else if (next_bucket > (*_bucket)[v]) {
   367 	      next_bucket = (*_bucket)[v];
   368 	    }
   369 	  }
   370 	  
   371 	no_more_push:
   372 	  
   373 	  _excess->set(n, excess);
   374 	  
   375 	  if (excess != 0) {
   376 	    if ((*_next)[n] == INVALID) {
   377 	      typename std::list<std::list<int> >::iterator new_set = 
   378 		_sets.insert(--_sets.end(), std::list<int>());
   379 	      new_set->splice(new_set->end(), _sets.back(), 
   380 			      _sets.back().begin(), ++_highest);
   381 	      for (std::list<int>::iterator it = new_set->begin();
   382 		   it != new_set->end(); ++it) {
   383 		_dormant[*it] = true;
   384 	      }
   385 	      while (_highest != _sets.back().end() && 
   386 		     !(*_active)[_first[*_highest]]) {
   387 		++_highest;
   388 	      }
   389 	    } else if (next_bucket == _node_num) {
   390 	      _first[(*_bucket)[n]] = (*_next)[n];
   391 	      _prev->set((*_next)[n], INVALID);
   392 	      
   393 	      std::list<std::list<int> >::iterator new_set = 
   394 		_sets.insert(--_sets.end(), std::list<int>());
   395 	      
   396 	      new_set->push_front(bucket_num);
   397 	      _bucket->set(n, bucket_num);
   398 	      _first[bucket_num] = _last[bucket_num] = n;
   399 	      _next->set(n, INVALID);
   400 	      _prev->set(n, INVALID);
   401 	      _dormant[bucket_num] = true;
   402 	      ++bucket_num;
   403 
   404 	      while (_highest != _sets.back().end() && 
   405 		     !(*_active)[_first[*_highest]]) {
   406 		++_highest;
   407 	      }
   408 	    } else {
   409 	      _first[*_highest] = (*_next)[n];
   410 	      _prev->set((*_next)[n], INVALID);
   411 	      
   412 	      while (next_bucket != *_highest) {
   413 		--_highest;
   414 	      }
   415 
   416 	      if (_highest == _sets.back().begin()) {
   417 		_sets.back().push_front(bucket_num);
   418 		_dormant[bucket_num] = false;
   419 		_first[bucket_num] = _last[bucket_num] = INVALID;
   420 		++bucket_num;
   421 	      }
   422 	      --_highest;
   423 
   424 	      _bucket->set(n, *_highest);
   425 	      _next->set(n, _first[*_highest]);
   426 	      if (_first[*_highest] != INVALID) {
   427 		_prev->set(_first[*_highest], n);
   428 	      } else {
   429 		_last[*_highest] = n;
   430 	      }
   431 	      _first[*_highest] = n;	      
   432 	    }
   433 	  } else {
   434 
   435 	    deactivate(n);
   436 	    if (!(*_active)[_first[*_highest]]) {
   437 	      ++_highest;
   438 	      if (_highest != _sets.back().end() && 
   439 		  !(*_active)[_first[*_highest]]) {
   440 		_highest = _sets.back().end();
   441 	      }
   442 	    }
   443 	  }
   444 	}
   445 
   446 	if ((*_excess)[target] < _min_cut) {
   447 	  _min_cut = (*_excess)[target];
   448 	  for (NodeIt i(_graph); i != INVALID; ++i) {
   449 	    _min_cut_map->set(i, true);
   450 	  }
   451 	  for (std::list<int>::iterator it = _sets.back().begin();
   452 	       it != _sets.back().end(); ++it) {
   453 	    Node n = _first[*it];
   454 	    while (n != INVALID) {
   455 	      _min_cut_map->set(n, false);
   456 	      n = (*_next)[n];
   457 	    }
   458 	  }
   459 	}
   460 
   461 	{
   462 	  Node new_target;
   463 	  if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
   464 	    if ((*_next)[target] == INVALID) {
   465 	      _last[(*_bucket)[target]] = (*_prev)[target];
   466 	      new_target = (*_prev)[target];
   467 	    } else {
   468 	      _prev->set((*_next)[target], (*_prev)[target]);
   469 	      new_target = (*_next)[target];
   470 	    }
   471 	    if ((*_prev)[target] == INVALID) {
   472 	      _first[(*_bucket)[target]] = (*_next)[target];
   473 	    } else {
   474 	      _next->set((*_prev)[target], (*_next)[target]);
   475 	    }
   476 	  } else {
   477 	    _sets.back().pop_back();
   478 	    if (_sets.back().empty()) {
   479 	      _sets.pop_back();
   480 	      if (_sets.empty())
   481 		break;
   482 	      for (std::list<int>::iterator it = _sets.back().begin();
   483 		   it != _sets.back().end(); ++it) {
   484 		_dormant[*it] = false;
   485 	      }
   486 	    }
   487 	    new_target = _last[_sets.back().back()];
   488 	  }
   489 
   490 	  _bucket->set(target, 0);
   491 
   492 	  _source_set->set(target, true);	  
   493 	  for (OutEdgeIt e(_graph, target); e != INVALID; ++e) {
   494 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   495 	    if (!_tolerance.positive(rem)) continue;
   496 	    Node v = _graph.target(e);
   497 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   498 	      activate(v);
   499 	    }
   500 	    _excess->set(v, (*_excess)[v] + rem);
   501 	    _flow->set(e, (*_capacity)[e]);
   502 	  }
   503 	  
   504 	  for (InEdgeIt e(_graph, target); e != INVALID; ++e) {
   505 	    Value rem = (*_flow)[e];
   506 	    if (!_tolerance.positive(rem)) continue;
   507 	    Node v = _graph.source(e);
   508 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   509 	      activate(v);
   510 	    }
   511 	    _excess->set(v, (*_excess)[v] + rem);
   512 	    _flow->set(e, 0);
   513 	  }
   514 	  
   515 	  target = new_target;
   516 	  if ((*_active)[target]) {
   517 	    deactivate(target);
   518 	  }
   519 
   520 	  _highest = _sets.back().begin();
   521 	  while (_highest != _sets.back().end() && 
   522 		 !(*_active)[_first[*_highest]]) {
   523 	    ++_highest;
   524 	  }
   525 	}
   526       }
   527     }    
   528 
   529     void findMinCutIn() {
   530 
   531       for (NodeIt n(_graph); n != INVALID; ++n) {
   532 	_excess->set(n, 0);
   533       }
   534 
   535       for (EdgeIt e(_graph); e != INVALID; ++e) {
   536 	_flow->set(e, 0);
   537       }
   538 
   539       int bucket_num = 1;
   540       
   541       {
   542 	typename Graph::template NodeMap<bool> reached(_graph, false);
   543 	
   544 	reached.set(_source, true);
   545 
   546 	bool first_set = true;
   547 
   548 	for (NodeIt t(_graph); t != INVALID; ++t) {
   549 	  if (reached[t]) continue;
   550 	  _sets.push_front(std::list<int>());
   551 	  _sets.front().push_front(bucket_num);
   552 	  _dormant[bucket_num] = !first_set;
   553 
   554 	  _bucket->set(t, bucket_num);
   555 	  _first[bucket_num] = _last[bucket_num] = t;
   556 	  _next->set(t, INVALID);
   557 	  _prev->set(t, INVALID);
   558 
   559 	  ++bucket_num;
   560 	  
   561 	  std::vector<Node> queue;
   562 	  queue.push_back(t);
   563 	  reached.set(t, true);
   564 	  
   565 	  while (!queue.empty()) {
   566 	    _sets.front().push_front(bucket_num);
   567 	    _dormant[bucket_num] = !first_set;
   568 	    _first[bucket_num] = _last[bucket_num] = INVALID;
   569 	    
   570 	    std::vector<Node> nqueue;
   571 	    for (int i = 0; i < int(queue.size()); ++i) {
   572 	      Node n = queue[i];
   573 	      for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   574 		Node u = _graph.target(e);
   575 		if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   576 		  reached.set(u, true);
   577 		  addItem(u, bucket_num);
   578 		  nqueue.push_back(u);
   579 		}
   580 	      }
   581 	    }
   582 	    queue.swap(nqueue);
   583 	    ++bucket_num;
   584 	  }
   585 	  _sets.front().pop_front();
   586 	  --bucket_num;
   587 	  first_set = false;
   588 	}
   589 
   590 	_bucket->set(_source, 0);
   591 	_dormant[0] = true;
   592       }
   593       _source_set->set(_source, true);	  
   594 	  
   595       Node target = _last[_sets.back().back()];
   596       {
   597 	for (InEdgeIt e(_graph, _source); e != INVALID; ++e) {
   598 	  if (_tolerance.positive((*_capacity)[e])) {
   599 	    Node u = _graph.source(e);
   600 	    _flow->set(e, (*_capacity)[e]);
   601 	    _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
   602 	    if (!(*_active)[u] && u != _source) {
   603 	      activate(u);
   604 	    }
   605 	  }
   606 	}
   607 	if ((*_active)[target]) {
   608 	  deactivate(target);
   609 	}
   610 	
   611 	_highest = _sets.back().begin();
   612 	while (_highest != _sets.back().end() && 
   613 	       !(*_active)[_first[*_highest]]) {
   614 	  ++_highest;
   615 	}
   616       }
   617 
   618 
   619       while (true) {
   620 	while (_highest != _sets.back().end()) {
   621 	  Node n = _first[*_highest];
   622 	  Value excess = (*_excess)[n];
   623 	  int next_bucket = _node_num;
   624 
   625 	  int under_bucket;
   626 	  if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   627 	    under_bucket = -1;
   628 	  } else {
   629 	    under_bucket = *(++std::list<int>::iterator(_highest));
   630 	  }
   631 
   632 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   633 	    Node v = _graph.source(e);
   634 	    if (_dormant[(*_bucket)[v]]) continue;
   635 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   636 	    if (!_tolerance.positive(rem)) continue;
   637 	    if ((*_bucket)[v] == under_bucket) {
   638 	      if (!(*_active)[v] && v != target) {
   639 		activate(v);
   640 	      }
   641 	      if (!_tolerance.less(rem, excess)) {
   642 		_flow->set(e, (*_flow)[e] + excess);
   643 		_excess->set(v, (*_excess)[v] + excess);
   644 		excess = 0;
   645 		goto no_more_push;
   646 	      } else {
   647 		excess -= rem;
   648 		_excess->set(v, (*_excess)[v] + rem);
   649 		_flow->set(e, (*_capacity)[e]);
   650 	      }
   651 	    } else if (next_bucket > (*_bucket)[v]) {
   652 	      next_bucket = (*_bucket)[v];
   653 	    }
   654 	  }
   655 
   656 	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   657 	    Node v = _graph.target(e);
   658 	    if (_dormant[(*_bucket)[v]]) continue;
   659 	    Value rem = (*_flow)[e];
   660 	    if (!_tolerance.positive(rem)) continue;
   661 	    if ((*_bucket)[v] == under_bucket) {
   662 	      if (!(*_active)[v] && v != target) {
   663 		activate(v);
   664 	      }
   665 	      if (!_tolerance.less(rem, excess)) {
   666 		_flow->set(e, (*_flow)[e] - excess);
   667 		_excess->set(v, (*_excess)[v] + excess);
   668 		excess = 0;
   669 		goto no_more_push;
   670 	      } else {
   671 		excess -= rem;
   672 		_excess->set(v, (*_excess)[v] + rem);
   673 		_flow->set(e, 0);
   674 	      }
   675 	    } else if (next_bucket > (*_bucket)[v]) {
   676 	      next_bucket = (*_bucket)[v];
   677 	    }
   678 	  }
   679 	  
   680 	no_more_push:
   681 	  
   682 	  _excess->set(n, excess);
   683 	  
   684 	  if (excess != 0) {
   685 	    if ((*_next)[n] == INVALID) {
   686 	      typename std::list<std::list<int> >::iterator new_set = 
   687 		_sets.insert(--_sets.end(), std::list<int>());
   688 	      new_set->splice(new_set->end(), _sets.back(), 
   689 			      _sets.back().begin(), ++_highest);
   690 	      for (std::list<int>::iterator it = new_set->begin();
   691 		   it != new_set->end(); ++it) {
   692 		_dormant[*it] = true;
   693 	      }
   694 	      while (_highest != _sets.back().end() && 
   695 		     !(*_active)[_first[*_highest]]) {
   696 		++_highest;
   697 	      }
   698 	    } else if (next_bucket == _node_num) {
   699 	      _first[(*_bucket)[n]] = (*_next)[n];
   700 	      _prev->set((*_next)[n], INVALID);
   701 	      
   702 	      std::list<std::list<int> >::iterator new_set = 
   703 		_sets.insert(--_sets.end(), std::list<int>());
   704 	      
   705 	      new_set->push_front(bucket_num);
   706 	      _bucket->set(n, bucket_num);
   707 	      _first[bucket_num] = _last[bucket_num] = n;
   708 	      _next->set(n, INVALID);
   709 	      _prev->set(n, INVALID);
   710 	      _dormant[bucket_num] = true;
   711 	      ++bucket_num;
   712 
   713 	      while (_highest != _sets.back().end() && 
   714 		     !(*_active)[_first[*_highest]]) {
   715 		++_highest;
   716 	      }
   717 	    } else {
   718 	      _first[*_highest] = (*_next)[n];
   719 	      _prev->set((*_next)[n], INVALID);
   720 
   721 	      while (next_bucket != *_highest) {
   722 		--_highest;
   723 	      }
   724 	      if (_highest == _sets.back().begin()) {
   725 		_sets.back().push_front(bucket_num);
   726 		_dormant[bucket_num] = false;
   727 		_first[bucket_num] = _last[bucket_num] = INVALID;
   728 		++bucket_num;
   729 	      }
   730 	      --_highest;
   731 
   732 	      _bucket->set(n, *_highest);
   733 	      _next->set(n, _first[*_highest]);
   734 	      if (_first[*_highest] != INVALID) {
   735 		_prev->set(_first[*_highest], n);
   736 	      } else {
   737 		_last[*_highest] = n;
   738 	      }
   739 	      _first[*_highest] = n;	      
   740 	    }
   741 	  } else {
   742 
   743 	    deactivate(n);
   744 	    if (!(*_active)[_first[*_highest]]) {
   745 	      ++_highest;
   746 	      if (_highest != _sets.back().end() && 
   747 		  !(*_active)[_first[*_highest]]) {
   748 		_highest = _sets.back().end();
   749 	      }
   750 	    }
   751 	  }
   752 	}
   753 
   754 	if ((*_excess)[target] < _min_cut) {
   755 	  _min_cut = (*_excess)[target];
   756 	  for (NodeIt i(_graph); i != INVALID; ++i) {
   757 	    _min_cut_map->set(i, false);
   758 	  }
   759 	  for (std::list<int>::iterator it = _sets.back().begin();
   760 	       it != _sets.back().end(); ++it) {
   761 	    Node n = _first[*it];
   762 	    while (n != INVALID) {
   763 	      _min_cut_map->set(n, true);
   764 	      n = (*_next)[n];
   765 	    }
   766 	  }
   767 	}
   768 
   769 	{
   770 	  Node new_target;
   771 	  if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
   772 	    if ((*_next)[target] == INVALID) {
   773 	      _last[(*_bucket)[target]] = (*_prev)[target];
   774 	      new_target = (*_prev)[target];
   775 	    } else {
   776 	      _prev->set((*_next)[target], (*_prev)[target]);
   777 	      new_target = (*_next)[target];
   778 	    }
   779 	    if ((*_prev)[target] == INVALID) {
   780 	      _first[(*_bucket)[target]] = (*_next)[target];
   781 	    } else {
   782 	      _next->set((*_prev)[target], (*_next)[target]);
   783 	    }
   784 	  } else {
   785 	    _sets.back().pop_back();
   786 	    if (_sets.back().empty()) {
   787 	      _sets.pop_back();
   788 	      if (_sets.empty())
   789 		break;
   790 	      for (std::list<int>::iterator it = _sets.back().begin();
   791 		   it != _sets.back().end(); ++it) {
   792 		_dormant[*it] = false;
   793 	      }
   794 	    }
   795 	    new_target = _last[_sets.back().back()];
   796 	  }
   797 
   798 	  _bucket->set(target, 0);
   799 
   800 	  _source_set->set(target, true);	  
   801 	  for (InEdgeIt e(_graph, target); e != INVALID; ++e) {
   802 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   803 	    if (!_tolerance.positive(rem)) continue;
   804 	    Node v = _graph.source(e);
   805 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   806 	      activate(v);
   807 	    }
   808 	    _excess->set(v, (*_excess)[v] + rem);
   809 	    _flow->set(e, (*_capacity)[e]);
   810 	  }
   811 	  
   812 	  for (OutEdgeIt e(_graph, target); e != INVALID; ++e) {
   813 	    Value rem = (*_flow)[e];
   814 	    if (!_tolerance.positive(rem)) continue;
   815 	    Node v = _graph.target(e);
   816 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   817 	      activate(v);
   818 	    }
   819 	    _excess->set(v, (*_excess)[v] + rem);
   820 	    _flow->set(e, 0);
   821 	  }
   822 	  
   823 	  target = new_target;
   824 	  if ((*_active)[target]) {
   825 	    deactivate(target);
   826 	  }
   827 
   828 	  _highest = _sets.back().begin();
   829 	  while (_highest != _sets.back().end() && 
   830 		 !(*_active)[_first[*_highest]]) {
   831 	    ++_highest;
   832 	  }
   833 	}
   834       }
   835     }
   836 
   837   public:
   838 
   839     /// \name Execution control
   840     /// The simplest way to execute the algorithm is to use
   841     /// one of the member functions called \c run(...).
   842     /// \n
   843     /// If you need more control on the execution,
   844     /// first you must call \ref init(), then the \ref calculateIn() or
   845     /// \ref calculateIn() functions.
   846 
   847     /// @{
   848 
   849     /// \brief Initializes the internal data structures.
   850     ///
   851     /// Initializes the internal data structures. It creates
   852     /// the maps, residual graph adaptors and some bucket structures
   853     /// for the algorithm. 
   854     void init() {
   855       init(NodeIt(_graph));
   856     }
   857 
   858     /// \brief Initializes the internal data structures.
   859     ///
   860     /// Initializes the internal data structures. It creates
   861     /// the maps, residual graph adaptor and some bucket structures
   862     /// for the algorithm. Node \c source  is used as the push-relabel
   863     /// algorithm's source.
   864     void init(const Node& source) {
   865       _source = source;
   866       
   867       _node_num = countNodes(_graph);
   868       
   869       _first.resize(_node_num + 1);
   870       _last.resize(_node_num + 1);
   871 
   872       _dormant.resize(_node_num + 1);
   873 
   874       if (!_flow) {
   875 	_flow = new FlowMap(_graph);
   876       }
   877       if (!_next) {
   878 	_next = new typename Graph::template NodeMap<Node>(_graph);
   879       }
   880       if (!_prev) {
   881 	_prev = new typename Graph::template NodeMap<Node>(_graph);
   882       }
   883       if (!_active) {
   884 	_active = new typename Graph::template NodeMap<bool>(_graph);
   885       }
   886       if (!_bucket) {
   887 	_bucket = new typename Graph::template NodeMap<int>(_graph);
   888       }
   889       if (!_excess) {
   890 	_excess = new ExcessMap(_graph);
   891       }
   892       if (!_source_set) {
   893 	_source_set = new SourceSetMap(_graph);
   894       }
   895       if (!_min_cut_map) {
   896 	_min_cut_map = new MinCutMap(_graph);
   897       }
   898 
   899       _min_cut = std::numeric_limits<Value>::max();
   900     }
   901 
   902 
   903     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   904     /// source-side.
   905     ///
   906     /// Calculates a minimum cut with \f$ source \f$ on the
   907     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
   908     /// \in X \f$ and minimal out-degree).
   909     void calculateOut() {
   910       findMinCutOut();
   911     }
   912 
   913     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   914     /// target-side.
   915     ///
   916     /// Calculates a minimum cut with \f$ source \f$ on the
   917     /// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
   918     /// \in X \f$ and minimal out-degree).
   919     void calculateIn() {
   920       findMinCutIn();
   921     }
   922 
   923 
   924     /// \brief Runs the algorithm.
   925     ///
   926     /// Runs the algorithm. It finds nodes \c source and \c target
   927     /// arbitrarily and then calls \ref init(), \ref calculateOut()
   928     /// and \ref calculateIn().
   929     void run() {
   930       init();
   931       calculateOut();
   932       calculateIn();
   933     }
   934 
   935     /// \brief Runs the algorithm.
   936     ///
   937     /// Runs the algorithm. It uses the given \c source node, finds a
   938     /// proper \c target and then calls the \ref init(), \ref
   939     /// calculateOut() and \ref calculateIn().
   940     void run(const Node& s) {
   941       init(s);
   942       calculateOut();
   943       calculateIn();
   944     }
   945 
   946     /// @}
   947     
   948     /// \name Query Functions 
   949     /// The result of the %HaoOrlin algorithm
   950     /// can be obtained using these functions.
   951     /// \n
   952     /// Before using these functions, either \ref run(), \ref
   953     /// calculateOut() or \ref calculateIn() must be called.
   954     
   955     /// @{
   956 
   957     /// \brief Returns the value of the minimum value cut.
   958     /// 
   959     /// Returns the value of the minimum value cut.
   960     Value minCut() const {
   961       return _min_cut;
   962     }
   963 
   964 
   965     /// \brief Returns a minimum cut.
   966     ///
   967     /// Sets \c nodeMap to the characteristic vector of a minimum
   968     /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
   969     /// with minimal out-degree (i.e. \c nodeMap will be true exactly
   970     /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
   971     /// bool-valued node-map.
   972     template <typename NodeMap>
   973     Value minCut(NodeMap& nodeMap) const {
   974       for (NodeIt it(_graph); it != INVALID; ++it) {
   975 	nodeMap.set(it, (*_min_cut_map)[it]);
   976       }
   977       return minCut();
   978     }
   979 
   980     /// @}
   981     
   982   }; //class HaoOrlin 
   983 
   984 
   985 } //namespace lemon
   986 
   987 #endif //LEMON_HAO_ORLIN_H