lemon/johnson.h
author deba
Fri, 14 Jul 2006 09:37:48 +0000
changeset 2136 4f64d6b3e9ec
parent 2042 bdc953f2a449
child 2151 38ec4a930c05
permissions -rw-r--r--
Bug fix in MinCostMaxBipartiteMatching
The augmenting phase have not changed the
unreached nodes' potential which caused invalid
dual solution in some cases
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_JOHNSON_H
    20 #define LEMON_JOHNSON_H
    21 
    22 ///\ingroup flowalgs
    23 /// \file
    24 /// \brief Johnson algorithm.
    25 ///
    26 
    27 #include <lemon/list_graph.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/dijkstra.h>
    30 #include <lemon/bellman_ford.h>
    31 #include <lemon/bits/invalid.h>
    32 #include <lemon/error.h>
    33 #include <lemon/maps.h>
    34 #include <lemon/matrix_maps.h>
    35 
    36 #include <limits>
    37 
    38 namespace lemon {
    39 
    40   /// \brief Default OperationTraits for the Johnson algorithm class.
    41   ///  
    42   /// It defines all computational operations and constants which are
    43   /// used in the Floyd-Warshall algorithm. The default implementation
    44   /// is based on the numeric_limits class. If the numeric type does not
    45   /// have infinity value then the maximum value is used as extremal
    46   /// infinity value.
    47   template <
    48     typename Value, 
    49     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    50   struct JohnsonDefaultOperationTraits {
    51     /// \brief Gives back the zero value of the type.
    52     static Value zero() {
    53       return static_cast<Value>(0);
    54     }
    55     /// \brief Gives back the positive infinity value of the type.
    56     static Value infinity() {
    57       return std::numeric_limits<Value>::infinity();
    58     }
    59     /// \brief Gives back the sum of the given two elements.
    60     static Value plus(const Value& left, const Value& right) {
    61       return left + right;
    62     }
    63     /// \brief Gives back true only if the first value less than the second.
    64     static bool less(const Value& left, const Value& right) {
    65       return left < right;
    66     }
    67   };
    68 
    69   template <typename Value>
    70   struct JohnsonDefaultOperationTraits<Value, false> {
    71     static Value zero() {
    72       return static_cast<Value>(0);
    73     }
    74     static Value infinity() {
    75       return std::numeric_limits<Value>::max();
    76     }
    77     static Value plus(const Value& left, const Value& right) {
    78       if (left == infinity() || right == infinity()) return infinity();
    79       return left + right;
    80     }
    81     static bool less(const Value& left, const Value& right) {
    82       return left < right;
    83     }
    84   };
    85   
    86   /// \brief Default traits class of Johnson class.
    87   ///
    88   /// Default traits class of Johnson class.
    89   /// \param _Graph Graph type.
    90   /// \param _LegthMap Type of length map.
    91   template<class _Graph, class _LengthMap>
    92   struct JohnsonDefaultTraits {
    93     /// The graph type the algorithm runs on. 
    94     typedef _Graph Graph;
    95 
    96     /// \brief The type of the map that stores the edge lengths.
    97     ///
    98     /// The type of the map that stores the edge lengths.
    99     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
   100     typedef _LengthMap LengthMap;
   101 
   102     // The type of the length of the edges.
   103     typedef typename _LengthMap::Value Value;
   104 
   105     /// \brief Operation traits for bellman-ford algorithm.
   106     ///
   107     /// It defines the infinity type on the given Value type
   108     /// and the used operation.
   109     /// \see JohnsonDefaultOperationTraits
   110     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   111 
   112     /// The cross reference type used by heap.
   113 
   114     /// The cross reference type used by heap.
   115     /// Usually it is \c Graph::NodeMap<int>.
   116     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   117 
   118     ///Instantiates a HeapCrossRef.
   119 
   120     ///This function instantiates a \ref HeapCrossRef. 
   121     /// \param graph is the graph, to which we would like to define the 
   122     /// HeapCrossRef.
   123     static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
   124       return new HeapCrossRef(graph);
   125     }
   126     
   127     ///The heap type used by Dijkstra algorithm.
   128 
   129     ///The heap type used by Dijkstra algorithm.
   130     ///
   131     ///\sa BinHeap
   132     ///\sa Dijkstra
   133     typedef BinHeap<typename Graph::Node, typename LengthMap::Value,
   134 		    HeapCrossRef, std::less<Value> > Heap;
   135 
   136     ///Instantiates a Heap.
   137 
   138     ///This function instantiates a \ref Heap. 
   139     /// \param crossRef The cross reference for the heap.
   140     static Heap *createHeap(HeapCrossRef& crossRef) {
   141       return new Heap(crossRef);
   142     }
   143  
   144     /// \brief The type of the matrix map that stores the last edges of the 
   145     /// shortest paths.
   146     /// 
   147     /// The type of the map that stores the last edges of the shortest paths.
   148     /// It must be a matrix map with \c Graph::Edge value type.
   149     ///
   150     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   151 			     typename Graph::Edge> PredMap;
   152 
   153     /// \brief Instantiates a PredMap.
   154     /// 
   155     /// This function instantiates a \ref PredMap. 
   156     /// \param graph is the graph, to which we would like to define the PredMap.
   157     /// \todo The graph alone may be insufficient for the initialization
   158     static PredMap *createPredMap(const Graph& graph) {
   159       return new PredMap(graph);
   160     }
   161 
   162     /// \brief The type of the matrix map that stores the dists of the nodes.
   163     ///
   164     /// The type of the matrix map that stores the dists of the nodes.
   165     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   166     ///
   167     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   168     
   169     /// \brief Instantiates a DistMap.
   170     ///
   171     /// This function instantiates a \ref DistMap. 
   172     /// \param graph is the graph, to which we would like to define the 
   173     /// \ref DistMap
   174     static DistMap *createDistMap(const _Graph& graph) {
   175       return new DistMap(graph);
   176     }
   177 
   178   };
   179 
   180   /// \brief %Johnson algorithm class.
   181   ///
   182   /// \ingroup flowalgs
   183   /// This class provides an efficient implementation of \c %Johnson 
   184   /// algorithm. The edge lengths are passed to the algorithm using a
   185   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   186   /// kind of length.
   187   ///
   188   /// The algorithm solves the shortest path problem for each pair
   189   /// of node when the edges can have negative length but the graph should
   190   /// not contain cycles with negative sum of length. If we can assume
   191   /// that all edge is non-negative in the graph then the dijkstra algorithm
   192   /// should be used from each node.
   193   ///
   194   /// The complexity of this algorithm is \f$ O(n^2\log(n)+n\log(n)e) \f$ or
   195   /// with fibonacci heap \f$ O(n^2\log(n)+ne) \f$. Usually the fibonacci heap
   196   /// implementation is slower than either binary heap implementation or the 
   197   /// Floyd-Warshall algorithm. 
   198   ///
   199   /// The type of the length is determined by the
   200   /// \ref concept::ReadMap::Value "Value" of the length map.
   201   ///
   202   /// \param _Graph The graph type the algorithm runs on. The default value
   203   /// is \ref ListGraph. The value of _Graph is not used directly by
   204   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   205   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   206   /// edges. It is read once for each edge, so the map may involve in
   207   /// relatively time consuming process to compute the edge length if
   208   /// it is necessary. The default map type is \ref
   209   /// concept::Graph::EdgeMap "Graph::EdgeMap<int>".  The value
   210   /// of _LengthMap is not used directly by Johnson, it is only passed 
   211   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   212   /// various data types used by the algorithm.  The default traits
   213   /// class is \ref JohnsonDefaultTraits
   214   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   215   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   216   /// class.
   217   ///
   218   /// \author Balazs Dezso
   219 
   220 #ifdef DOXYGEN
   221   template <typename _Graph, typename _LengthMap, typename _Traits>
   222 #else
   223   template <typename _Graph=ListGraph,
   224 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   225 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   226 #endif
   227   class Johnson {
   228   public:
   229     
   230     /// \brief \ref Exception for uninitialized parameters.
   231     ///
   232     /// This error represents problems in the initialization
   233     /// of the parameters of the algorithms.
   234 
   235     class UninitializedParameter : public lemon::UninitializedParameter {
   236     public:
   237       virtual const char* exceptionName() const {
   238 	return "lemon::Johnson::UninitializedParameter";
   239       }
   240     };
   241 
   242     typedef _Traits Traits;
   243     ///The type of the underlying graph.
   244     typedef typename _Traits::Graph Graph;
   245 
   246     typedef typename Graph::Node Node;
   247     typedef typename Graph::NodeIt NodeIt;
   248     typedef typename Graph::Edge Edge;
   249     typedef typename Graph::EdgeIt EdgeIt;
   250     
   251     /// \brief The type of the length of the edges.
   252     typedef typename _Traits::LengthMap::Value Value;
   253     /// \brief The type of the map that stores the edge lengths.
   254     typedef typename _Traits::LengthMap LengthMap;
   255     /// \brief The type of the map that stores the last
   256     /// edges of the shortest paths. The type of the PredMap
   257     /// is a matrix map for Edges
   258     typedef typename _Traits::PredMap PredMap;
   259     /// \brief The type of the map that stores the dists of the nodes.
   260     /// The type of the DistMap is a matrix map for Values
   261     typedef typename _Traits::DistMap DistMap;
   262     /// \brief The operation traits.
   263     typedef typename _Traits::OperationTraits OperationTraits;
   264     ///The cross reference type used for the current heap.
   265     typedef typename _Traits::HeapCrossRef HeapCrossRef;
   266     ///The heap type used by the dijkstra algorithm.
   267     typedef typename _Traits::Heap Heap;
   268   private:
   269     /// Pointer to the underlying graph.
   270     const Graph *graph;
   271     /// Pointer to the length map
   272     const LengthMap *length;
   273     ///Pointer to the map of predecessors edges.
   274     PredMap *_pred;
   275     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   276     bool local_pred;
   277     ///Pointer to the map of distances.
   278     DistMap *_dist;
   279     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   280     bool local_dist;
   281     ///Pointer to the heap cross references.
   282     HeapCrossRef *_heap_cross_ref;
   283     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   284     bool local_heap_cross_ref;
   285     ///Pointer to the heap.
   286     Heap *_heap;
   287     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   288     bool local_heap;
   289 
   290     /// Creates the maps if necessary.
   291     void create_maps() {
   292       if(!_pred) {
   293 	local_pred = true;
   294 	_pred = Traits::createPredMap(*graph);
   295       }
   296       if(!_dist) {
   297 	local_dist = true;
   298 	_dist = Traits::createDistMap(*graph);
   299       }
   300       if (!_heap_cross_ref) {
   301 	local_heap_cross_ref = true;
   302 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   303       }
   304       if (!_heap) {
   305 	local_heap = true;
   306 	_heap = Traits::createHeap(*_heap_cross_ref);
   307       }
   308     }
   309 
   310   public :
   311 
   312     /// \name Named template parameters
   313 
   314     ///@{
   315 
   316     template <class T>
   317     struct DefPredMapTraits : public Traits {
   318       typedef T PredMap;
   319       static PredMap *createPredMap(const Graph& graph) {
   320 	throw UninitializedParameter();
   321       }
   322     };
   323 
   324     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   325     /// type
   326     /// \ref named-templ-param "Named parameter" for setting PredMap type
   327     ///
   328     template <class T>
   329     struct DefPredMap 
   330       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   331       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   332     };
   333     
   334     template <class T>
   335     struct DefDistMapTraits : public Traits {
   336       typedef T DistMap;
   337       static DistMap *createDistMap(const Graph& graph) {
   338 	throw UninitializedParameter();
   339       }
   340     };
   341     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   342     /// type
   343     ///
   344     /// \ref named-templ-param "Named parameter" for setting DistMap type
   345     ///
   346     template <class T>
   347     struct DefDistMap 
   348       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   349       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   350     };
   351     
   352     template <class T>
   353     struct DefOperationTraitsTraits : public Traits {
   354       typedef T OperationTraits;
   355     };
   356     
   357     /// \brief \ref named-templ-param "Named parameter" for setting 
   358     /// OperationTraits type
   359     ///
   360     /// \ref named-templ-param "Named parameter" for setting 
   361     /// OperationTraits type
   362     template <class T>
   363     struct DefOperationTraits
   364       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   365       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   366     };
   367 
   368     template <class H, class CR>
   369     struct DefHeapTraits : public Traits {
   370       typedef CR HeapCrossRef;
   371       typedef H Heap;
   372       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   373 	throw UninitializedParameter();
   374       }
   375       static Heap *createHeap(HeapCrossRef &) 
   376       {
   377 	throw UninitializedParameter();
   378       }
   379     };
   380     ///\brief \ref named-templ-param "Named parameter" for setting heap and 
   381     ///cross reference type
   382 
   383     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   384     ///reference type
   385     ///
   386     template <class H, class CR = typename Graph::template NodeMap<int> >
   387     struct DefHeap
   388       : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > { 
   389       typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
   390     };
   391 
   392     template <class H, class CR>
   393     struct DefStandardHeapTraits : public Traits {
   394       typedef CR HeapCrossRef;
   395       typedef H Heap;
   396       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   397 	return new HeapCrossRef(G);
   398       }
   399       static Heap *createHeap(HeapCrossRef &R) 
   400       {
   401 	return new Heap(R);
   402       }
   403     };
   404     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   405     ///reference type with automatic allocation
   406 
   407     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   408     ///reference type. It can allocate the heap and the cross reference 
   409     ///object if the cross reference's constructor waits for the graph as 
   410     ///parameter and the heap's constructor waits for the cross reference.
   411     template <class H, class CR = typename Graph::template NodeMap<int> >
   412     struct DefStandardHeap
   413       : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > { 
   414       typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > 
   415       Create;
   416     };
   417     
   418     ///@}
   419 
   420   protected:
   421 
   422     Johnson() {}
   423 
   424   public:      
   425 
   426     typedef Johnson Create;
   427     
   428     /// \brief Constructor.
   429     ///
   430     /// \param _graph the graph the algorithm will run on.
   431     /// \param _length the length map used by the algorithm.
   432     Johnson(const Graph& _graph, const LengthMap& _length) :
   433       graph(&_graph), length(&_length),
   434       _pred(0), local_pred(false),
   435       _dist(0), local_dist(false),
   436       _heap_cross_ref(0), local_heap_cross_ref(false),
   437       _heap(0), local_heap(false) {}
   438     
   439     ///Destructor.
   440     ~Johnson() {
   441       if (local_pred) delete _pred;
   442       if (local_dist) delete _dist;
   443       if (local_heap_cross_ref) delete _heap_cross_ref;
   444       if (local_heap) delete _heap;
   445     }
   446 
   447     /// \brief Sets the length map.
   448     ///
   449     /// Sets the length map.
   450     /// \return \c (*this)
   451     Johnson &lengthMap(const LengthMap &m) {
   452       length = &m;
   453       return *this;
   454     }
   455 
   456     /// \brief Sets the map storing the predecessor edges.
   457     ///
   458     /// Sets the map storing the predecessor edges.
   459     /// If you don't use this function before calling \ref run(),
   460     /// it will allocate one. The destuctor deallocates this
   461     /// automatically allocated map, of course.
   462     /// \return \c (*this)
   463     Johnson &predMap(PredMap &m) {
   464       if(local_pred) {
   465 	delete _pred;
   466 	local_pred=false;
   467       }
   468       _pred = &m;
   469       return *this;
   470     }
   471 
   472     /// \brief Sets the map storing the distances calculated by the algorithm.
   473     ///
   474     /// Sets the map storing the distances calculated by the algorithm.
   475     /// If you don't use this function before calling \ref run(),
   476     /// it will allocate one. The destuctor deallocates this
   477     /// automatically allocated map, of course.
   478     /// \return \c (*this)
   479     Johnson &distMap(DistMap &m) {
   480       if(local_dist) {
   481 	delete _dist;
   482 	local_dist=false;
   483       }
   484       _dist = &m;
   485       return *this;
   486     }
   487 
   488   public:    
   489 
   490     ///\name Execution control
   491     /// The simplest way to execute the algorithm is to use
   492     /// one of the member functions called \c run(...).
   493     /// \n
   494     /// If you need more control on the execution,
   495     /// Finally \ref start() will perform the actual path
   496     /// computation.
   497 
   498     ///@{
   499 
   500     /// \brief Initializes the internal data structures.
   501     /// 
   502     /// Initializes the internal data structures.
   503     void init() {
   504       create_maps();
   505     }
   506 
   507     /// \brief Executes the algorithm with own potential map.
   508     ///
   509     /// This method runs the %Johnson algorithm in order to compute 
   510     /// the shortest path to each node pairs. The potential map
   511     /// can be given for this algorithm which usually calculated
   512     /// by the Bellman-Ford algorithm. If the graph does not have
   513     /// negative length edge then this start function can be used
   514     /// with constMap<Node, int>(0) parameter to omit the running time of
   515     /// the Bellman-Ford. 
   516     /// The algorithm computes 
   517     /// - The shortest path tree for each node.
   518     /// - The distance between each node pairs.
   519     template <typename PotentialMap>
   520     void shiftedStart(const PotentialMap& potential) {      
   521       typename Graph::template EdgeMap<Value> shiftlen(*graph);
   522       for (EdgeIt it(*graph);  it != INVALID; ++it) {
   523       	shiftlen[it] = (*length)[it] 
   524 	  + potential[graph->source(it)] 
   525 	  - potential[graph->target(it)];
   526       }
   527       
   528       typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
   529 	template DefHeap<Heap, HeapCrossRef>::
   530 	Create dijkstra(*graph, shiftlen);
   531 
   532       dijkstra.heap(*_heap, *_heap_cross_ref);
   533       
   534       for (NodeIt it(*graph); it != INVALID; ++it) {
   535 	dijkstra.run(it);
   536 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   537 	  if (dijkstra.reached(jt)) {
   538 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   539 		       potential[jt] - potential[it]);
   540 	    _pred->set(it, jt, dijkstra.predEdge(jt));
   541 	  } else {
   542 	    _dist->set(it, jt, OperationTraits::infinity());
   543 	    _pred->set(it, jt, INVALID);
   544 	  }
   545 	}
   546       }
   547     }
   548 
   549     /// \brief Executes the algorithm.
   550     ///
   551     /// This method runs the %Johnson algorithm in order to compute 
   552     /// the shortest path to each node pairs. The algorithm 
   553     /// computes 
   554     /// - The shortest path tree for each node.
   555     /// - The distance between each node pairs.
   556     void start() {
   557 
   558       typedef typename BellmanFord<Graph, LengthMap>::
   559       template DefOperationTraits<OperationTraits>::
   560       template DefPredMap<NullMap<Node, Edge> >::
   561       Create BellmanFordType;
   562       
   563       BellmanFordType bellmanford(*graph, *length);
   564 
   565       NullMap<Node, Edge> predMap;
   566 
   567       bellmanford.predMap(predMap);
   568       
   569       bellmanford.init(OperationTraits::zero());
   570       bellmanford.start();
   571 
   572       shiftedStart(bellmanford.distMap());
   573     }
   574 
   575     /// \brief Executes the algorithm and checks the negatvie cycles.
   576     ///
   577     /// This method runs the %Johnson algorithm in order to compute 
   578     /// the shortest path to each node pairs. If the graph contains
   579     /// negative cycle it gives back false. The algorithm 
   580     /// computes 
   581     /// - The shortest path tree for each node.
   582     /// - The distance between each node pairs.
   583     bool checkedStart() {
   584       
   585       typedef typename BellmanFord<Graph, LengthMap>::
   586       template DefOperationTraits<OperationTraits>::
   587       template DefPredMap<NullMap<Node, Edge> >::
   588       Create BellmanFordType;
   589 
   590       BellmanFordType bellmanford(*graph, *length);
   591 
   592       NullMap<Node, Edge> predMap;
   593 
   594       bellmanford.predMap(predMap);
   595       
   596       bellmanford.init(OperationTraits::zero());
   597       if (!bellmanford.checkedStart()) return false;
   598 
   599       shiftedStart(bellmanford.distMap());
   600       return true;
   601     }
   602 
   603     
   604     /// \brief Runs %Johnson algorithm.
   605     ///    
   606     /// This method runs the %Johnson algorithm from a each node
   607     /// in order to compute the shortest path to each node pairs. 
   608     /// The algorithm computes
   609     /// - The shortest path tree for each node.
   610     /// - The distance between each node pairs.
   611     ///
   612     /// \note d.run(s) is just a shortcut of the following code.
   613     ///\code
   614     ///  d.init();
   615     ///  d.start();
   616     ///\endcode
   617     void run() {
   618       init();
   619       start();
   620     }
   621     
   622     ///@}
   623 
   624     /// \name Query Functions
   625     /// The result of the %Johnson algorithm can be obtained using these
   626     /// functions.\n
   627     /// Before the use of these functions,
   628     /// either run() or start() must be called.
   629     
   630     ///@{
   631 
   632     /// \brief Copies the shortest path to \c t into \c p
   633     ///    
   634     /// This function copies the shortest path to \c t into \c p.
   635     /// If it \c t is a source itself or unreachable, then it does not
   636     /// alter \c p.
   637     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   638     /// \c false otherwise.
   639     /// \sa DirPath
   640     template <typename Path>
   641     bool getPath(Path &p, Node source, Node target) {
   642       if (connected(source, target)) {
   643 	p.clear();
   644 	typename Path::Builder b(target);
   645 	for(b.setStartNode(target); predEdge(source, target) != INVALID;
   646 	    target = predNode(target)) {
   647 	  b.pushFront(predEdge(source, target));
   648 	}
   649 	b.commit();
   650 	return true;
   651       }
   652       return false;
   653     }
   654 	  
   655     /// \brief The distance between two nodes.
   656     ///
   657     /// Returns the distance between two nodes.
   658     /// \pre \ref run() must be called before using this function.
   659     /// \warning If node \c v in unreachable from the root the return value
   660     /// of this funcion is undefined.
   661     Value dist(Node source, Node target) const { 
   662       return (*_dist)(source, target); 
   663     }
   664 
   665     /// \brief Returns the 'previous edge' of the shortest path tree.
   666     ///
   667     /// For the node \c node it returns the 'previous edge' of the shortest 
   668     /// path tree to direction of the node \c root 
   669     /// i.e. it returns the last edge of a shortest path from the node \c root 
   670     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   671     /// or if \c node=root. The shortest path tree used here is equal to the 
   672     /// shortest path tree used in \ref predNode(). 
   673     /// \pre \ref run() must be called before using this function.
   674     Edge predEdge(Node root, Node node) const { 
   675       return (*_pred)(root, node); 
   676     }
   677 
   678     /// \brief Returns the 'previous node' of the shortest path tree.
   679     ///
   680     /// For a node \c node it returns the 'previous node' of the shortest path 
   681     /// tree to direction of the node \c root, i.e. it returns the last but 
   682     /// one node from a shortest path from the \c root to \c node. It is 
   683     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   684     /// The shortest path tree used here is equal to the 
   685     /// shortest path tree used in \ref predEdge().  
   686     /// \pre \ref run() must be called before using this function.
   687     Node predNode(Node root, Node node) const { 
   688       return (*_pred)(root, node) == INVALID ? 
   689       INVALID : graph->source((*_pred)(root, node)); 
   690     }
   691     
   692     /// \brief Returns a reference to the matrix node map of distances.
   693     ///
   694     /// Returns a reference to the matrix node map of distances. 
   695     ///
   696     /// \pre \ref run() must be called before using this function.
   697     const DistMap &distMap() const { return *_dist;}
   698  
   699     /// \brief Returns a reference to the shortest path tree map.
   700     ///
   701     /// Returns a reference to the matrix node map of the edges of the
   702     /// shortest path tree.
   703     /// \pre \ref run() must be called before using this function.
   704     const PredMap &predMap() const { return *_pred;}
   705  
   706     /// \brief Checks if a node is reachable from the root.
   707     ///
   708     /// Returns \c true if \c v is reachable from the root.
   709     /// \pre \ref run() must be called before using this function.
   710     ///
   711     bool connected(Node source, Node target) { 
   712       return (*_dist)(source, target) != OperationTraits::infinity(); 
   713     }
   714     
   715     ///@}
   716   };
   717  
   718 } //END OF NAMESPACE LEMON
   719 
   720 #endif