lemon/radix_heap.h
author deba
Wed, 18 Oct 2006 15:05:12 +0000
changeset 2254 50cb2b90daa9
parent 2050 d9a221218ea4
child 2263 9273fe7d850c
permissions -rw-r--r--
Some improvements on item readers and writers
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_RADIX_HEAP_H
    20 #define LEMON_RADIX_HEAP_H
    21 
    22 ///\ingroup auxdat
    23 ///\file
    24 ///\brief Radix Heap implementation.
    25 
    26 #include <vector>
    27 #include <lemon/error.h>
    28 
    29 namespace lemon {
    30 
    31   /// \brief Exception thrown by RadixHeap.
    32   ///  
    33   /// This Exception is thrown when a smaller priority
    34   /// is inserted into the \e RadixHeap then the last time erased.
    35   /// \see RadixHeap
    36   /// \author Balazs Dezso
    37 
    38   class UnderFlowPriorityError : public RuntimeError {
    39   public:
    40     virtual const char* what() const throw() {
    41       return "lemon::UnderFlowPriorityError";
    42     }  
    43   };
    44 
    45   /// \ingroup auxdata
    46   ///
    47   /// \brief A Radix Heap implementation.
    48   ///
    49   /// This class implements the \e radix \e heap data structure. A \e heap
    50   /// is a data structure for storing items with specified values called \e
    51   /// priorities in such a way that finding the item with minimum priority is
    52   /// efficient. This heap type can store only items with \e int priority.
    53   /// In a heap one can change the priority of an item, add or erase an 
    54   /// item, but the priority cannot be decreased under the last removed 
    55   /// item's priority.
    56   ///
    57   /// \param _Item Type of the items to be stored.  
    58   /// \param _ItemIntMap A read and writable Item int map, used internally
    59   /// to handle the cross references.
    60   ///
    61   /// \see BinHeap
    62   /// \see Dijkstra
    63   /// \author Balazs Dezso
    64 
    65   template <typename _Item, typename _ItemIntMap>
    66   class RadixHeap {
    67 
    68   public:
    69     typedef _Item Item;
    70     typedef int Prio;
    71     typedef _ItemIntMap ItemIntMap;
    72 
    73     /// \brief Type to represent the items states.
    74     ///
    75     /// Each Item element have a state associated to it. It may be "in heap",
    76     /// "pre heap" or "post heap". The latter two are indifferent from the
    77     /// heap's point of view, but may be useful to the user.
    78     ///
    79     /// The ItemIntMap \e should be initialized in such way that it maps
    80     /// PRE_HEAP (-1) to any element to be put in the heap...
    81     enum state_enum {
    82       IN_HEAP = 0,
    83       PRE_HEAP = -1,
    84       POST_HEAP = -2
    85     };
    86 
    87   private:
    88     
    89     struct RadixItem {
    90       int prev, next, box;
    91       Item item;
    92       int prio;
    93       RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    94     };
    95 
    96     struct RadixBox {
    97       int first;
    98       int min, size;
    99       RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   100     };
   101 
   102     std::vector<RadixItem> data;
   103     std::vector<RadixBox> boxes;
   104 
   105     ItemIntMap &iim;
   106 
   107 
   108   public:
   109     /// \brief The constructor.
   110     ///
   111     /// The constructor.
   112     ///
   113     /// \param _iim It should be given to the constructor, since it is used
   114     /// internally to handle the cross references. The value of the map
   115     /// should be PRE_HEAP (-1) for each element.
   116     ///
   117     /// \param minimal The initial minimal value of the heap.
   118     /// \param capacity It determines the initial capacity of the heap. 
   119     RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0) 
   120       : iim(_iim) {
   121       boxes.push_back(RadixBox(minimal, 1));
   122       boxes.push_back(RadixBox(minimal + 1, 1));
   123       while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   124 	extend();
   125       }
   126     }
   127 
   128     /// The number of items stored in the heap.
   129     ///
   130     /// \brief Returns the number of items stored in the heap.
   131     int size() const { return data.size(); }
   132     /// \brief Checks if the heap stores no items.
   133     ///
   134     /// Returns \c true if and only if the heap stores no items.
   135     bool empty() const { return data.empty(); }
   136 
   137     /// \brief Make empty this heap.
   138     /// 
   139     /// Make empty this heap. It does not change the cross reference
   140     /// map.  If you want to reuse a heap what is not surely empty you
   141     /// should first clear the heap and after that you should set the
   142     /// cross reference map for each item to \c PRE_HEAP.
   143     void clear(int minimal = 0, int capacity = 0) { 
   144       data.clear(); boxes.clear(); 
   145       boxes.push_back(RadixBox(minimal, 1));
   146       boxes.push_back(RadixBox(minimal + 1, 1));
   147       while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   148 	extend();
   149       }
   150     }
   151 
   152   private:
   153 
   154     bool upper(int box, Prio prio) {
   155       return prio < boxes[box].min;
   156     }
   157 
   158     bool lower(int box, Prio prio) {
   159       return prio >= boxes[box].min + boxes[box].size;
   160     }
   161 
   162     /// \brief Remove item from the box list.
   163     void remove(int index) {
   164       if (data[index].prev >= 0) {
   165 	data[data[index].prev].next = data[index].next;
   166       } else {
   167 	boxes[data[index].box].first = data[index].next;
   168       }
   169       if (data[index].next >= 0) {
   170 	data[data[index].next].prev = data[index].prev;
   171       }
   172     }
   173 
   174     /// \brief Insert item into the box list.
   175     void insert(int box, int index) {
   176       if (boxes[box].first == -1) {
   177 	boxes[box].first = index;
   178 	data[index].next = data[index].prev = -1;
   179       } else {
   180 	data[index].next = boxes[box].first;
   181 	data[boxes[box].first].prev = index;
   182 	data[index].prev = -1;
   183 	boxes[box].first = index;
   184       }
   185       data[index].box = box;
   186     }
   187 
   188     /// \brief Add a new box to the box list.
   189     void extend() {
   190       int min = boxes.back().min + boxes.back().size;
   191       int size = 2 * boxes.back().size;
   192       boxes.push_back(RadixBox(min, size));
   193     }
   194 
   195     /// \brief Move an item up into the proper box.
   196     void bubble_up(int index) {
   197       if (!lower(data[index].box, data[index].prio)) return;
   198       remove(index);
   199       int box = findUp(data[index].box, data[index].prio);
   200       insert(box, index);      
   201     }
   202 
   203     /// \brief Find up the proper box for the item with the given prio.
   204     int findUp(int start, int prio) {
   205       while (lower(start, prio)) {
   206 	if (++start == (int)boxes.size()) {
   207 	  extend();
   208 	}
   209       }
   210       return start;
   211     }
   212 
   213     /// \brief Move an item down into the proper box.
   214     void bubble_down(int index) {
   215       if (!upper(data[index].box, data[index].prio)) return;
   216       remove(index);
   217       int box = findDown(data[index].box, data[index].prio);
   218       insert(box, index);
   219     }
   220 
   221     /// \brief Find up the proper box for the item with the given prio.
   222     int findDown(int start, int prio) {
   223       while (upper(start, prio)) {
   224 	if (--start < 0) throw UnderFlowPriorityError();
   225       }
   226       return start;
   227     }
   228 
   229     /// \brief Find the first not empty box.
   230     int findFirst() {
   231       int first = 0;
   232       while (boxes[first].first == -1) ++first;
   233       return first;
   234     }
   235 
   236     /// \brief Gives back the minimal prio of the box.
   237     int minValue(int box) {
   238       int min = data[boxes[box].first].prio;
   239       for (int k = boxes[box].first; k != -1; k = data[k].next) {
   240 	if (data[k].prio < min) min = data[k].prio;
   241       }
   242       return min;
   243     }
   244 
   245     /// \brief Rearrange the items of the heap and makes the 
   246     /// first box not empty.
   247     void moveDown() {
   248       int box = findFirst();
   249       if (box == 0) return;
   250       int min = minValue(box);
   251       for (int i = 0; i <= box; ++i) {
   252 	boxes[i].min = min;
   253 	min += boxes[i].size;
   254       }
   255       int curr = boxes[box].first, next;
   256       while (curr != -1) {
   257 	next = data[curr].next;
   258 	bubble_down(curr);
   259 	curr = next;
   260       }      
   261     }
   262 
   263     void relocate_last(int index) {
   264       if (index != (int)data.size() - 1) {
   265 	data[index] = data.back();
   266 	if (data[index].prev != -1) {
   267 	  data[data[index].prev].next = index;
   268 	} else {
   269 	  boxes[data[index].box].first = index;
   270 	}
   271 	if (data[index].next != -1) {
   272 	  data[data[index].next].prev = index;
   273 	}
   274 	iim[data[index].item] = index;
   275       }
   276       data.pop_back();
   277     }
   278 
   279   public:
   280 
   281     /// \brief Insert an item into the heap with the given priority.
   282     ///    
   283     /// Adds \c i to the heap with priority \c p. 
   284     /// \param i The item to insert.
   285     /// \param p The priority of the item.
   286     void push(const Item &i, const Prio &p) {
   287       int n = data.size();
   288       iim.set(i, n);
   289       data.push_back(RadixItem(i, p));
   290       while (lower(boxes.size() - 1, p)) {
   291 	extend();
   292       }
   293       int box = findDown(boxes.size() - 1, p);
   294       insert(box, n);
   295     }
   296 
   297     /// \brief Returns the item with minimum priority.
   298     ///
   299     /// This method returns the item with minimum priority.  
   300     /// \pre The heap must be nonempty.  
   301     Item top() const {
   302       const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
   303       return data[boxes[0].first].item;
   304     }
   305 
   306     /// \brief Returns the minimum priority.
   307     ///
   308     /// It returns the minimum priority.
   309     /// \pre The heap must be nonempty.
   310     Prio prio() const {
   311       const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
   312       return data[boxes[0].first].prio;
   313      }
   314 
   315     /// \brief Deletes the item with minimum priority.
   316     ///
   317     /// This method deletes the item with minimum priority.
   318     /// \pre The heap must be non-empty.  
   319     void pop() {
   320       moveDown();
   321       int index = boxes[0].first;
   322       iim[data[index].item] = POST_HEAP;
   323       remove(index);
   324       relocate_last(index);
   325     }
   326 
   327     /// \brief Deletes \c i from the heap.
   328     ///
   329     /// This method deletes item \c i from the heap, if \c i was
   330     /// already stored in the heap.
   331     /// \param i The item to erase. 
   332     void erase(const Item &i) {
   333       int index = iim[i];
   334       iim[i] = POST_HEAP;
   335       remove(index);
   336       relocate_last(index);
   337    }
   338 
   339     /// \brief Returns the priority of \c i.
   340     ///
   341     /// This function returns the priority of item \c i.  
   342     /// \pre \c i must be in the heap.
   343     /// \param i The item.
   344     Prio operator[](const Item &i) const {
   345       int idx = iim[i];
   346       return data[idx].prio;
   347     }
   348 
   349     /// \brief \c i gets to the heap with priority \c p independently 
   350     /// if \c i was already there.
   351     ///
   352     /// This method calls \ref push(\c i, \c p) if \c i is not stored
   353     /// in the heap and sets the priority of \c i to \c p otherwise.
   354     /// It may throw an \e UnderFlowPriorityException. 
   355     /// \param i The item.
   356     /// \param p The priority.
   357     void set(const Item &i, const Prio &p) {
   358       int idx = iim[i];
   359       if( idx < 0 ) {
   360 	push(i, p);
   361       }
   362       else if( p >= data[idx].prio ) {
   363 	data[idx].prio = p;
   364 	bubble_up(idx);
   365       } else {
   366 	data[idx].prio = p;
   367 	bubble_down(idx);
   368       }
   369     }
   370 
   371 
   372     /// \brief Decreases the priority of \c i to \c p.
   373     ///
   374     /// This method decreases the priority of item \c i to \c p.
   375     /// \pre \c i must be stored in the heap with priority at least \c p, and
   376     /// \c should be greater or equal to the last removed item's priority.
   377     /// \param i The item.
   378     /// \param p The priority.
   379     void decrease(const Item &i, const Prio &p) {
   380       int idx = iim[i];
   381       data[idx].prio = p;
   382       bubble_down(idx);
   383     }
   384 
   385     /// \brief Increases the priority of \c i to \c p.
   386     ///
   387     /// This method sets the priority of item \c i to \c p. 
   388     /// \pre \c i must be stored in the heap with priority at most \c p
   389     /// \param i The item.
   390     /// \param p The priority.
   391     void increase(const Item &i, const Prio &p) {
   392       int idx = iim[i];
   393       data[idx].prio = p;
   394       bubble_up(idx);
   395     }
   396 
   397     /// \brief Returns if \c item is in, has already been in, or has 
   398     /// never been in the heap.
   399     ///
   400     /// This method returns PRE_HEAP if \c item has never been in the
   401     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   402     /// otherwise. In the latter case it is possible that \c item will
   403     /// get back to the heap again.
   404     /// \param i The item.
   405     state_enum state(const Item &i) const {
   406       int s = iim[i];
   407       if( s >= 0 ) s = 0;
   408       return state_enum(s);
   409     }
   410 
   411     /// \brief Sets the state of the \c item in the heap.
   412     ///
   413     /// Sets the state of the \c item in the heap. It can be used to
   414     /// manually clear the heap when it is important to achive the
   415     /// better time complexity.
   416     /// \param i The item.
   417     /// \param st The state. It should not be \c IN_HEAP. 
   418     void state(const Item& i, state_enum st) {
   419       switch (st) {
   420       case POST_HEAP:
   421       case PRE_HEAP:
   422         if (state(i) == IN_HEAP) {
   423           erase(i);
   424         }
   425         iim[i] = st;
   426         break;
   427       case IN_HEAP:
   428         break;
   429       }
   430     }
   431 
   432   }; // class RadixHeap
   433 
   434 } // namespace lemon
   435 
   436 #endif // LEMON_RADIX_HEAP_H