src/lemon/graph_wrapper.h
author ladanyi
Mon, 25 Apr 2005 09:00:47 +0000
changeset 1388 50fc3487af8b
parent 1359 1581f961cfaa
permissions -rw-r--r--
bugfix
     1 /* -*- C++ -*-
     2  * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_WRAPPER_H
    18 #define LEMON_GRAPH_WRAPPER_H
    19 
    20 ///\ingroup gwrappers
    21 ///\file
    22 ///\brief Several graph wrappers.
    23 ///
    24 ///This file contains several useful graph wrapper functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/iterable_graph_extender.h>
    31 #include <lemon/bits/undir_graph_extender.h>
    32 #include <iostream>
    33 
    34 namespace lemon {
    35 
    36   // Graph wrappers
    37 
    38   /*!
    39     \addtogroup gwrappers
    40     @{
    41    */
    42 
    43   /*! 
    44     Base type for the Graph Wrappers
    45     
    46     \warning Graph wrappers are in even more experimental state than the other
    47     parts of the lib. Use them at you own risk.
    48     
    49     This is the base type for most of LEMON graph wrappers. 
    50     This class implements a trivial graph wrapper i.e. it only wraps the 
    51     functions and types of the graph. The purpose of this class is to 
    52     make easier implementing graph wrappers. E.g. if a wrapper is 
    53     considered which differs from the wrapped graph only in some of its 
    54     functions or types, then it can be derived from GraphWrapper, and only the 
    55     differences should be implemented.
    56   
    57     \author Marton Makai 
    58   */
    59   template<typename _Graph>
    60   class GraphWrapperBase {
    61   public:
    62     typedef _Graph Graph;
    63     /// \todo Is it needed?
    64     typedef Graph BaseGraph;
    65     typedef Graph ParentGraph;
    66 
    67   protected:
    68     Graph* graph;
    69     GraphWrapperBase() : graph(0) { }
    70     void setGraph(Graph& _graph) { graph=&_graph; }
    71 
    72   public:
    73     GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
    74  
    75     typedef typename Graph::Node Node;
    76     typedef typename Graph::Edge Edge;
    77    
    78     void first(Node& i) const { graph->first(i); }
    79     void first(Edge& i) const { graph->first(i); }
    80     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    81     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    82 
    83     void next(Node& i) const { graph->next(i); }
    84     void next(Edge& i) const { graph->next(i); }
    85     void nextIn(Edge& i) const { graph->nextIn(i); }
    86     void nextOut(Edge& i) const { graph->nextOut(i); }
    87 
    88     Node source(const Edge& e) const { return graph->source(e); }
    89     Node target(const Edge& e) const { return graph->target(e); }
    90 
    91     int nodeNum() const { return graph->nodeNum(); }
    92     int edgeNum() const { return graph->edgeNum(); }
    93   
    94     Node addNode() const { return Node(graph->addNode()); }
    95     Edge addEdge(const Node& source, const Node& target) const { 
    96       return Edge(graph->addEdge(source, target)); }
    97 
    98     void erase(const Node& i) const { graph->erase(i); }
    99     void erase(const Edge& i) const { graph->erase(i); }
   100   
   101     void clear() const { graph->clear(); }
   102     
   103     bool forward(const Edge& e) const { return graph->forward(e); }
   104     bool backward(const Edge& e) const { return graph->backward(e); }
   105 
   106     int id(const Node& v) const { return graph->id(v); }
   107     int id(const Edge& e) const { return graph->id(e); }
   108     
   109     Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
   110 
   111     template <typename _Value>
   112     class NodeMap : public _Graph::template NodeMap<_Value> {
   113     public:
   114       typedef typename _Graph::template NodeMap<_Value> Parent;
   115       NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   116       NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   117       : Parent(*gw.graph, value) { }
   118     };
   119 
   120     template <typename _Value>
   121     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   122     public:
   123       typedef typename _Graph::template EdgeMap<_Value> Parent;
   124       EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   125       EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   126       : Parent(*gw.graph, value) { }
   127     };
   128 
   129   };
   130 
   131   template <typename _Graph>
   132   class GraphWrapper :
   133     public IterableGraphExtender<GraphWrapperBase<_Graph> > { 
   134   public:
   135     typedef _Graph Graph;
   136     typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
   137   protected:
   138     GraphWrapper() : Parent() { }
   139 
   140   public:
   141     GraphWrapper(Graph& _graph) { setGraph(_graph); }
   142   };
   143 
   144   template <typename _Graph>
   145   class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
   146   public:
   147     typedef _Graph Graph;
   148     typedef GraphWrapperBase<_Graph> Parent;
   149   protected:
   150     RevGraphWrapperBase() : Parent() { }
   151   public:
   152     typedef typename Parent::Node Node;
   153     typedef typename Parent::Edge Edge;
   154 
   155     //    using Parent::first;
   156     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   157     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   158 
   159     //    using Parent::next;
   160     void nextIn(Edge& i) const { Parent::nextOut(i); }
   161     void nextOut(Edge& i) const { Parent::nextIn(i); }
   162 
   163     Node source(const Edge& e) const { return Parent::target(e); }
   164     Node target(const Edge& e) const { return Parent::source(e); }
   165   };
   166     
   167 
   168   /// A graph wrapper which reverses the orientation of the edges.
   169 
   170   ///\warning Graph wrappers are in even more experimental state than the other
   171   ///parts of the lib. Use them at you own risk.
   172   ///
   173   /// Let \f$G=(V, A)\f$ be a directed graph and 
   174   /// suppose that a graph instange \c g of type 
   175   /// \c ListGraph implements \f$G\f$.
   176   /// \code
   177   /// ListGraph g;
   178   /// \endcode
   179   /// For each directed edge 
   180   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   181   /// reversing its orientation. 
   182   /// Then RevGraphWrapper implements the graph structure with node-set 
   183   /// \f$V\f$ and edge-set 
   184   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   185   /// reversing the orientation of its edges. The following code shows how 
   186   /// such an instance can be constructed.
   187   /// \code
   188   /// RevGraphWrapper<ListGraph> gw(g);
   189   /// \endcode
   190   ///\author Marton Makai
   191   template<typename _Graph>
   192   class RevGraphWrapper : 
   193     public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
   194   public:
   195     typedef _Graph Graph;
   196     typedef IterableGraphExtender<
   197       RevGraphWrapperBase<_Graph> > Parent;
   198   protected:
   199     RevGraphWrapper() { }
   200   public:
   201     RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
   202   };
   203 
   204   
   205   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   206   class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
   207   public:
   208     typedef _Graph Graph;
   209     typedef GraphWrapperBase<_Graph> Parent;
   210   protected:
   211     NodeFilterMap* node_filter_map;
   212     EdgeFilterMap* edge_filter_map;
   213     SubGraphWrapperBase() : Parent(), 
   214 			    node_filter_map(0), edge_filter_map(0) { }
   215 
   216     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   217       node_filter_map=&_node_filter_map;
   218     }
   219     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   220       edge_filter_map=&_edge_filter_map;
   221     }
   222 
   223   public:
   224 //     SubGraphWrapperBase(Graph& _graph, 
   225 // 			NodeFilterMap& _node_filter_map, 
   226 // 			EdgeFilterMap& _edge_filter_map) : 
   227 //       Parent(&_graph), 
   228 //       node_filter_map(&node_filter_map), 
   229 //       edge_filter_map(&edge_filter_map) { }
   230 
   231     typedef typename Parent::Node Node;
   232     typedef typename Parent::Edge Edge;
   233 
   234     void first(Node& i) const { 
   235       Parent::first(i); 
   236       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   237     }
   238     void first(Edge& i) const { 
   239       Parent::first(i); 
   240       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   241     }
   242     void firstIn(Edge& i, const Node& n) const { 
   243       Parent::firstIn(i, n); 
   244       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   245     }
   246     void firstOut(Edge& i, const Node& n) const { 
   247       Parent::firstOut(i, n); 
   248       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   249     }
   250 
   251     void next(Node& i) const { 
   252       Parent::next(i); 
   253       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   254     }
   255     void next(Edge& i) const { 
   256       Parent::next(i); 
   257       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   258     }
   259     void nextIn(Edge& i) const { 
   260       Parent::nextIn(i); 
   261       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   262     }
   263     void nextOut(Edge& i) const { 
   264       Parent::nextOut(i); 
   265       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   266     }
   267 
   268     /// This function hides \c n in the graph, i.e. the iteration 
   269     /// jumps over it. This is done by simply setting the value of \c n  
   270     /// to be false in the corresponding node-map.
   271     void hide(const Node& n) const { node_filter_map->set(n, false); }
   272 
   273     /// This function hides \c e in the graph, i.e. the iteration 
   274     /// jumps over it. This is done by simply setting the value of \c e  
   275     /// to be false in the corresponding edge-map.
   276     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   277 
   278     /// The value of \c n is set to be true in the node-map which stores 
   279     /// hide information. If \c n was hidden previuosly, then it is shown 
   280     /// again
   281      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   282 
   283     /// The value of \c e is set to be true in the edge-map which stores 
   284     /// hide information. If \c e was hidden previuosly, then it is shown 
   285     /// again
   286     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   287 
   288     /// Returns true if \c n is hidden.
   289     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   290 
   291     /// Returns true if \c n is hidden.
   292     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   293 
   294     /// \warning This is a linear time operation and works only if s
   295     /// \c Graph::NodeIt is defined.
   296     /// \todo assign tags.
   297     int nodeNum() const { 
   298       int i=0;
   299       Node n;
   300       for (first(n); n!=INVALID; next(n)) ++i;
   301       return i; 
   302     }
   303 
   304     /// \warning This is a linear time operation and works only if 
   305     /// \c Graph::EdgeIt is defined.
   306     /// \todo assign tags.
   307     int edgeNum() const { 
   308       int i=0;
   309       Edge e;
   310       for (first(e); e!=INVALID; next(e)) ++i;
   311       return i; 
   312     }
   313 
   314 
   315   };
   316 
   317   /*! \brief A graph wrapper for hiding nodes and edges from a graph.
   318     
   319   \warning Graph wrappers are in even more experimental state than the other
   320   parts of the lib. Use them at you own risk.
   321   
   322   SubGraphWrapper shows the graph with filtered node-set and 
   323   edge-set. 
   324   Let \f$G=(V, A)\f$ be a directed graph 
   325   and suppose that the graph instance \c g of type ListGraph implements 
   326   \f$G\f$. 
   327   Let moreover \f$b_V\f$ and 
   328   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   329   SubGraphWrapper<...>::NodeIt iterates 
   330   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   331   SubGraphWrapper<...>::EdgeIt iterates 
   332   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   333   SubGraphWrapper<...>::OutEdgeIt and SubGraphWrapper<...>::InEdgeIt iterates 
   334   only on edges leaving and entering a specific node which have true value.
   335 
   336   We have to note that this does not mean that an 
   337   induced subgraph is obtained, the node-iterator cares only the filter 
   338   on the node-set, and the edge-iterators care only the filter on the 
   339   edge-set. 
   340   \code
   341   typedef ListGraph Graph;
   342   Graph g;
   343   typedef Graph::Node Node;
   344   typedef Graph::Edge Edge;
   345   Node u=g.addNode(); //node of id 0
   346   Node v=g.addNode(); //node of id 1
   347   Node e=g.addEdge(u, v); //edge of id 0
   348   Node f=g.addEdge(v, u); //edge of id 1
   349   Graph::NodeMap<bool> nm(g, true);
   350   nm.set(u, false);
   351   Graph::EdgeMap<bool> em(g, true);
   352   em.set(e, false);
   353   typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   354   SubGW gw(g, nm, em);
   355   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   356   std::cout << ":-)" << std::endl;
   357   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   358   \endcode
   359   The output of the above code is the following.
   360   \code
   361   1
   362   :-)
   363   1
   364   \endcode
   365   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   366   \c Graph::Node that is why \c g.id(n) can be applied.
   367 
   368   For other examples see also the documentation of NodeSubGraphWrapper and 
   369   EdgeSubGraphWrapper.
   370 
   371   \author Marton Makai
   372   */
   373   template<typename _Graph, typename NodeFilterMap, 
   374 	   typename EdgeFilterMap>
   375   class SubGraphWrapper : 
   376     public IterableGraphExtender<
   377     SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
   378   public:
   379     typedef _Graph Graph;
   380     typedef IterableGraphExtender<
   381       SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   382   protected:
   383     SubGraphWrapper() { }
   384   public:
   385     SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   386 		    EdgeFilterMap& _edge_filter_map) { 
   387       setGraph(_graph);
   388       setNodeFilterMap(_node_filter_map);
   389       setEdgeFilterMap(_edge_filter_map);
   390     }
   391   };
   392 
   393 
   394 
   395   /*! \brief A wrapper for hiding nodes from a graph.
   396 
   397   \warning Graph wrappers are in even more experimental state than the other
   398   parts of the lib. Use them at you own risk.
   399   
   400   A wrapper for hiding nodes from a graph.
   401   This wrapper specializes SubGraphWrapper in the way that only the node-set 
   402   can be filtered. Note that this does not mean of considering induced 
   403   subgraph, the edge-iterators consider the original edge-set.
   404   \author Marton Makai
   405   */
   406   template<typename Graph, typename NodeFilterMap>
   407   class NodeSubGraphWrapper : 
   408     public SubGraphWrapper<Graph, NodeFilterMap, 
   409 			   ConstMap<typename Graph::Edge,bool> > {
   410   public:
   411     typedef SubGraphWrapper<Graph, NodeFilterMap, 
   412 			    ConstMap<typename Graph::Edge,bool> > Parent;
   413   protected:
   414     ConstMap<typename Graph::Edge, bool> const_true_map;
   415   public:
   416     NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   417       Parent(), const_true_map(true) { 
   418       Parent::setGraph(_graph);
   419       Parent::setNodeFilterMap(_node_filter_map);
   420       Parent::setEdgeFilterMap(const_true_map);
   421     }
   422   };
   423 
   424 
   425   /*! \brief A wrapper for hiding edges from a graph.
   426 
   427   \warning Graph wrappers are in even more experimental state than the other
   428   parts of the lib. Use them at you own risk.
   429   
   430   A wrapper for hiding edges from a graph.
   431   This wrapper specializes SubGraphWrapper in the way that only the edge-set 
   432   can be filtered. The usefulness of this wrapper is demonstrated in the 
   433   problem of searching a maximum number of edge-disjoint shortest paths 
   434   between 
   435   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   436   non-negative edge-lengths. Note that 
   437   the comprehension of the presented solution 
   438   need's some elementary knowledge from combinatorial optimization. 
   439 
   440   If a single shortest path is to be 
   441   searched between \c s and \c t, then this can be done easily by 
   442   applying the Dijkstra algorithm. What happens, if a maximum number of 
   443   edge-disjoint shortest paths is to be computed. It can be proved that an 
   444   edge can be in a shortest path if and only if it is tight with respect to 
   445   the potential function computed by Dijkstra. Moreover, any path containing 
   446   only such edges is a shortest one. Thus we have to compute a maximum number 
   447   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   448   all the tight edges. The computation will be demonstrated on the following 
   449   graph, which is read from a dimacs file.
   450   
   451   \dot
   452   digraph lemon_dot_example {
   453   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   454   n0 [ label="0 (s)" ];
   455   n1 [ label="1" ];
   456   n2 [ label="2" ];
   457   n3 [ label="3" ];
   458   n4 [ label="4" ];
   459   n5 [ label="5" ];
   460   n6 [ label="6 (t)" ];
   461   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   462   n5 ->  n6 [ label="9, length:4" ];
   463   n4 ->  n6 [ label="8, length:2" ];
   464   n3 ->  n5 [ label="7, length:1" ];
   465   n2 ->  n5 [ label="6, length:3" ];
   466   n2 ->  n6 [ label="5, length:5" ];
   467   n2 ->  n4 [ label="4, length:2" ];
   468   n1 ->  n4 [ label="3, length:3" ];
   469   n0 ->  n3 [ label="2, length:1" ];
   470   n0 ->  n2 [ label="1, length:2" ];
   471   n0 ->  n1 [ label="0, length:3" ];
   472   }
   473   \enddot
   474 
   475   \code
   476   Graph g;
   477   Node s, t;
   478   LengthMap length(g);
   479 
   480   readDimacs(std::cin, g, length, s, t);
   481 
   482   cout << "edges with lengths (of form id, source--length->target): " << endl;
   483   for(EdgeIt e(g); e!=INVALID; ++e) 
   484     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   485          << length[e] << "->" << g.id(g.target(e)) << endl;
   486 
   487   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   488   \endcode
   489   Next, the potential function is computed with Dijkstra.
   490   \code
   491   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   492   Dijkstra dijkstra(g, length);
   493   dijkstra.run(s);
   494   \endcode
   495   Next, we consrtruct a map which filters the edge-set to the tight edges.
   496   \code
   497   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   498     TightEdgeFilter;
   499   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   500   
   501   typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
   502   SubGW gw(g, tight_edge_filter);
   503   \endcode
   504   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   505   with a max flow algorithm Preflow.
   506   \code
   507   ConstMap<Edge, int> const_1_map(1);
   508   Graph::EdgeMap<int> flow(g, 0);
   509 
   510   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   511     preflow(gw, s, t, const_1_map, flow);
   512   preflow.run();
   513   \endcode
   514   Last, the output is:
   515   \code  
   516   cout << "maximum number of edge-disjoint shortest path: " 
   517        << preflow.flowValue() << endl;
   518   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   519        << endl;
   520   for(EdgeIt e(g); e!=INVALID; ++e) 
   521     if (flow[e])
   522       cout << " " << g.id(g.source(e)) << "--" 
   523 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   524   \endcode
   525   The program has the following (expected :-)) output:
   526   \code
   527   edges with lengths (of form id, source--length->target):
   528    9, 5--4->6
   529    8, 4--2->6
   530    7, 3--1->5
   531    6, 2--3->5
   532    5, 2--5->6
   533    4, 2--2->4
   534    3, 1--3->4
   535    2, 0--1->3
   536    1, 0--2->2
   537    0, 0--3->1
   538   s: 0 t: 6
   539   maximum number of edge-disjoint shortest path: 2
   540   edges of the maximum number of edge-disjoint shortest s-t paths:
   541    9, 5--4->6
   542    8, 4--2->6
   543    7, 3--1->5
   544    4, 2--2->4
   545    2, 0--1->3
   546    1, 0--2->2
   547   \endcode
   548 
   549   \author Marton Makai
   550   */
   551   template<typename Graph, typename EdgeFilterMap>
   552   class EdgeSubGraphWrapper : 
   553     public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   554 			   EdgeFilterMap> {
   555   public:
   556     typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   557 			    EdgeFilterMap> Parent;
   558   protected:
   559     ConstMap<typename Graph::Node, bool> const_true_map;
   560   public:
   561     EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   562       Parent(), const_true_map(true) { 
   563       Parent::setGraph(_graph);
   564       Parent::setNodeFilterMap(const_true_map);
   565       Parent::setEdgeFilterMap(_edge_filter_map);
   566     }
   567   };
   568 
   569   template <typename _Graph>
   570   class UndirGraphWrapperBase : 
   571     public UndirGraphExtender<GraphWrapperBase<_Graph> > {
   572   public:
   573     typedef _Graph Graph;
   574     typedef UndirGraphExtender<GraphWrapperBase<_Graph> > Parent;
   575   protected:
   576     UndirGraphWrapperBase() : Parent() { }
   577   public:
   578     typedef typename Parent::UndirEdge UndirEdge;
   579     typedef typename Parent::Edge Edge;
   580     
   581     /// \bug Why cant an edge say that it is forward or not??? 
   582     /// By this, a pointer to the graph have to be stored
   583     /// The implementation
   584     template <typename T>
   585     class EdgeMap {
   586     protected:
   587       const UndirGraphWrapperBase<_Graph>* g;
   588       template <typename TT> friend class EdgeMap;
   589       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   590     public:
   591       typedef T Value;
   592       typedef Edge Key;
   593       
   594       EdgeMap(const UndirGraphWrapperBase<_Graph>& _g) : g(&_g), 
   595 	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
   596 
   597       EdgeMap(const UndirGraphWrapperBase<_Graph>& _g, T a) : g(&_g), 
   598 	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
   599       
   600       void set(Edge e, T a) { 
   601 	if (g->forward(e)) 
   602 	  forward_map.set(e, a); 
   603 	else 
   604 	  backward_map.set(e, a); 
   605       }
   606 
   607       T operator[](Edge e) const { 
   608 	if (g->forward(e)) 
   609 	  return forward_map[e]; 
   610 	else 
   611 	  return backward_map[e]; 
   612       }
   613     };
   614         
   615     template <typename T>
   616     class UndirEdgeMap {
   617       template <typename TT> friend class UndirEdgeMap;
   618       typename _Graph::template EdgeMap<T> map; 
   619     public:
   620       typedef T Value;
   621       typedef UndirEdge Key;
   622       
   623       UndirEdgeMap(const UndirGraphWrapperBase<_Graph>& g) : 
   624 	map(*(g.graph)) { }
   625 
   626       UndirEdgeMap(const UndirGraphWrapperBase<_Graph>& g, T a) : 
   627 	map(*(g.graph), a) { }
   628       
   629       void set(UndirEdge e, T a) { 
   630 	map.set(e, a); 
   631       }
   632 
   633       T operator[](UndirEdge e) const { 
   634 	return map[e]; 
   635       }
   636     };
   637       
   638   };
   639 
   640   /// \brief An undirected graph is made from a directed graph by a wrapper
   641   ///
   642   /// Undocumented, untested!!!
   643   /// If somebody knows nice demo application, let's polulate it.
   644   /// 
   645   /// \author Marton Makai
   646   template<typename _Graph>
   647   class UndirGraphWrapper : 
   648     public IterableUndirGraphExtender<
   649     UndirGraphWrapperBase<_Graph> > {
   650   public:
   651     typedef _Graph Graph;
   652     typedef IterableUndirGraphExtender<
   653       UndirGraphWrapperBase<_Graph> > Parent;
   654   protected:
   655     UndirGraphWrapper() { }
   656   public:
   657     UndirGraphWrapper(_Graph& _graph) { 
   658       setGraph(_graph);
   659     }
   660   };
   661 
   662   
   663   template <typename _Graph, 
   664 	    typename ForwardFilterMap, typename BackwardFilterMap>
   665   class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
   666   public:
   667     typedef _Graph Graph;
   668     typedef GraphWrapperBase<_Graph> Parent;
   669   protected:
   670     ForwardFilterMap* forward_filter;
   671     BackwardFilterMap* backward_filter;
   672     SubBidirGraphWrapperBase() : Parent(), 
   673 				 forward_filter(0), backward_filter(0) { }
   674 
   675     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   676       forward_filter=&_forward_filter;
   677     }
   678     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   679       backward_filter=&_backward_filter;
   680     }
   681 
   682   public:
   683 //     SubGraphWrapperBase(Graph& _graph, 
   684 // 			NodeFilterMap& _node_filter_map, 
   685 // 			EdgeFilterMap& _edge_filter_map) : 
   686 //       Parent(&_graph), 
   687 //       node_filter_map(&node_filter_map), 
   688 //       edge_filter_map(&edge_filter_map) { }
   689 
   690     typedef typename Parent::Node Node;
   691     typedef typename _Graph::Edge GraphEdge;
   692     template <typename T> class EdgeMap;
   693     /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from 
   694     /// _Graph::Edge. It contains an extra bool flag which is true 
   695     /// if and only if the 
   696     /// edge is the backward version of the original edge.
   697     class Edge : public _Graph::Edge {
   698       friend class SubBidirGraphWrapperBase<
   699 	Graph, ForwardFilterMap, BackwardFilterMap>;
   700       template<typename T> friend class EdgeMap;
   701     protected:
   702       bool backward; //true, iff backward
   703     public:
   704       Edge() { }
   705       /// \todo =false is needed, or causes problems?
   706       /// If \c _backward is false, then we get an edge corresponding to the 
   707       /// original one, otherwise its oppositely directed pair is obtained.
   708       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   709 	_Graph::Edge(e), backward(_backward) { }
   710       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   711       bool operator==(const Edge& v) const { 
   712 	return (this->backward==v.backward && 
   713 		static_cast<typename _Graph::Edge>(*this)==
   714 		static_cast<typename _Graph::Edge>(v));
   715       } 
   716       bool operator!=(const Edge& v) const { 
   717 	return (this->backward!=v.backward || 
   718 		static_cast<typename _Graph::Edge>(*this)!=
   719 		static_cast<typename _Graph::Edge>(v));
   720       }
   721     };
   722 
   723     void first(Node& i) const { 
   724       Parent::first(i); 
   725     }
   726 
   727     void first(Edge& i) const { 
   728       Parent::first(i); 
   729       i.backward=false;
   730       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   731 	     !(*forward_filter)[i]) Parent::next(i);
   732       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   733 	Parent::first(i); 
   734 	i.backward=true;
   735 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   736 	       !(*backward_filter)[i]) Parent::next(i);
   737       }
   738     }
   739 
   740     void firstIn(Edge& i, const Node& n) const { 
   741       Parent::firstIn(i, n); 
   742       i.backward=false;
   743       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   744 	     !(*forward_filter)[i]) Parent::nextIn(i);
   745       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   746 	Parent::firstOut(i, n); 
   747 	i.backward=true;
   748 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   749 	       !(*backward_filter)[i]) Parent::nextOut(i);
   750       }
   751     }
   752 
   753     void firstOut(Edge& i, const Node& n) const { 
   754       Parent::firstOut(i, n); 
   755       i.backward=false;
   756       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   757 	     !(*forward_filter)[i]) Parent::nextOut(i);
   758       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   759 	Parent::firstIn(i, n); 
   760 	i.backward=true;
   761 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   762 	       !(*backward_filter)[i]) Parent::nextIn(i);
   763       }
   764     }
   765 
   766     void next(Node& i) const { 
   767       Parent::next(i); 
   768     }
   769 
   770     void next(Edge& i) const { 
   771       if (!(i.backward)) {
   772 	Parent::next(i);
   773 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   774 	       !(*forward_filter)[i]) Parent::next(i);
   775 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   776 	  Parent::first(i); 
   777 	  i.backward=true;
   778 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   779 		 !(*backward_filter)[i]) Parent::next(i);
   780 	}
   781       } else {
   782 	Parent::next(i);
   783 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   784 	       !(*backward_filter)[i]) Parent::next(i);
   785       }
   786     }
   787 
   788     void nextIn(Edge& i) const { 
   789       if (!(i.backward)) {
   790 	Node n=Parent::target(i);
   791 	Parent::nextIn(i);
   792 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   793 	       !(*forward_filter)[i]) Parent::nextIn(i);
   794 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   795 	  Parent::firstOut(i, n); 
   796 	  i.backward=true;
   797 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   798 		 !(*backward_filter)[i]) Parent::nextOut(i);
   799 	}
   800       } else {
   801 	Parent::nextOut(i);
   802 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   803 	       !(*backward_filter)[i]) Parent::nextOut(i);
   804       }
   805     }
   806 
   807     void nextOut(Edge& i) const { 
   808       if (!(i.backward)) {
   809 	Node n=Parent::source(i);
   810 	Parent::nextOut(i);
   811 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   812 	       !(*forward_filter)[i]) Parent::nextOut(i);
   813 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   814 	  Parent::firstIn(i, n); 
   815 	  i.backward=true;
   816 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   817 		 !(*backward_filter)[i]) Parent::nextIn(i);
   818 	}
   819       } else {
   820 	Parent::nextIn(i);
   821 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   822 	       !(*backward_filter)[i]) Parent::nextIn(i);
   823       }
   824     }
   825 
   826     Node source(Edge e) const { 
   827       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   828     Node target(Edge e) const { 
   829       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   830 
   831     /// Gives back the opposite edge.
   832     Edge opposite(const Edge& e) const { 
   833       Edge f=e;
   834       f.backward=!f.backward;
   835       return f;
   836     }
   837 
   838     /// \warning This is a linear time operation and works only if 
   839     /// \c Graph::EdgeIt is defined.
   840     /// \todo hmm
   841     int edgeNum() const { 
   842       int i=0;
   843       Edge e;
   844       for (first(e); e!=INVALID; next(e)) ++i;
   845       return i; 
   846     }
   847 
   848     bool forward(const Edge& e) const { return !e.backward; }
   849     bool backward(const Edge& e) const { return e.backward; }
   850 
   851     template <typename T>
   852     /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two 
   853     /// _Graph::EdgeMap one for the forward edges and 
   854     /// one for the backward edges.
   855     class EdgeMap {
   856       template <typename TT> friend class EdgeMap;
   857       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   858     public:
   859       typedef T Value;
   860       typedef Edge Key;
   861 
   862       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   863 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   864 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   865 
   866       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   867 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   868 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   869       
   870       void set(Edge e, T a) { 
   871 	if (!e.backward) 
   872 	  forward_map.set(e, a); 
   873 	else 
   874 	  backward_map.set(e, a); 
   875       }
   876 
   877 //       typename _Graph::template EdgeMap<T>::ConstReference 
   878 //       operator[](Edge e) const { 
   879 // 	if (!e.backward) 
   880 // 	  return forward_map[e]; 
   881 // 	else 
   882 // 	  return backward_map[e]; 
   883 //       }
   884 
   885 //      typename _Graph::template EdgeMap<T>::Reference 
   886       T operator[](Edge e) const { 
   887 	if (!e.backward) 
   888 	  return forward_map[e]; 
   889 	else 
   890 	  return backward_map[e]; 
   891       }
   892 
   893       void update() { 
   894 	forward_map.update(); 
   895 	backward_map.update();
   896       }
   897     };
   898 
   899   };
   900 
   901 
   902   ///\brief A wrapper for composing a subgraph of a 
   903   /// bidirected graph made from a directed one. 
   904   ///
   905   /// A wrapper for composing a subgraph of a 
   906   /// bidirected graph made from a directed one. 
   907   ///
   908   ///\warning Graph wrappers are in even more experimental state than the other
   909   ///parts of the lib. Use them at you own risk.
   910   ///
   911   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
   912   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
   913   /// reversing its orientation. We are given moreover two bool valued 
   914   /// maps on the edge-set, 
   915   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
   916   /// SubBidirGraphWrapper implements the graph structure with node-set 
   917   /// \f$V\f$ and edge-set 
   918   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
   919   /// The purpose of writing + instead of union is because parallel 
   920   /// edges can arise. (Similarly, antiparallel edges also can arise).
   921   /// In other words, a subgraph of the bidirected graph obtained, which 
   922   /// is given by orienting the edges of the original graph in both directions.
   923   /// As the oppositely directed edges are logically different, 
   924   /// the maps are able to attach different values for them. 
   925   ///
   926   /// An example for such a construction is \c RevGraphWrapper where the 
   927   /// forward_filter is everywhere false and the backward_filter is 
   928   /// everywhere true. We note that for sake of efficiency, 
   929   /// \c RevGraphWrapper is implemented in a different way. 
   930   /// But BidirGraphWrapper is obtained from 
   931   /// SubBidirGraphWrapper by considering everywhere true 
   932   /// valued maps both for forward_filter and backward_filter. 
   933   ///
   934   /// The most important application of SubBidirGraphWrapper 
   935   /// is ResGraphWrapper, which stands for the residual graph in directed 
   936   /// flow and circulation problems. 
   937   /// As wrappers usually, the SubBidirGraphWrapper implements the 
   938   /// above mentioned graph structure without its physical storage, 
   939   /// that is the whole stuff is stored in constant memory. 
   940   template<typename _Graph, 
   941 	   typename ForwardFilterMap, typename BackwardFilterMap>
   942   class SubBidirGraphWrapper : 
   943     public IterableGraphExtender<
   944     SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
   945   public:
   946     typedef _Graph Graph;
   947     typedef IterableGraphExtender<
   948       SubBidirGraphWrapperBase<
   949       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
   950   protected:
   951     SubBidirGraphWrapper() { }
   952   public:
   953     SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter, 
   954 			 BackwardFilterMap& _backward_filter) { 
   955       setGraph(_graph);
   956       setForwardFilterMap(_forward_filter);
   957       setBackwardFilterMap(_backward_filter);
   958     }
   959   };
   960 
   961 
   962 
   963   ///\brief A wrapper for composing bidirected graph from a directed one. 
   964   ///
   965   ///\warning Graph wrappers are in even more experimental state than the other
   966   ///parts of the lib. Use them at you own risk.
   967   ///
   968   /// A wrapper for composing bidirected graph from a directed one. 
   969   /// A bidirected graph is composed over the directed one without physical 
   970   /// storage. As the oppositely directed edges are logically different ones 
   971   /// the maps are able to attach different values for them.
   972   template<typename Graph>
   973   class BidirGraphWrapper : 
   974     public SubBidirGraphWrapper<
   975     Graph, 
   976     ConstMap<typename Graph::Edge, bool>, 
   977     ConstMap<typename Graph::Edge, bool> > {
   978   public:
   979     typedef  SubBidirGraphWrapper<
   980       Graph, 
   981       ConstMap<typename Graph::Edge, bool>, 
   982       ConstMap<typename Graph::Edge, bool> > Parent; 
   983   protected:
   984     ConstMap<typename Graph::Edge, bool> cm;
   985 
   986     BidirGraphWrapper() : Parent(), cm(true) { 
   987       Parent::setForwardFilterMap(cm);
   988       Parent::setBackwardFilterMap(cm);
   989     }
   990   public:
   991     BidirGraphWrapper(Graph& _graph) : Parent(), cm(true) { 
   992       Parent::setGraph(_graph);
   993       Parent::setForwardFilterMap(cm);
   994       Parent::setBackwardFilterMap(cm);
   995     }
   996 
   997     int edgeNum() const { 
   998       return 2*this->graph->edgeNum();
   999     }
  1000     //    KEEP_MAPS(Parent, BidirGraphWrapper);
  1001   };
  1002 
  1003 
  1004   template<typename Graph, typename Number,
  1005 	   typename CapacityMap, typename FlowMap>
  1006   class ResForwardFilter {
  1007     //    const Graph* graph;
  1008     const CapacityMap* capacity;
  1009     const FlowMap* flow;
  1010   public:
  1011     ResForwardFilter(/*const Graph& _graph, */
  1012 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1013       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1014     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1015     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1016     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1017     bool operator[](const typename Graph::Edge& e) const {
  1018       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1019     }
  1020   };
  1021 
  1022   template<typename Graph, typename Number,
  1023 	   typename CapacityMap, typename FlowMap>
  1024   class ResBackwardFilter {
  1025     const CapacityMap* capacity;
  1026     const FlowMap* flow;
  1027   public:
  1028     ResBackwardFilter(/*const Graph& _graph,*/ 
  1029 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1030       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1031     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1032     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1033     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1034     bool operator[](const typename Graph::Edge& e) const {
  1035       return (Number(0) < Number((*flow)[e]));
  1036     }
  1037   };
  1038 
  1039   
  1040   /*! \brief A wrapper for composing the residual graph for directed flow and circulation problems.
  1041 
  1042   A wrapper for composing the residual graph for directed flow and circulation problems. 
  1043   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1044   number type. Let moreover 
  1045   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1046   In the appications of ResGraphWrapper, \f$f\f$ usually stands for a flow 
  1047   and \f$c\f$ for a capacity function.   
  1048   Suppose that a graph instange \c g of type 
  1049   \c ListGraph implements \f$G\f$.
  1050   \code
  1051   ListGraph g;
  1052   \endcode
  1053   Then RevGraphWrapper implements the graph structure with node-set 
  1054   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1055   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1056   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1057   i.e. the so called residual graph. 
  1058   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1059   multilicities are counted, i.e. if an edge is in both 
  1060   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the wrapper it 
  1061   appears twice. 
  1062   The following code shows how 
  1063   such an instance can be constructed.
  1064   \code
  1065   typedef ListGraph Graph;
  1066   Graph::EdgeMap<int> f(g);
  1067   Graph::EdgeMap<int> c(g);
  1068   ResGraphWrapper<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1069   \endcode
  1070   \author Marton Makai
  1071   */
  1072   template<typename Graph, typename Number, 
  1073 	   typename CapacityMap, typename FlowMap>
  1074   class ResGraphWrapper : 
  1075     public SubBidirGraphWrapper< 
  1076     Graph, 
  1077     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1078     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1079   public:
  1080     typedef SubBidirGraphWrapper< 
  1081       Graph, 
  1082       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1083       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1084   protected:
  1085     const CapacityMap* capacity;
  1086     FlowMap* flow;
  1087     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1088     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1089     ResGraphWrapper() : Parent(), 
  1090  			capacity(0), flow(0) { }
  1091     void setCapacityMap(const CapacityMap& _capacity) {
  1092       capacity=&_capacity;
  1093       forward_filter.setCapacity(_capacity);
  1094       backward_filter.setCapacity(_capacity);
  1095     }
  1096     void setFlowMap(FlowMap& _flow) {
  1097       flow=&_flow;
  1098       forward_filter.setFlow(_flow);
  1099       backward_filter.setFlow(_flow);
  1100     }
  1101   public:
  1102     ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, 
  1103 		       FlowMap& _flow) : 
  1104       Parent(), capacity(&_capacity), flow(&_flow), 
  1105       forward_filter(/*_graph,*/ _capacity, _flow), 
  1106       backward_filter(/*_graph,*/ _capacity, _flow) {
  1107       Parent::setGraph(_graph);
  1108       Parent::setForwardFilterMap(forward_filter);
  1109       Parent::setBackwardFilterMap(backward_filter);
  1110     }
  1111 
  1112     typedef typename Parent::Edge Edge;
  1113 
  1114     void augment(const Edge& e, Number a) const {
  1115       if (Parent::forward(e))  
  1116 	flow->set(e, (*flow)[e]+a);
  1117       else  
  1118 	flow->set(e, (*flow)[e]-a);
  1119     }
  1120 
  1121     /// \brief Residual capacity map.
  1122     ///
  1123     /// In generic residual graphs the residual capacity can be obtained 
  1124     /// as a map. 
  1125     class ResCap {
  1126     protected:
  1127       const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1128     public:
  1129       typedef Number Value;
  1130       typedef Edge Key;
  1131       ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>& 
  1132 	     _res_graph) : res_graph(&_res_graph) { }
  1133       Number operator[](const Edge& e) const { 
  1134 	if (res_graph->forward(e)) 
  1135 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1136 	else 
  1137 	  return (*(res_graph->flow))[e]; 
  1138       }
  1139     };
  1140 
  1141     //    KEEP_MAPS(Parent, ResGraphWrapper);
  1142   };
  1143 
  1144 
  1145 
  1146   template <typename _Graph, typename FirstOutEdgesMap>
  1147   class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
  1148   public:
  1149     typedef _Graph Graph;
  1150     typedef GraphWrapperBase<_Graph> Parent;
  1151   protected:
  1152     FirstOutEdgesMap* first_out_edges;
  1153     ErasingFirstGraphWrapperBase() : Parent(), 
  1154 				     first_out_edges(0) { }
  1155 
  1156     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1157       first_out_edges=&_first_out_edges;
  1158     }
  1159 
  1160   public:
  1161 
  1162     typedef typename Parent::Node Node;
  1163     typedef typename Parent::Edge Edge;
  1164 
  1165     void firstOut(Edge& i, const Node& n) const { 
  1166       i=(*first_out_edges)[n];
  1167     }
  1168 
  1169     void erase(const Edge& e) const {
  1170       Node n=source(e);
  1171       Edge f=e;
  1172       Parent::nextOut(f);
  1173       first_out_edges->set(n, f);
  1174     }    
  1175   };
  1176 
  1177 
  1178   /// For blocking flows.
  1179 
  1180   ///\warning Graph wrappers are in even more experimental state than the other
  1181   ///parts of the lib. Use them at you own risk.
  1182   ///
  1183   /// This graph wrapper is used for on-the-fly 
  1184   /// Dinits blocking flow computations.
  1185   /// For each node, an out-edge is stored which is used when the 
  1186   /// \code 
  1187   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1188   /// \endcode
  1189   /// is called. 
  1190   ///
  1191   /// \author Marton Makai
  1192   template <typename _Graph, typename FirstOutEdgesMap>
  1193   class ErasingFirstGraphWrapper : 
  1194     public IterableGraphExtender<
  1195     ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
  1196   public:
  1197     typedef _Graph Graph;
  1198     typedef IterableGraphExtender<
  1199       ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
  1200     ErasingFirstGraphWrapper(Graph& _graph, 
  1201 			     FirstOutEdgesMap& _first_out_edges) { 
  1202       setGraph(_graph);
  1203       setFirstOutEdgesMap(_first_out_edges);
  1204     } 
  1205 
  1206   };
  1207 
  1208   ///@}
  1209 
  1210 } //namespace lemon
  1211 
  1212 #endif //LEMON_GRAPH_WRAPPER_H
  1213