lemon/concepts/ugraph.h
author alpar
Mon, 01 Oct 2007 19:23:16 +0000
changeset 2484 51995c1f1093
parent 2391 14a343be7a5a
child 2485 88aa7870756a
permissions -rw-r--r--
make it compatible with current version of glpk
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of Undirected Graphs.
    22 
    23 #ifndef LEMON_CONCEPT_UGRAPH_H
    24 #define LEMON_CONCEPT_UGRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 #include <lemon/concepts/graph.h>
    28 #include <lemon/bits/utility.h>
    29 
    30 namespace lemon {
    31   namespace concepts {
    32 
    33     /// \addtogroup graph_concepts
    34     /// @{
    35     ///
    36     /// \brief Class describing the concept of Undirected Graphs.
    37     ///
    38     /// This class describes the common interface of all Undirected
    39     /// Graphs.
    40     ///
    41     /// As all concept describing classes it provides only interface
    42     /// without any sensible implementation. So any algorithm for
    43     /// undirected graph should compile with this class, but it will not
    44     /// run properly, of course.
    45     ///
    46     /// The LEMON undirected graphs also fulfill the concept of
    47     /// directed graphs (\ref lemon::concepts::Graph "Graph
    48     /// Concept"). Each undirected edges can be seen as two opposite
    49     /// directed edge and consequently the undirected graph can be
    50     /// seen as the direceted graph of these directed edges. The
    51     /// UGraph has the UEdge inner class for the undirected edges and
    52     /// the Edge type for the directed edges. The Edge type is
    53     /// convertible to UEdge or inherited from it so from a directed
    54     /// edge we can get the represented undirected edge.
    55     ///
    56     /// In the sense of the LEMON each undirected edge has a default
    57     /// direction (it should be in every computer implementation,
    58     /// because the order of undirected edge's nodes defines an
    59     /// orientation). With the default orientation we can define that
    60     /// the directed edge is forward or backward directed. With the \c
    61     /// direction() and \c direct() function we can get the direction
    62     /// of the directed edge and we can direct an undirected edge.
    63     ///
    64     /// The UEdgeIt is an iterator for the undirected edges. We can use
    65     /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and
    66     /// OutEdgeIt iterates on the same undirected edges but with opposite
    67     /// direction. The IncEdgeIt iterates also on the same undirected edges
    68     /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just
    69     /// to UEdge.  
    70     class UGraph {
    71     public:
    72       /// \brief The undirected graph should be tagged by the
    73       /// UndirectedTag.
    74       ///
    75       /// The undirected graph should be tagged by the UndirectedTag. This
    76       /// tag helps the enable_if technics to make compile time 
    77       /// specializations for undirected graphs.  
    78       typedef True UndirectedTag;
    79 
    80       /// \brief The base type of node iterators, 
    81       /// or in other words, the trivial node iterator.
    82       ///
    83       /// This is the base type of each node iterator,
    84       /// thus each kind of node iterator converts to this.
    85       /// More precisely each kind of node iterator should be inherited 
    86       /// from the trivial node iterator.
    87       class Node {
    88       public:
    89         /// Default constructor
    90 
    91         /// @warning The default constructor sets the iterator
    92         /// to an undefined value.
    93         Node() { }
    94         /// Copy constructor.
    95 
    96         /// Copy constructor.
    97         ///
    98         Node(const Node&) { }
    99 
   100         /// Invalid constructor \& conversion.
   101 
   102         /// This constructor initializes the iterator to be invalid.
   103         /// \sa Invalid for more details.
   104         Node(Invalid) { }
   105         /// Equality operator
   106 
   107         /// Two iterators are equal if and only if they point to the
   108         /// same object or both are invalid.
   109         bool operator==(Node) const { return true; }
   110 
   111         /// Inequality operator
   112         
   113         /// \sa operator==(Node n)
   114         ///
   115         bool operator!=(Node) const { return true; }
   116 
   117 	/// Artificial ordering operator.
   118 	
   119 	/// To allow the use of graph descriptors as key type in std::map or
   120 	/// similar associative container we require this.
   121 	///
   122 	/// \note This operator only have to define some strict ordering of
   123 	/// the items; this order has nothing to do with the iteration
   124 	/// ordering of the items.
   125 	bool operator<(Node) const { return false; }
   126 
   127       };
   128     
   129       /// This iterator goes through each node.
   130 
   131       /// This iterator goes through each node.
   132       /// Its usage is quite simple, for example you can count the number
   133       /// of nodes in graph \c g of type \c Graph like this:
   134       ///\code
   135       /// int count=0;
   136       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   137       ///\endcode
   138       class NodeIt : public Node {
   139       public:
   140         /// Default constructor
   141 
   142         /// @warning The default constructor sets the iterator
   143         /// to an undefined value.
   144         NodeIt() { }
   145         /// Copy constructor.
   146         
   147         /// Copy constructor.
   148         ///
   149         NodeIt(const NodeIt& n) : Node(n) { }
   150         /// Invalid constructor \& conversion.
   151 
   152         /// Initialize the iterator to be invalid.
   153         /// \sa Invalid for more details.
   154         NodeIt(Invalid) { }
   155         /// Sets the iterator to the first node.
   156 
   157         /// Sets the iterator to the first node of \c g.
   158         ///
   159         NodeIt(const UGraph&) { }
   160         /// Node -> NodeIt conversion.
   161 
   162         /// Sets the iterator to the node of \c the graph pointed by 
   163 	/// the trivial iterator.
   164         /// This feature necessitates that each time we 
   165         /// iterate the edge-set, the iteration order is the same.
   166         NodeIt(const UGraph&, const Node&) { }
   167         /// Next node.
   168 
   169         /// Assign the iterator to the next node.
   170         ///
   171         NodeIt& operator++() { return *this; }
   172       };
   173     
   174     
   175       /// The base type of the undirected edge iterators.
   176 
   177       /// The base type of the undirected edge iterators.
   178       ///
   179       class UEdge {
   180       public:
   181         /// Default constructor
   182 
   183         /// @warning The default constructor sets the iterator
   184         /// to an undefined value.
   185         UEdge() { }
   186         /// Copy constructor.
   187 
   188         /// Copy constructor.
   189         ///
   190         UEdge(const UEdge&) { }
   191         /// Initialize the iterator to be invalid.
   192 
   193         /// Initialize the iterator to be invalid.
   194         ///
   195         UEdge(Invalid) { }
   196         /// Equality operator
   197 
   198         /// Two iterators are equal if and only if they point to the
   199         /// same object or both are invalid.
   200         bool operator==(UEdge) const { return true; }
   201         /// Inequality operator
   202 
   203         /// \sa operator==(UEdge n)
   204         ///
   205         bool operator!=(UEdge) const { return true; }
   206 
   207 	/// Artificial ordering operator.
   208 	
   209 	/// To allow the use of graph descriptors as key type in std::map or
   210 	/// similar associative container we require this.
   211 	///
   212 	/// \note This operator only have to define some strict ordering of
   213 	/// the items; this order has nothing to do with the iteration
   214 	/// ordering of the items.
   215 	bool operator<(UEdge) const { return false; }
   216       };
   217 
   218       /// This iterator goes through each undirected edge.
   219 
   220       /// This iterator goes through each undirected edge of a graph.
   221       /// Its usage is quite simple, for example you can count the number
   222       /// of undirected edges in a graph \c g of type \c Graph as follows:
   223       ///\code
   224       /// int count=0;
   225       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   226       ///\endcode
   227       class UEdgeIt : public UEdge {
   228       public:
   229         /// Default constructor
   230 
   231         /// @warning The default constructor sets the iterator
   232         /// to an undefined value.
   233         UEdgeIt() { }
   234         /// Copy constructor.
   235 
   236         /// Copy constructor.
   237         ///
   238         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   239         /// Initialize the iterator to be invalid.
   240 
   241         /// Initialize the iterator to be invalid.
   242         ///
   243         UEdgeIt(Invalid) { }
   244         /// This constructor sets the iterator to the first undirected edge.
   245     
   246         /// This constructor sets the iterator to the first undirected edge.
   247         UEdgeIt(const UGraph&) { }
   248         /// UEdge -> UEdgeIt conversion
   249 
   250         /// Sets the iterator to the value of the trivial iterator.
   251         /// This feature necessitates that each time we
   252         /// iterate the undirected edge-set, the iteration order is the 
   253 	/// same.
   254         UEdgeIt(const UGraph&, const UEdge&) { } 
   255         /// Next undirected edge
   256         
   257         /// Assign the iterator to the next undirected edge.
   258         UEdgeIt& operator++() { return *this; }
   259       };
   260 
   261       /// \brief This iterator goes trough the incident undirected 
   262       /// edges of a node.
   263       ///
   264       /// This iterator goes trough the incident undirected edges
   265       /// of a certain node of a graph. You should assume that the 
   266       /// loop edges will be iterated twice.
   267       /// 
   268       /// Its usage is quite simple, for example you can compute the
   269       /// degree (i.e. count the number of incident edges of a node \c n
   270       /// in graph \c g of type \c Graph as follows. 
   271       ///
   272       ///\code
   273       /// int count=0;
   274       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   275       ///\endcode
   276       class IncEdgeIt : public UEdge {
   277       public:
   278         /// Default constructor
   279 
   280         /// @warning The default constructor sets the iterator
   281         /// to an undefined value.
   282         IncEdgeIt() { }
   283         /// Copy constructor.
   284 
   285         /// Copy constructor.
   286         ///
   287         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   288         /// Initialize the iterator to be invalid.
   289 
   290         /// Initialize the iterator to be invalid.
   291         ///
   292         IncEdgeIt(Invalid) { }
   293         /// This constructor sets the iterator to first incident edge.
   294     
   295         /// This constructor set the iterator to the first incident edge of
   296         /// the node.
   297         IncEdgeIt(const UGraph&, const Node&) { }
   298         /// UEdge -> IncEdgeIt conversion
   299 
   300         /// Sets the iterator to the value of the trivial iterator \c e.
   301         /// This feature necessitates that each time we 
   302         /// iterate the edge-set, the iteration order is the same.
   303         IncEdgeIt(const UGraph&, const UEdge&) { }
   304         /// Next incident edge
   305 
   306         /// Assign the iterator to the next incident edge
   307 	/// of the corresponding node.
   308         IncEdgeIt& operator++() { return *this; }
   309       };
   310 
   311       /// The directed edge type.
   312 
   313       /// The directed edge type. It can be converted to the
   314       /// undirected edge or it should be inherited from the undirected
   315       /// edge.
   316       class Edge : public UEdge {
   317       public:
   318         /// Default constructor
   319 
   320         /// @warning The default constructor sets the iterator
   321         /// to an undefined value.
   322         Edge() { }
   323         /// Copy constructor.
   324 
   325         /// Copy constructor.
   326         ///
   327         Edge(const Edge& e) : UEdge(e) { }
   328         /// Initialize the iterator to be invalid.
   329 
   330         /// Initialize the iterator to be invalid.
   331         ///
   332         Edge(Invalid) { }
   333         /// Equality operator
   334 
   335         /// Two iterators are equal if and only if they point to the
   336         /// same object or both are invalid.
   337         bool operator==(Edge) const { return true; }
   338         /// Inequality operator
   339 
   340         /// \sa operator==(Edge n)
   341         ///
   342         bool operator!=(Edge) const { return true; }
   343 
   344 	/// Artificial ordering operator.
   345 	
   346 	/// To allow the use of graph descriptors as key type in std::map or
   347 	/// similar associative container we require this.
   348 	///
   349 	/// \note This operator only have to define some strict ordering of
   350 	/// the items; this order has nothing to do with the iteration
   351 	/// ordering of the items.
   352 	bool operator<(Edge) const { return false; }
   353 	
   354       }; 
   355       /// This iterator goes through each directed edge.
   356 
   357       /// This iterator goes through each edge of a graph.
   358       /// Its usage is quite simple, for example you can count the number
   359       /// of edges in a graph \c g of type \c Graph as follows:
   360       ///\code
   361       /// int count=0;
   362       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   363       ///\endcode
   364       class EdgeIt : public Edge {
   365       public:
   366         /// Default constructor
   367 
   368         /// @warning The default constructor sets the iterator
   369         /// to an undefined value.
   370         EdgeIt() { }
   371         /// Copy constructor.
   372 
   373         /// Copy constructor.
   374         ///
   375         EdgeIt(const EdgeIt& e) : Edge(e) { }
   376         /// Initialize the iterator to be invalid.
   377 
   378         /// Initialize the iterator to be invalid.
   379         ///
   380         EdgeIt(Invalid) { }
   381         /// This constructor sets the iterator to the first edge.
   382     
   383         /// This constructor sets the iterator to the first edge of \c g.
   384         ///@param g the graph
   385         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
   386         /// Edge -> EdgeIt conversion
   387 
   388         /// Sets the iterator to the value of the trivial iterator \c e.
   389         /// This feature necessitates that each time we 
   390         /// iterate the edge-set, the iteration order is the same.
   391         EdgeIt(const UGraph&, const Edge&) { } 
   392         ///Next edge
   393         
   394         /// Assign the iterator to the next edge.
   395         EdgeIt& operator++() { return *this; }
   396       };
   397    
   398       /// This iterator goes trough the outgoing directed edges of a node.
   399 
   400       /// This iterator goes trough the \e outgoing edges of a certain node
   401       /// of a graph.
   402       /// Its usage is quite simple, for example you can count the number
   403       /// of outgoing edges of a node \c n
   404       /// in graph \c g of type \c Graph as follows.
   405       ///\code
   406       /// int count=0;
   407       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   408       ///\endcode
   409     
   410       class OutEdgeIt : public Edge {
   411       public:
   412         /// Default constructor
   413 
   414         /// @warning The default constructor sets the iterator
   415         /// to an undefined value.
   416         OutEdgeIt() { }
   417         /// Copy constructor.
   418 
   419         /// Copy constructor.
   420         ///
   421         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   422         /// Initialize the iterator to be invalid.
   423 
   424         /// Initialize the iterator to be invalid.
   425         ///
   426         OutEdgeIt(Invalid) { }
   427         /// This constructor sets the iterator to the first outgoing edge.
   428     
   429         /// This constructor sets the iterator to the first outgoing edge of
   430         /// the node.
   431         ///@param n the node
   432         ///@param g the graph
   433         OutEdgeIt(const UGraph& n, const Node& g) {
   434 	  ignore_unused_variable_warning(n);
   435 	  ignore_unused_variable_warning(g);
   436 	}
   437         /// Edge -> OutEdgeIt conversion
   438 
   439         /// Sets the iterator to the value of the trivial iterator.
   440 	/// This feature necessitates that each time we 
   441         /// iterate the edge-set, the iteration order is the same.
   442         OutEdgeIt(const UGraph&, const Edge&) { }
   443         ///Next outgoing edge
   444         
   445         /// Assign the iterator to the next 
   446         /// outgoing edge of the corresponding node.
   447         OutEdgeIt& operator++() { return *this; }
   448       };
   449 
   450       /// This iterator goes trough the incoming directed edges of a node.
   451 
   452       /// This iterator goes trough the \e incoming edges of a certain node
   453       /// of a graph.
   454       /// Its usage is quite simple, for example you can count the number
   455       /// of outgoing edges of a node \c n
   456       /// in graph \c g of type \c Graph as follows.
   457       ///\code
   458       /// int count=0;
   459       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   460       ///\endcode
   461 
   462       class InEdgeIt : public Edge {
   463       public:
   464         /// Default constructor
   465 
   466         /// @warning The default constructor sets the iterator
   467         /// to an undefined value.
   468         InEdgeIt() { }
   469         /// Copy constructor.
   470 
   471         /// Copy constructor.
   472         ///
   473         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   474         /// Initialize the iterator to be invalid.
   475 
   476         /// Initialize the iterator to be invalid.
   477         ///
   478         InEdgeIt(Invalid) { }
   479         /// This constructor sets the iterator to first incoming edge.
   480     
   481         /// This constructor set the iterator to the first incoming edge of
   482         /// the node.
   483         ///@param n the node
   484         ///@param g the graph
   485         InEdgeIt(const UGraph& g, const Node& n) { 
   486 	  ignore_unused_variable_warning(n);
   487 	  ignore_unused_variable_warning(g);
   488 	}
   489         /// Edge -> InEdgeIt conversion
   490 
   491         /// Sets the iterator to the value of the trivial iterator \c e.
   492         /// This feature necessitates that each time we 
   493         /// iterate the edge-set, the iteration order is the same.
   494         InEdgeIt(const UGraph&, const Edge&) { }
   495         /// Next incoming edge
   496 
   497         /// Assign the iterator to the next inedge of the corresponding node.
   498         ///
   499         InEdgeIt& operator++() { return *this; }
   500       };
   501 
   502       /// \brief Read write map of the nodes to type \c T.
   503       /// 
   504       /// ReadWrite map of the nodes to type \c T.
   505       /// \sa Reference
   506       template<class T> 
   507       class NodeMap : public ReadWriteMap< Node, T >
   508       {
   509       public:
   510 
   511         ///\e
   512         NodeMap(const UGraph&) { }
   513         ///\e
   514         NodeMap(const UGraph&, T) { }
   515 
   516         ///Copy constructor
   517         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   518         ///Assignment operator
   519         template <typename CMap>
   520         NodeMap& operator=(const CMap&) { 
   521           checkConcept<ReadMap<Node, T>, CMap>();
   522           return *this; 
   523         }
   524       };
   525 
   526       /// \brief Read write map of the directed edges to type \c T.
   527       ///
   528       /// Reference map of the directed edges to type \c T.
   529       /// \sa Reference
   530       template<class T> 
   531       class EdgeMap : public ReadWriteMap<Edge,T>
   532       {
   533       public:
   534 
   535         ///\e
   536         EdgeMap(const UGraph&) { }
   537         ///\e
   538         EdgeMap(const UGraph&, T) { }
   539         ///Copy constructor
   540         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   541         ///Assignment operator
   542         template <typename CMap>
   543         EdgeMap& operator=(const CMap&) { 
   544           checkConcept<ReadMap<Edge, T>, CMap>();
   545           return *this; 
   546         }
   547       };
   548 
   549       /// Read write map of the undirected edges to type \c T.
   550 
   551       /// Reference map of the edges to type \c T.
   552       /// \sa Reference
   553       template<class T> 
   554       class UEdgeMap : public ReadWriteMap<UEdge,T>
   555       {
   556       public:
   557 
   558         ///\e
   559         UEdgeMap(const UGraph&) { }
   560         ///\e
   561         UEdgeMap(const UGraph&, T) { }
   562         ///Copy constructor
   563         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   564         ///Assignment operator
   565         template <typename CMap>
   566         UEdgeMap& operator=(const CMap&) { 
   567           checkConcept<ReadMap<UEdge, T>, CMap>();
   568           return *this; 
   569         }
   570       };
   571 
   572       /// \brief Direct the given undirected edge.
   573       ///
   574       /// Direct the given undirected edge. The returned edge source
   575       /// will be the given node.
   576       Edge direct(const UEdge&, const Node&) const {
   577 	return INVALID;
   578       }
   579 
   580       /// \brief Direct the given undirected edge.
   581       ///
   582       /// Direct the given undirected edge. The returned edge
   583       /// represents the given undirected edge and the direction comes
   584       /// from the given bool.  The source of the undirected edge and
   585       /// the directed edge is the same when the given bool is true.
   586       Edge direct(const UEdge&, bool) const {
   587 	return INVALID;
   588       }
   589 
   590       /// \brief Returns true if the edge has default orientation.
   591       ///
   592       /// Returns whether the given directed edge is same orientation as
   593       /// the corresponding undirected edge's default orientation.
   594       bool direction(Edge) const { return true; }
   595 
   596       /// \brief Returns the opposite directed edge.
   597       ///
   598       /// Returns the opposite directed edge.
   599       Edge oppositeEdge(Edge) const { return INVALID; }
   600 
   601       /// \brief Opposite node on an edge
   602       ///
   603       /// \return the opposite of the given Node on the given UEdge
   604       Node oppositeNode(Node, UEdge) const { return INVALID; }
   605 
   606       /// \brief First node of the undirected edge.
   607       ///
   608       /// \return the first node of the given UEdge.
   609       ///
   610       /// Naturally undirected edges don't have direction and thus
   611       /// don't have source and target node. But we use these two methods
   612       /// to query the two nodes of the edge. The direction of the edge
   613       /// which arises this way is called the inherent direction of the
   614       /// undirected edge, and is used to define the "default" direction
   615       /// of the directed versions of the edges.
   616       /// \sa direction
   617       Node source(UEdge) const { return INVALID; }
   618 
   619       /// \brief Second node of the undirected edge.
   620       Node target(UEdge) const { return INVALID; }
   621 
   622       /// \brief Source node of the directed edge.
   623       Node source(Edge) const { return INVALID; }
   624 
   625       /// \brief Target node of the directed edge.
   626       Node target(Edge) const { return INVALID; }
   627 
   628       void first(Node&) const {}
   629       void next(Node&) const {}
   630 
   631       void first(UEdge&) const {}
   632       void next(UEdge&) const {}
   633 
   634       void first(Edge&) const {}
   635       void next(Edge&) const {}
   636 
   637       void firstOut(Edge&, Node) const {}
   638       void nextOut(Edge&) const {}
   639 
   640       void firstIn(Edge&, Node) const {}
   641       void nextIn(Edge&) const {}
   642 
   643 
   644       void firstInc(UEdge &, bool &, const Node &) const {}
   645       void nextInc(UEdge &, bool &) const {}
   646 
   647       /// \brief Base node of the iterator
   648       ///
   649       /// Returns the base node (the source in this case) of the iterator
   650       Node baseNode(OutEdgeIt e) const {
   651 	return source(e);
   652       }
   653       /// \brief Running node of the iterator
   654       ///
   655       /// Returns the running node (the target in this case) of the
   656       /// iterator
   657       Node runningNode(OutEdgeIt e) const {
   658 	return target(e);
   659       }
   660 
   661       /// \brief Base node of the iterator
   662       ///
   663       /// Returns the base node (the target in this case) of the iterator
   664       Node baseNode(InEdgeIt e) const {
   665 	return target(e);
   666       }
   667       /// \brief Running node of the iterator
   668       ///
   669       /// Returns the running node (the source in this case) of the
   670       /// iterator
   671       Node runningNode(InEdgeIt e) const {
   672 	return source(e);
   673       }
   674 
   675       /// \brief Base node of the iterator
   676       ///
   677       /// Returns the base node of the iterator
   678       Node baseNode(IncEdgeIt) const {
   679 	return INVALID;
   680       }
   681       
   682       /// \brief Running node of the iterator
   683       ///
   684       /// Returns the running node of the iterator
   685       Node runningNode(IncEdgeIt) const {
   686 	return INVALID;
   687       }
   688 
   689       template <typename Graph>
   690       struct Constraints {
   691 	void constraints() {
   692 	  checkConcept<IterableUGraphComponent<>, Graph>();
   693 	  checkConcept<MappableUGraphComponent<>, Graph>();
   694 	}
   695       };
   696 
   697     };
   698 
   699     /// @}
   700 
   701   }
   702 
   703 }
   704 
   705 #endif