lemon/lp_base.h
author ladanyi
Fri, 20 Apr 2007 15:51:54 +0000
changeset 2431 51f4a390e3e5
parent 2430 c14aaef85d50
child 2432 2b5f3d4a4e0d
permissions -rw-r--r--
fix to compile with gcc 4.1.2
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LP_BASE_H
    20 #define LEMON_LP_BASE_H
    21 
    22 #include<iostream>
    23 
    24 #include<vector>
    25 #include<map>
    26 #include<limits>
    27 #include<cmath>
    28 
    29 #include<lemon/error.h>
    30 #include<lemon/bits/invalid.h>
    31 #include<lemon/bits/utility.h>
    32 #include<lemon/bits/lp_id.h>
    33 
    34 ///\file
    35 ///\brief The interface of the LP solver interface.
    36 ///\ingroup lp_group
    37 namespace lemon {
    38 
    39   ///Common base class for LP solvers
    40   
    41   ///\todo Much more docs
    42   ///\ingroup lp_group
    43   class LpSolverBase {
    44 
    45   protected:
    46 
    47     _lp_bits::LpId rows;
    48     _lp_bits::LpId cols;
    49     
    50   public:
    51     
    52     ///Possible outcomes of an LP solving procedure
    53     enum SolveExitStatus {
    54       ///This means that the problem has been successfully solved: either
    55       ///an optimal solution has been found or infeasibility/unboundedness
    56       ///has been proved.
    57       SOLVED = 0,
    58       ///Any other case (including the case when some user specified
    59       ///limit has been exceeded)
    60       UNSOLVED = 1
    61     };
    62       
    63       ///\e
    64     enum SolutionStatus {
    65       ///Feasible solution hasn't been found (but may exist).
    66 
    67       ///\todo NOTFOUND might be a better name.
    68       ///
    69       UNDEFINED = 0,
    70       ///The problem has no feasible solution
    71       INFEASIBLE = 1,
    72       ///Feasible solution found
    73       FEASIBLE = 2,
    74       ///Optimal solution exists and found
    75       OPTIMAL = 3,
    76       ///The cost function is unbounded
    77 
    78       ///\todo Give a feasible solution and an infinite ray (and the
    79       ///corresponding bases)
    80       INFINITE = 4
    81     };
    82 
    83     ///\e The type of the investigated LP problem
    84     enum ProblemTypes {
    85       ///Primal-dual feasible
    86       PRIMAL_DUAL_FEASIBLE = 0,
    87       ///Primal feasible dual infeasible
    88       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
    89       ///Primal infeasible dual feasible
    90       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
    91       ///Primal-dual infeasible
    92       PRIMAL_DUAL_INFEASIBLE = 3,
    93       ///Could not determine so far
    94       UNKNOWN = 4
    95     };
    96 
    97     ///The floating point type used by the solver
    98     typedef double Value;
    99     ///The infinity constant
   100     static const Value INF;
   101     ///The not a number constant
   102     static const Value NaN;
   103 
   104     static inline bool isNaN(const Value& v) { return v!=v; }
   105     
   106     friend class Col;
   107     friend class ColIt;
   108     friend class Row;
   109     
   110     ///Refer to a column of the LP.
   111 
   112     ///This type is used to refer to a column of the LP.
   113     ///
   114     ///Its value remains valid and correct even after the addition or erase of
   115     ///other columns.
   116     ///
   117     ///\todo Document what can one do with a Col (INVALID, comparing,
   118     ///it is similar to Node/Edge)
   119     class Col {
   120     protected:
   121       int id;
   122       friend class LpSolverBase;
   123       friend class MipSolverBase;
   124       explicit Col(int _id) : id(_id) {}
   125     public:
   126       typedef Value ExprValue;
   127       typedef True LpSolverCol;
   128       Col() {}
   129       Col(const Invalid&) : id(-1) {}
   130       bool operator< (Col c) const  {return id< c.id;}
   131       bool operator> (Col c) const  {return id> c.id;}
   132       bool operator==(Col c) const  {return id==c.id;}
   133       bool operator!=(Col c) const  {return id!=c.id;}
   134     };
   135 
   136     class ColIt : public Col {
   137       const LpSolverBase *_lp;
   138     public:
   139       ColIt() {}
   140       ColIt(const LpSolverBase &lp) : _lp(&lp)
   141       {
   142         _lp->cols.firstFix(id);
   143       }
   144       ColIt(const Invalid&) : Col(INVALID) {}
   145       ColIt &operator++() 
   146       {
   147         _lp->cols.nextFix(id);
   148 	return *this;
   149       }
   150     };
   151 
   152     static int id(const Col& col) { return col.id; }
   153  
   154       
   155     ///Refer to a row of the LP.
   156 
   157     ///This type is used to refer to a row of the LP.
   158     ///
   159     ///Its value remains valid and correct even after the addition or erase of
   160     ///other rows.
   161     ///
   162     ///\todo Document what can one do with a Row (INVALID, comparing,
   163     ///it is similar to Node/Edge)
   164     class Row {
   165     protected:
   166       int id;
   167       friend class LpSolverBase;
   168       explicit Row(int _id) : id(_id) {}
   169     public:
   170       typedef Value ExprValue;
   171       typedef True LpSolverRow;
   172       Row() {}
   173       Row(const Invalid&) : id(-1) {}
   174 
   175       bool operator< (Row c) const  {return id< c.id;}
   176       bool operator> (Row c) const  {return id> c.id;}
   177       bool operator==(Row c) const  {return id==c.id;}
   178       bool operator!=(Row c) const  {return id!=c.id;} 
   179     };
   180 
   181     class RowIt : public Row {
   182       const LpSolverBase *_lp;
   183     public:
   184       RowIt() {}
   185       RowIt(const LpSolverBase &lp) : _lp(&lp)
   186       {
   187         _lp->rows.firstFix(id);
   188       }
   189       RowIt(const Invalid&) : Row(INVALID) {}
   190       RowIt &operator++() 
   191       {
   192         _lp->rows.nextFix(id);
   193 	return *this;
   194       }
   195     };
   196 
   197     static int id(const Row& row) { return row.id; }
   198 
   199   protected:
   200 
   201     int _lpId(const Col& c) const {
   202       return cols.floatingId(id(c));
   203     }
   204 
   205     int _lpId(const Row& r) const {
   206       return rows.floatingId(id(r));
   207     }
   208 
   209     Col _item(int i, Col) const {
   210       return Col(cols.fixId(i));
   211     }
   212 
   213     Row _item(int i, Row) const {
   214       return Row(rows.fixId(i));
   215     }
   216 
   217 
   218   public:
   219     
   220     ///Linear expression of variables and a constant component
   221     
   222     ///This data structure stores a linear expression of the variables
   223     ///(\ref Col "Col"s) and also has a constant component.
   224     ///
   225     ///There are several ways to access and modify the contents of this
   226     ///container.
   227     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   228     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   229     ///read and modify the coefficients like
   230     ///these.
   231     ///\code
   232     ///e[v]=5;
   233     ///e[v]+=12;
   234     ///e.erase(v);
   235     ///\endcode
   236     ///or you can also iterate through its elements.
   237     ///\code
   238     ///double s=0;
   239     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   240     ///  s+=i->second;
   241     ///\endcode
   242     ///(This code computes the sum of all coefficients).
   243     ///- Numbers (<tt>double</tt>'s)
   244     ///and variables (\ref Col "Col"s) directly convert to an
   245     ///\ref Expr and the usual linear operations are defined, so  
   246     ///\code
   247     ///v+w
   248     ///2*v-3.12*(v-w/2)+2
   249     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   250     ///\endcode
   251     ///are valid \ref Expr "Expr"essions.
   252     ///The usual assignment operations are also defined.
   253     ///\code
   254     ///e=v+w;
   255     ///e+=2*v-3.12*(v-w/2)+2;
   256     ///e*=3.4;
   257     ///e/=5;
   258     ///\endcode
   259     ///- The constant member can be set and read by \ref constComp()
   260     ///\code
   261     ///e.constComp()=12;
   262     ///double c=e.constComp();
   263     ///\endcode
   264     ///
   265     ///\note \ref clear() not only sets all coefficients to 0 but also
   266     ///clears the constant components.
   267     ///
   268     ///\sa Constr
   269     ///
   270     class Expr : public std::map<Col,Value>
   271     {
   272     public:
   273       typedef LpSolverBase::Col Key; 
   274       typedef LpSolverBase::Value Value;
   275       
   276     protected:
   277       typedef std::map<Col,Value> Base;
   278       
   279       Value const_comp;
   280     public:
   281       typedef True IsLinExpression;
   282       ///\e
   283       Expr() : Base(), const_comp(0) { }
   284       ///\e
   285       Expr(const Key &v) : const_comp(0) {
   286 	Base::insert(std::make_pair(v, 1));
   287       }
   288       ///\e
   289       Expr(const Value &v) : const_comp(v) {}
   290       ///\e
   291       void set(const Key &v,const Value &c) {
   292 	Base::insert(std::make_pair(v, c));
   293       }
   294       ///\e
   295       Value &constComp() { return const_comp; }
   296       ///\e
   297       const Value &constComp() const { return const_comp; }
   298       
   299       ///Removes the components with zero coefficient.
   300       void simplify() {
   301 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   302 	  Base::iterator j=i;
   303 	  ++j;
   304 	  if ((*i).second==0) Base::erase(i);
   305 	  i=j;
   306 	}
   307       }
   308 
   309       void simplify() const {
   310         const_cast<Expr*>(this)->simplify();
   311       }
   312 
   313       ///Removes the coefficients closer to zero than \c tolerance.
   314       void simplify(double &tolerance) {
   315 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   316 	  Base::iterator j=i;
   317 	  ++j;
   318 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   319 	  i=j;
   320 	}
   321       }
   322 
   323       ///Sets all coefficients and the constant component to 0.
   324       void clear() {
   325 	Base::clear();
   326 	const_comp=0;
   327       }
   328 
   329       ///\e
   330       Expr &operator+=(const Expr &e) {
   331 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   332 	  (*this)[j->first]+=j->second;
   333 	const_comp+=e.const_comp;
   334 	return *this;
   335       }
   336       ///\e
   337       Expr &operator-=(const Expr &e) {
   338 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   339 	  (*this)[j->first]-=j->second;
   340 	const_comp-=e.const_comp;
   341 	return *this;
   342       }
   343       ///\e
   344       Expr &operator*=(const Value &c) {
   345 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   346 	  j->second*=c;
   347 	const_comp*=c;
   348 	return *this;
   349       }
   350       ///\e
   351       Expr &operator/=(const Value &c) {
   352 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   353 	  j->second/=c;
   354 	const_comp/=c;
   355 	return *this;
   356       }
   357 
   358       //std::ostream &
   359       void prettyPrint(std::ostream &os) {
   360 	//std::fmtflags os.flags();
   361 	//os.setf(std::ios::showpos);
   362 	Base::iterator j=Base::begin();
   363 	if (j!=Base::end())
   364 	  os<<j->second<<"*x["<<id(j->first)<<"]";
   365 	++j;
   366 	for (; j!=Base::end(); ++j){
   367 	  if (j->second>=0)
   368 	    os<<"+";
   369 	  os<<j->second<<"*x["<<id(j->first)<<"]";
   370 	}
   371 	//Nem valami korrekt, de nem talaltam meg, hogy kell
   372 	//os.unsetf(std::ios::showpos);
   373 
   374 	//return os;
   375       }
   376 
   377     };
   378     
   379     ///Linear constraint
   380 
   381     ///This data stucture represents a linear constraint in the LP.
   382     ///Basically it is a linear expression with a lower or an upper bound
   383     ///(or both). These parts of the constraint can be obtained by the member
   384     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   385     ///respectively.
   386     ///There are two ways to construct a constraint.
   387     ///- You can set the linear expression and the bounds directly
   388     ///  by the functions above.
   389     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   390     ///  are defined between expressions, or even between constraints whenever
   391     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   392     ///  \c s and \c t are numbers, then the followings are valid expressions
   393     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   394     ///  it makes sense.
   395     ///\code
   396     ///  e<=s
   397     ///  e<=f
   398     ///  e==f
   399     ///  s<=e<=t
   400     ///  e>=t
   401     ///\endcode
   402     ///\warning The validity of a constraint is checked only at run time, so
   403     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   404     ///\ref LogicError exception.
   405     class Constr
   406     {
   407     public:
   408       typedef LpSolverBase::Expr Expr;
   409       typedef Expr::Key Key;
   410       typedef Expr::Value Value;
   411       
   412     protected:
   413       Expr _expr;
   414       Value _lb,_ub;
   415     public:
   416       ///\e
   417       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   418       ///\e
   419       Constr(Value lb,const Expr &e,Value ub) :
   420 	_expr(e), _lb(lb), _ub(ub) {}
   421       ///\e
   422       Constr(const Expr &e,Value ub) : 
   423 	_expr(e), _lb(NaN), _ub(ub) {}
   424       ///\e
   425       Constr(Value lb,const Expr &e) :
   426 	_expr(e), _lb(lb), _ub(NaN) {}
   427       ///\e
   428       Constr(const Expr &e) : 
   429 	_expr(e), _lb(NaN), _ub(NaN) {}
   430       ///\e
   431       void clear() 
   432       {
   433 	_expr.clear();
   434 	_lb=_ub=NaN;
   435       }
   436 
   437       ///Reference to the linear expression 
   438       Expr &expr() { return _expr; }
   439       ///Cont reference to the linear expression 
   440       const Expr &expr() const { return _expr; }
   441       ///Reference to the lower bound.
   442 
   443       ///\return
   444       ///- \ref INF "INF": the constraint is lower unbounded.
   445       ///- \ref NaN "NaN": lower bound has not been set.
   446       ///- finite number: the lower bound
   447       Value &lowerBound() { return _lb; }
   448       ///The const version of \ref lowerBound()
   449       const Value &lowerBound() const { return _lb; }
   450       ///Reference to the upper bound.
   451 
   452       ///\return
   453       ///- \ref INF "INF": the constraint is upper unbounded.
   454       ///- \ref NaN "NaN": upper bound has not been set.
   455       ///- finite number: the upper bound
   456       Value &upperBound() { return _ub; }
   457       ///The const version of \ref upperBound()
   458       const Value &upperBound() const { return _ub; }
   459       ///Is the constraint lower bounded?
   460       bool lowerBounded() const { 
   461 	using namespace std;
   462 	return finite(_lb);
   463       }
   464       ///Is the constraint upper bounded?
   465       bool upperBounded() const {
   466 	using namespace std;
   467 	return finite(_ub);
   468       }
   469 
   470       void prettyPrint(std::ostream &os) {
   471 	if (_lb==-LpSolverBase::INF||isNaN(_lb))
   472 	  os<<"-infty<=";
   473 	else
   474 	  os<<_lb<<"<=";
   475 	_expr.prettyPrint(os);
   476 	if (_ub==LpSolverBase::INF)
   477 	  os<<"<=infty";
   478 	else
   479 	  os<<"<="<<_ub;
   480 	//return os;
   481       }
   482 
   483     };
   484     
   485     ///Linear expression of rows
   486     
   487     ///This data structure represents a column of the matrix,
   488     ///thas is it strores a linear expression of the dual variables
   489     ///(\ref Row "Row"s).
   490     ///
   491     ///There are several ways to access and modify the contents of this
   492     ///container.
   493     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   494     ///if \c e is an DualExpr and \c v
   495     ///and \c w are of type \ref Row, then you can
   496     ///read and modify the coefficients like
   497     ///these.
   498     ///\code
   499     ///e[v]=5;
   500     ///e[v]+=12;
   501     ///e.erase(v);
   502     ///\endcode
   503     ///or you can also iterate through its elements.
   504     ///\code
   505     ///double s=0;
   506     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   507     ///  s+=i->second;
   508     ///\endcode
   509     ///(This code computes the sum of all coefficients).
   510     ///- Numbers (<tt>double</tt>'s)
   511     ///and variables (\ref Row "Row"s) directly convert to an
   512     ///\ref DualExpr and the usual linear operations are defined, so
   513     ///\code
   514     ///v+w
   515     ///2*v-3.12*(v-w/2)
   516     ///v*2.1+(3*v+(v*12+w)*3)/2
   517     ///\endcode
   518     ///are valid \ref DualExpr "DualExpr"essions.
   519     ///The usual assignment operations are also defined.
   520     ///\code
   521     ///e=v+w;
   522     ///e+=2*v-3.12*(v-w/2);
   523     ///e*=3.4;
   524     ///e/=5;
   525     ///\endcode
   526     ///
   527     ///\sa Expr
   528     ///
   529     class DualExpr : public std::map<Row,Value>
   530     {
   531     public:
   532       typedef LpSolverBase::Row Key; 
   533       typedef LpSolverBase::Value Value;
   534       
   535     protected:
   536       typedef std::map<Row,Value> Base;
   537       
   538     public:
   539       typedef True IsLinExpression;
   540       ///\e
   541       DualExpr() : Base() { }
   542       ///\e
   543       DualExpr(const Key &v) {
   544 	Base::insert(std::make_pair(v, 1));
   545       }
   546       ///\e
   547       void set(const Key &v,const Value &c) {
   548 	Base::insert(std::make_pair(v, c));
   549       }
   550       
   551       ///Removes the components with zero coefficient.
   552       void simplify() {
   553 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   554 	  Base::iterator j=i;
   555 	  ++j;
   556 	  if ((*i).second==0) Base::erase(i);
   557 	  i=j;
   558 	}
   559       }
   560 
   561       void simplify() const {
   562         const_cast<DualExpr*>(this)->simplify();
   563       }
   564 
   565       ///Removes the coefficients closer to zero than \c tolerance.
   566       void simplify(double &tolerance) {
   567 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   568 	  Base::iterator j=i;
   569 	  ++j;
   570 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   571 	  i=j;
   572 	}
   573       }
   574 
   575       ///Sets all coefficients to 0.
   576       void clear() {
   577 	Base::clear();
   578       }
   579 
   580       ///\e
   581       DualExpr &operator+=(const DualExpr &e) {
   582 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   583 	  (*this)[j->first]+=j->second;
   584 	return *this;
   585       }
   586       ///\e
   587       DualExpr &operator-=(const DualExpr &e) {
   588 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   589 	  (*this)[j->first]-=j->second;
   590 	return *this;
   591       }
   592       ///\e
   593       DualExpr &operator*=(const Value &c) {
   594 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   595 	  j->second*=c;
   596 	return *this;
   597       }
   598       ///\e
   599       DualExpr &operator/=(const Value &c) {
   600 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   601 	  j->second/=c;
   602 	return *this;
   603       }
   604     };
   605     
   606 
   607   private:
   608 
   609     template <typename _Expr>
   610     class MappedOutputIterator {
   611     public:
   612 
   613       typedef std::insert_iterator<_Expr> Base;
   614 
   615       typedef std::output_iterator_tag iterator_category;
   616       typedef void difference_type;
   617       typedef void value_type;
   618       typedef void reference;
   619       typedef void pointer;
   620       
   621       MappedOutputIterator(const Base& _base, const LpSolverBase& _lp) 
   622         : base(_base), lp(_lp) {}
   623 
   624       MappedOutputIterator& operator*() {
   625         return *this;
   626       }
   627 
   628       MappedOutputIterator& operator=(const std::pair<int, Value>& value) {
   629         *base = std::make_pair(lp._item(value.first, typename _Expr::Key()), 
   630                                value.second);
   631         return *this;
   632       }
   633 
   634       MappedOutputIterator& operator++() {
   635         ++base;
   636         return *this;
   637       }
   638 
   639       MappedOutputIterator operator++(int) {
   640         MappedOutputIterator tmp(*this);
   641         ++base;
   642         return tmp;
   643       }
   644 
   645       bool operator==(const MappedOutputIterator& it) const {
   646         return base == it.base;
   647       }
   648 
   649       bool operator!=(const MappedOutputIterator& it) const {
   650         return base != it.base;
   651       }
   652 
   653     private:
   654       Base base;
   655       const LpSolverBase& lp;
   656     };
   657 
   658     template <typename Expr>
   659     class MappedInputIterator {
   660     public:
   661 
   662       typedef typename Expr::const_iterator Base;
   663 
   664       typedef typename Base::iterator_category iterator_category;
   665       typedef typename Base::difference_type difference_type;
   666       typedef const std::pair<int, Value> value_type;
   667       typedef value_type reference;
   668       class pointer {
   669       public:
   670         pointer(value_type& _value) : value(_value) {}
   671         value_type* operator->() { return &value; }
   672       private:
   673         value_type value;
   674       };
   675 
   676       MappedInputIterator(const Base& _base, const LpSolverBase& _lp) 
   677         : base(_base), lp(_lp) {}
   678 
   679       reference operator*() {
   680         return std::make_pair(lp._lpId(base->first), base->second);
   681       }
   682 
   683       pointer operator->() {
   684         return pointer(operator*());
   685       }
   686 
   687       MappedInputIterator& operator++() {
   688         ++base;
   689         return *this;
   690       }
   691 
   692       MappedInputIterator operator++(int) {
   693         MappedInputIterator tmp(*this);
   694         ++base;
   695         return tmp;
   696       }
   697 
   698       bool operator==(const MappedInputIterator& it) const {
   699         return base == it.base;
   700       }
   701 
   702       bool operator!=(const MappedInputIterator& it) const {
   703         return base != it.base;
   704       }
   705 
   706     private:
   707       Base base;
   708       const LpSolverBase& lp;
   709     };
   710 
   711   protected:
   712 
   713     /// STL compatible iterator for lp col
   714     typedef MappedInputIterator<Expr> ConstRowIterator;
   715     /// STL compatible iterator for lp row
   716     typedef MappedInputIterator<DualExpr> ConstColIterator;
   717 
   718     /// STL compatible iterator for lp col
   719     typedef MappedOutputIterator<Expr> RowIterator;
   720     /// STL compatible iterator for lp row
   721     typedef MappedOutputIterator<DualExpr> ColIterator;
   722 
   723     //Abstract virtual functions
   724     virtual LpSolverBase &_newLp() = 0;
   725     virtual LpSolverBase &_copyLp(){
   726       ///\todo This should be implemented here, too, when we have
   727       ///problem retrieving routines. It can be overriden.
   728 
   729       //Starting:
   730       LpSolverBase & newlp(_newLp());
   731       return newlp;
   732       //return *(LpSolverBase*)0;
   733     };
   734 
   735     virtual int _addCol() = 0;
   736     virtual int _addRow() = 0; 
   737 
   738     virtual void _eraseCol(int col) = 0;
   739     virtual void _eraseRow(int row) = 0;
   740 
   741     virtual void _getColName(int col, std::string & name) const = 0;
   742     virtual void _setColName(int col, const std::string & name) = 0;
   743     virtual int _colByName(const std::string& name) const = 0;
   744 
   745     virtual void _setRowCoeffs(int i, ConstRowIterator b, 
   746                                ConstRowIterator e) = 0;
   747     virtual void _getRowCoeffs(int i, RowIterator b) const = 0;
   748     virtual void _setColCoeffs(int i, ConstColIterator b, 
   749                                ConstColIterator e) = 0;
   750     virtual void _getColCoeffs(int i, ColIterator b) const = 0;
   751     virtual void _setCoeff(int row, int col, Value value) = 0;
   752     virtual Value _getCoeff(int row, int col) const = 0;
   753     virtual void _setColLowerBound(int i, Value value) = 0;
   754     virtual Value _getColLowerBound(int i) const = 0;
   755     virtual void _setColUpperBound(int i, Value value) = 0;
   756     virtual Value _getColUpperBound(int i) const = 0;
   757     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   758     virtual void _getRowBounds(int i, Value &lower, Value &upper) const = 0;
   759 
   760     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   761     virtual Value _getObjCoeff(int i) const = 0;
   762     virtual void _clearObj()=0;
   763 
   764     virtual SolveExitStatus _solve() = 0;
   765     virtual Value _getPrimal(int i) const = 0;
   766     virtual Value _getDual(int i) const = 0;
   767     virtual Value _getPrimalValue() const = 0;
   768     virtual bool _isBasicCol(int i) const = 0;
   769     virtual SolutionStatus _getPrimalStatus() const = 0;
   770     virtual SolutionStatus _getDualStatus() const = 0;
   771     virtual ProblemTypes _getProblemType() const = 0;
   772 
   773     virtual void _setMax() = 0;
   774     virtual void _setMin() = 0;
   775     
   776 
   777     virtual bool _isMax() const = 0;
   778 
   779     //Own protected stuff
   780     
   781     //Constant component of the objective function
   782     Value obj_const_comp;
   783         
   784   public:
   785 
   786     ///\e
   787     LpSolverBase() : obj_const_comp(0) {}
   788 
   789     ///\e
   790     virtual ~LpSolverBase() {}
   791 
   792     ///Creates a new LP problem
   793     LpSolverBase &newLp() {return _newLp();}
   794     ///Makes a copy of the LP problem
   795     LpSolverBase &copyLp() {return _copyLp();}
   796     
   797     ///\name Build up and modify the LP
   798 
   799     ///@{
   800 
   801     ///Add a new empty column (i.e a new variable) to the LP
   802     Col addCol() { Col c; _addCol(); c.id = cols.addId(); return c;}
   803 
   804     ///\brief Adds several new columns
   805     ///(i.e a variables) at once
   806     ///
   807     ///This magic function takes a container as its argument
   808     ///and fills its elements
   809     ///with new columns (i.e. variables)
   810     ///\param t can be
   811     ///- a standard STL compatible iterable container with
   812     ///\ref Col as its \c values_type
   813     ///like
   814     ///\code
   815     ///std::vector<LpSolverBase::Col>
   816     ///std::list<LpSolverBase::Col>
   817     ///\endcode
   818     ///- a standard STL compatible iterable container with
   819     ///\ref Col as its \c mapped_type
   820     ///like
   821     ///\code
   822     ///std::map<AnyType,LpSolverBase::Col>
   823     ///\endcode
   824     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   825     ///\code
   826     ///ListGraph::NodeMap<LpSolverBase::Col>
   827     ///ListGraph::EdgeMap<LpSolverBase::Col>
   828     ///\endcode
   829     ///\return The number of the created column.
   830 #ifdef DOXYGEN
   831     template<class T>
   832     int addColSet(T &t) { return 0;} 
   833 #else
   834     template<class T>
   835     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   836     addColSet(T &t,dummy<0> = 0) {
   837       int s=0;
   838       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   839       return s;
   840     }
   841     template<class T>
   842     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   843 		       int>::type
   844     addColSet(T &t,dummy<1> = 1) { 
   845       int s=0;
   846       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   847 	i->second=addCol();
   848 	s++;
   849       }
   850       return s;
   851     }
   852     template<class T>
   853     typename enable_if<typename T::MapIt::Value::LpSolverCol,
   854 		       int>::type
   855     addColSet(T &t,dummy<2> = 2) { 
   856       int s=0;
   857       for(typename T::MapIt i(t); i!=INVALID; ++i)
   858 	{
   859 	  i.set(addCol());
   860 	  s++;
   861 	}
   862       return s;
   863     }
   864 #endif
   865 
   866     ///Set a column (i.e a dual constraint) of the LP
   867 
   868     ///\param c is the column to be modified
   869     ///\param e is a dual linear expression (see \ref DualExpr)
   870     ///a better one.
   871     void col(Col c,const DualExpr &e) {
   872       e.simplify();
   873       _setColCoeffs(_lpId(c), ConstColIterator(e.begin(), *this), 
   874                     ConstColIterator(e.end(), *this));
   875     }
   876 
   877     ///Get a column (i.e a dual constraint) of the LP
   878 
   879     ///\param r is the column to get
   880     ///\return the dual expression associated to the column
   881     DualExpr col(Col c) const {
   882       DualExpr e;
   883       _getColCoeffs(_lpId(c), ColIterator(std::inserter(e, e.end()), *this));
   884       return e;
   885     }
   886 
   887     ///Add a new column to the LP
   888 
   889     ///\param e is a dual linear expression (see \ref DualExpr)
   890     ///\param obj is the corresponding component of the objective
   891     ///function. It is 0 by default.
   892     ///\return The created column.
   893     Col addCol(const DualExpr &e, Value o = 0) {
   894       Col c=addCol();
   895       col(c,e);
   896       objCoeff(c,o);
   897       return c;
   898     }
   899 
   900     ///Add a new empty row (i.e a new constraint) to the LP
   901 
   902     ///This function adds a new empty row (i.e a new constraint) to the LP.
   903     ///\return The created row
   904     Row addRow() { Row r; _addRow(); r.id = rows.addId(); return r;}
   905 
   906     ///\brief Add several new rows
   907     ///(i.e a constraints) at once
   908     ///
   909     ///This magic function takes a container as its argument
   910     ///and fills its elements
   911     ///with new row (i.e. variables)
   912     ///\param t can be
   913     ///- a standard STL compatible iterable container with
   914     ///\ref Row as its \c values_type
   915     ///like
   916     ///\code
   917     ///std::vector<LpSolverBase::Row>
   918     ///std::list<LpSolverBase::Row>
   919     ///\endcode
   920     ///- a standard STL compatible iterable container with
   921     ///\ref Row as its \c mapped_type
   922     ///like
   923     ///\code
   924     ///std::map<AnyType,LpSolverBase::Row>
   925     ///\endcode
   926     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   927     ///\code
   928     ///ListGraph::NodeMap<LpSolverBase::Row>
   929     ///ListGraph::EdgeMap<LpSolverBase::Row>
   930     ///\endcode
   931     ///\return The number of rows created.
   932 #ifdef DOXYGEN
   933     template<class T>
   934     int addRowSet(T &t) { return 0;} 
   935 #else
   936     template<class T>
   937     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   938     addRowSet(T &t,dummy<0> = 0) {
   939       int s=0;
   940       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   941       return s;
   942     }
   943     template<class T>
   944     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   945 		       int>::type
   946     addRowSet(T &t,dummy<1> = 1) { 
   947       int s=0;
   948       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   949 	i->second=addRow();
   950 	s++;
   951       }
   952       return s;
   953     }
   954     template<class T>
   955     typename enable_if<typename T::MapIt::Value::LpSolverRow,
   956 		       int>::type
   957     addRowSet(T &t,dummy<2> = 2) { 
   958       int s=0;
   959       for(typename T::MapIt i(t); i!=INVALID; ++i)
   960 	{
   961 	  i.set(addRow());
   962 	  s++;
   963 	}
   964       return s;
   965     }
   966 #endif
   967 
   968     ///Set a row (i.e a constraint) of the LP
   969 
   970     ///\param r is the row to be modified
   971     ///\param l is lower bound (-\ref INF means no bound)
   972     ///\param e is a linear expression (see \ref Expr)
   973     ///\param u is the upper bound (\ref INF means no bound)
   974     ///\bug This is a temporary function. The interface will change to
   975     ///a better one.
   976     ///\todo Option to control whether a constraint with a single variable is
   977     ///added or not.
   978     void row(Row r, Value l, const Expr &e, Value u) {
   979       e.simplify();
   980       _setRowCoeffs(_lpId(r), ConstRowIterator(e.begin(), *this),
   981                     ConstRowIterator(e.end(), *this));
   982       _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
   983     }
   984 
   985     ///Set a row (i.e a constraint) of the LP
   986 
   987     ///\param r is the row to be modified
   988     ///\param c is a linear expression (see \ref Constr)
   989     void row(Row r, const Constr &c) {
   990       row(r, c.lowerBounded()?c.lowerBound():-INF,
   991           c.expr(), c.upperBounded()?c.upperBound():INF);
   992     }
   993 
   994     
   995     ///Get a row (i.e a constraint) of the LP
   996 
   997     ///\param r is the row to get
   998     ///\return the expression associated to the row
   999     Expr row(Row r) const {
  1000       Expr e;
  1001       _getRowCoeffs(_lpId(r), RowIterator(std::inserter(e, e.end()), *this));
  1002       return e;
  1003     }
  1004 
  1005     ///Add a new row (i.e a new constraint) to the LP
  1006 
  1007     ///\param l is the lower bound (-\ref INF means no bound)
  1008     ///\param e is a linear expression (see \ref Expr)
  1009     ///\param u is the upper bound (\ref INF means no bound)
  1010     ///\return The created row.
  1011     ///\bug This is a temporary function. The interface will change to
  1012     ///a better one.
  1013     Row addRow(Value l,const Expr &e, Value u) {
  1014       Row r=addRow();
  1015       row(r,l,e,u);
  1016       return r;
  1017     }
  1018 
  1019     ///Add a new row (i.e a new constraint) to the LP
  1020 
  1021     ///\param c is a linear expression (see \ref Constr)
  1022     ///\return The created row.
  1023     Row addRow(const Constr &c) {
  1024       Row r=addRow();
  1025       row(r,c);
  1026       return r;
  1027     }
  1028     ///Erase a coloumn (i.e a variable) from the LP
  1029 
  1030     ///\param c is the coloumn to be deleted
  1031     ///\todo Please check this
  1032     void eraseCol(Col c) {
  1033       _eraseCol(_lpId(c));
  1034       cols.eraseId(c.id);
  1035     }
  1036     ///Erase a  row (i.e a constraint) from the LP
  1037 
  1038     ///\param r is the row to be deleted
  1039     ///\todo Please check this
  1040     void eraseRow(Row r) {
  1041       _eraseRow(_lpId(r));
  1042       rows.eraseId(r.id);
  1043     }
  1044 
  1045     /// Get the name of a column
  1046     
  1047     ///\param c is the coresponding coloumn 
  1048     ///\return The name of the colunm
  1049     std::string colName(Col c) const {
  1050       std::string name;
  1051       _getColName(_lpId(c), name);
  1052       return name;
  1053     }
  1054     
  1055     /// Set the name of a column
  1056     
  1057     ///\param c is the coresponding coloumn 
  1058     ///\param name The name to be given
  1059     void colName(Col c, const std::string& name) {
  1060       _setColName(_lpId(c), name);
  1061     }
  1062 
  1063     /// Get the column by its name
  1064     
  1065     ///\param name The name of the column
  1066     ///\return the proper column or \c INVALID
  1067     Col colByName(const std::string& name) const {
  1068       int k = _colByName(name);
  1069       return k != -1 ? Col(cols.fixId(k)) : Col(INVALID);
  1070     }
  1071     
  1072     /// Set an element of the coefficient matrix of the LP
  1073 
  1074     ///\param r is the row of the element to be modified
  1075     ///\param c is the coloumn of the element to be modified
  1076     ///\param val is the new value of the coefficient
  1077 
  1078     void coeff(Row r, Col c, Value val) {
  1079       _setCoeff(_lpId(r),_lpId(c), val);
  1080     }
  1081 
  1082     /// Get an element of the coefficient matrix of the LP
  1083 
  1084     ///\param r is the row of the element in question
  1085     ///\param c is the coloumn of the element in question
  1086     ///\return the corresponding coefficient
  1087 
  1088     Value coeff(Row r, Col c) const {
  1089       return _getCoeff(_lpId(r),_lpId(c));
  1090     }
  1091 
  1092     /// Set the lower bound of a column (i.e a variable)
  1093 
  1094     /// The lower bound of a variable (column) has to be given by an 
  1095     /// extended number of type Value, i.e. a finite number of type 
  1096     /// Value or -\ref INF.
  1097     void colLowerBound(Col c, Value value) {
  1098       _setColLowerBound(_lpId(c),value);
  1099     }
  1100 
  1101     /// Get the lower bound of a column (i.e a variable)
  1102 
  1103     /// This function returns the lower bound for column (variable) \t c
  1104     /// (this might be -\ref INF as well).  
  1105     ///\return The lower bound for coloumn \t c
  1106     Value colLowerBound(Col c) const {
  1107       return _getColLowerBound(_lpId(c));
  1108     }
  1109     
  1110     ///\brief Set the lower bound of  several columns
  1111     ///(i.e a variables) at once
  1112     ///
  1113     ///This magic function takes a container as its argument
  1114     ///and applies the function on all of its elements.
  1115     /// The lower bound of a variable (column) has to be given by an 
  1116     /// extended number of type Value, i.e. a finite number of type 
  1117     /// Value or -\ref INF.
  1118 #ifdef DOXYGEN
  1119     template<class T>
  1120     void colLowerBound(T &t, Value value) { return 0;} 
  1121 #else
  1122     template<class T>
  1123     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1124     colLowerBound(T &t, Value value,dummy<0> = 0) {
  1125       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1126 	colLowerBound(*i, value);
  1127       }
  1128     }
  1129     template<class T>
  1130     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1131 		       void>::type
  1132     colLowerBound(T &t, Value value,dummy<1> = 1) { 
  1133       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1134 	colLowerBound(i->second, value);
  1135       }
  1136     }
  1137     template<class T>
  1138     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1139 		       void>::type
  1140     colLowerBound(T &t, Value value,dummy<2> = 2) { 
  1141       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1142 	colLowerBound(*i, value);
  1143       }
  1144     }
  1145 #endif
  1146     
  1147     /// Set the upper bound of a column (i.e a variable)
  1148 
  1149     /// The upper bound of a variable (column) has to be given by an 
  1150     /// extended number of type Value, i.e. a finite number of type 
  1151     /// Value or \ref INF.
  1152     void colUpperBound(Col c, Value value) {
  1153       _setColUpperBound(_lpId(c),value);
  1154     };
  1155 
  1156     /// Get the upper bound of a column (i.e a variable)
  1157 
  1158     /// This function returns the upper bound for column (variable) \t c
  1159     /// (this might be \ref INF as well).  
  1160     ///\return The upper bound for coloumn \t c
  1161     Value colUpperBound(Col c) const {
  1162       return _getColUpperBound(_lpId(c));
  1163     }
  1164 
  1165     ///\brief Set the upper bound of  several columns
  1166     ///(i.e a variables) at once
  1167     ///
  1168     ///This magic function takes a container as its argument
  1169     ///and applies the function on all of its elements.
  1170     /// The upper bound of a variable (column) has to be given by an 
  1171     /// extended number of type Value, i.e. a finite number of type 
  1172     /// Value or \ref INF.
  1173 #ifdef DOXYGEN
  1174     template<class T>
  1175     void colUpperBound(T &t, Value value) { return 0;} 
  1176 #else
  1177     template<class T>
  1178     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1179     colUpperBound(T &t, Value value,dummy<0> = 0) {
  1180       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1181 	colUpperBound(*i, value);
  1182       }
  1183     }
  1184     template<class T>
  1185     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1186 		       void>::type
  1187     colUpperBound(T &t, Value value,dummy<1> = 1) { 
  1188       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1189 	colUpperBound(i->second, value);
  1190       }
  1191     }
  1192     template<class T>
  1193     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1194 		       void>::type
  1195     colUpperBound(T &t, Value value,dummy<2> = 2) { 
  1196       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1197 	colUpperBound(*i, value);
  1198       }
  1199     }
  1200 #endif
  1201 
  1202     /// Set the lower and the upper bounds of a column (i.e a variable)
  1203 
  1204     /// The lower and the upper bounds of
  1205     /// a variable (column) have to be given by an 
  1206     /// extended number of type Value, i.e. a finite number of type 
  1207     /// Value, -\ref INF or \ref INF.
  1208     void colBounds(Col c, Value lower, Value upper) {
  1209       _setColLowerBound(_lpId(c),lower);
  1210       _setColUpperBound(_lpId(c),upper);
  1211     }
  1212     
  1213     ///\brief Set the lower and the upper bound of several columns
  1214     ///(i.e a variables) at once
  1215     ///
  1216     ///This magic function takes a container as its argument
  1217     ///and applies the function on all of its elements.
  1218     /// The lower and the upper bounds of
  1219     /// a variable (column) have to be given by an 
  1220     /// extended number of type Value, i.e. a finite number of type 
  1221     /// Value, -\ref INF or \ref INF.
  1222 #ifdef DOXYGEN
  1223     template<class T>
  1224     void colBounds(T &t, Value lower, Value upper) { return 0;} 
  1225 #else
  1226     template<class T>
  1227     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1228     colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
  1229       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1230 	colBounds(*i, lower, upper);
  1231       }
  1232     }
  1233     template<class T>
  1234     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1235 		       void>::type
  1236     colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { 
  1237       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1238 	colBounds(i->second, lower, upper);
  1239       }
  1240     }
  1241     template<class T>
  1242     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1243 		       void>::type
  1244     colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { 
  1245       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1246 	colBounds(*i, lower, upper);
  1247       }
  1248     }
  1249 #endif
  1250     
  1251 
  1252     /// Set the lower and the upper bounds of a row (i.e a constraint)
  1253 
  1254     /// The lower and the upper bound of a constraint (row) have to be
  1255     /// given by an extended number of type Value, i.e. a finite
  1256     /// number of type Value, -\ref INF or \ref INF. There is no
  1257     /// separate function for the lower and the upper bound because
  1258     /// that would have been hard to implement for CPLEX.
  1259     void rowBounds(Row c, Value lower, Value upper) {
  1260       _setRowBounds(_lpId(c),lower, upper);
  1261     }
  1262     
  1263     /// Get the lower and the upper bounds of a row (i.e a constraint)
  1264 
  1265     /// The lower and the upper bound of
  1266     /// a constraint (row) are  
  1267     /// extended numbers of type Value, i.e.  finite numbers of type 
  1268     /// Value, -\ref INF or \ref INF. 
  1269     /// \todo There is no separate function for the 
  1270     /// lower and the upper bound because we had problems with the 
  1271     /// implementation of the setting functions for CPLEX:  
  1272     /// check out whether this can be done for these functions.
  1273     void getRowBounds(Row c, Value &lower, Value &upper) const {
  1274       _getRowBounds(_lpId(c),lower, upper);
  1275     }
  1276 
  1277     ///Set an element of the objective function
  1278     void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
  1279 
  1280     ///Get an element of the objective function
  1281     Value objCoeff(Col c) const { return _getObjCoeff(_lpId(c)); };
  1282 
  1283     ///Set the objective function
  1284 
  1285     ///\param e is a linear expression of type \ref Expr.
  1286     void obj(Expr e) {
  1287       _clearObj();
  1288       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
  1289 	objCoeff((*i).first,(*i).second);
  1290       obj_const_comp=e.constComp();
  1291     }
  1292 
  1293     ///Get the objective function
  1294 
  1295     ///\return the objective function as a linear expression of type \ref Expr.
  1296     Expr obj() const {
  1297       Expr e;
  1298       for (ColIt it(*this); it != INVALID; ++it) {
  1299         double c = objCoeff(it);
  1300         if (c != 0.0) {
  1301           e.insert(std::make_pair(it, c));
  1302         }
  1303       }
  1304       return e;
  1305     }
  1306     
  1307 
  1308     ///Maximize
  1309     void max() { _setMax(); }
  1310     ///Minimize
  1311     void min() { _setMin(); }
  1312 
  1313     ///Query function: is this a maximization problem?
  1314     bool isMax() const {return _isMax(); }
  1315 
  1316     ///Query function: is this a minimization problem?
  1317     bool isMin() const {return !isMax(); }
  1318     
  1319     ///@}
  1320 
  1321 
  1322     ///\name Solve the LP
  1323 
  1324     ///@{
  1325 
  1326     ///\e Solve the LP problem at hand
  1327     ///
  1328     ///\return The result of the optimization procedure. Possible 
  1329     ///values and their meanings can be found in the documentation of 
  1330     ///\ref SolveExitStatus.
  1331     ///
  1332     ///\todo Which method is used to solve the problem
  1333     SolveExitStatus solve() { return _solve(); }
  1334     
  1335     ///@}
  1336     
  1337     ///\name Obtain the solution
  1338 
  1339     ///@{
  1340 
  1341     /// The status of the primal problem (the original LP problem)
  1342     SolutionStatus primalStatus() const {
  1343       return _getPrimalStatus();
  1344     }
  1345 
  1346     /// The status of the dual (of the original LP) problem 
  1347     SolutionStatus dualStatus() const {
  1348       return _getDualStatus();
  1349     }
  1350 
  1351     ///The type of the original LP problem
  1352     ProblemTypes problemType() const {
  1353       return _getProblemType();
  1354     }
  1355 
  1356     ///\e
  1357     Value primal(Col c) const { return _getPrimal(_lpId(c)); }
  1358 
  1359     ///\e
  1360     Value dual(Row r) const { return _getDual(_lpId(r)); }
  1361 
  1362     ///\e
  1363     bool isBasicCol(Col c) const { return _isBasicCol(_lpId(c)); }
  1364 
  1365     ///\e
  1366 
  1367     ///\return
  1368     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1369     /// of the primal problem, depending on whether we minimize or maximize.
  1370     ///- \ref NaN if no primal solution is found.
  1371     ///- The (finite) objective value if an optimal solution is found.
  1372     Value primalValue() const { return _getPrimalValue()+obj_const_comp;}
  1373     ///@}
  1374     
  1375   };  
  1376 
  1377 
  1378   /// \ingroup lp_group
  1379   ///
  1380   /// \brief Common base class for MIP solvers
  1381   /// \todo Much more docs
  1382   class MipSolverBase : virtual public LpSolverBase{
  1383   public:
  1384 
  1385     ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
  1386     enum ColTypes {
  1387       ///Continuous variable
  1388       REAL = 0,
  1389       ///Integer variable
  1390 
  1391       ///Unfortunately, cplex 7.5 somewhere writes something like
  1392       ///#define INTEGER 'I'
  1393       INT = 1
  1394       ///\todo No support for other types yet.
  1395     };
  1396 
  1397     ///Sets the type of the given coloumn to the given type
  1398     ///
  1399     ///Sets the type of the given coloumn to the given type.
  1400     void colType(Col c, ColTypes col_type) {
  1401       _colType(_lpId(c),col_type);
  1402     }
  1403 
  1404     ///Gives back the type of the column.
  1405     ///
  1406     ///Gives back the type of the column.
  1407     ColTypes colType(Col c) const {
  1408       return _colType(_lpId(c));
  1409     }
  1410 
  1411     ///Sets the type of the given Col to integer or remove that property.
  1412     ///
  1413     ///Sets the type of the given Col to integer or remove that property.
  1414     void integer(Col c, bool enable) {
  1415       if (enable)
  1416 	colType(c,INT);
  1417       else
  1418 	colType(c,REAL);
  1419     }
  1420 
  1421     ///Gives back whether the type of the column is integer or not.
  1422     ///
  1423     ///Gives back the type of the column.
  1424     ///\return true if the column has integer type and false if not.
  1425     bool integer(Col c) const {
  1426       return (colType(c)==INT);
  1427     }
  1428 
  1429     /// The status of the MIP problem
  1430     SolutionStatus mipStatus() const {
  1431       return _getMipStatus();
  1432     }
  1433 
  1434   protected:
  1435 
  1436     virtual ColTypes _colType(int col) const = 0;
  1437     virtual void _colType(int col, ColTypes col_type) = 0;
  1438     virtual SolutionStatus _getMipStatus() const = 0;
  1439 
  1440   };
  1441   
  1442   ///\relates LpSolverBase::Expr
  1443   ///
  1444   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1445 				      const LpSolverBase::Expr &b) 
  1446   {
  1447     LpSolverBase::Expr tmp(a);
  1448     tmp+=b;
  1449     return tmp;
  1450   }
  1451   ///\e
  1452   
  1453   ///\relates LpSolverBase::Expr
  1454   ///
  1455   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1456 				      const LpSolverBase::Expr &b) 
  1457   {
  1458     LpSolverBase::Expr tmp(a);
  1459     tmp-=b;
  1460     return tmp;
  1461   }
  1462   ///\e
  1463   
  1464   ///\relates LpSolverBase::Expr
  1465   ///
  1466   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1467 				      const LpSolverBase::Value &b) 
  1468   {
  1469     LpSolverBase::Expr tmp(a);
  1470     tmp*=b;
  1471     return tmp;
  1472   }
  1473   
  1474   ///\e
  1475   
  1476   ///\relates LpSolverBase::Expr
  1477   ///
  1478   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1479 				      const LpSolverBase::Expr &b) 
  1480   {
  1481     LpSolverBase::Expr tmp(b);
  1482     tmp*=a;
  1483     return tmp;
  1484   }
  1485   ///\e
  1486   
  1487   ///\relates LpSolverBase::Expr
  1488   ///
  1489   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1490 				      const LpSolverBase::Value &b) 
  1491   {
  1492     LpSolverBase::Expr tmp(a);
  1493     tmp/=b;
  1494     return tmp;
  1495   }
  1496   
  1497   ///\e
  1498   
  1499   ///\relates LpSolverBase::Constr
  1500   ///
  1501   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1502 					 const LpSolverBase::Expr &f) 
  1503   {
  1504     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1505   }
  1506 
  1507   ///\e
  1508   
  1509   ///\relates LpSolverBase::Constr
  1510   ///
  1511   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1512 					 const LpSolverBase::Expr &f) 
  1513   {
  1514     return LpSolverBase::Constr(e,f);
  1515   }
  1516 
  1517   ///\e
  1518   
  1519   ///\relates LpSolverBase::Constr
  1520   ///
  1521   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1522 					 const LpSolverBase::Value &f) 
  1523   {
  1524     return LpSolverBase::Constr(e,f);
  1525   }
  1526 
  1527   ///\e
  1528   
  1529   ///\relates LpSolverBase::Constr
  1530   ///
  1531   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1532 					 const LpSolverBase::Expr &f) 
  1533   {
  1534     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1535   }
  1536 
  1537 
  1538   ///\e
  1539   
  1540   ///\relates LpSolverBase::Constr
  1541   ///
  1542   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1543 					 const LpSolverBase::Expr &f) 
  1544   {
  1545     return LpSolverBase::Constr(f,e);
  1546   }
  1547 
  1548 
  1549   ///\e
  1550   
  1551   ///\relates LpSolverBase::Constr
  1552   ///
  1553   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1554 					 const LpSolverBase::Value &f) 
  1555   {
  1556     return LpSolverBase::Constr(f,e);
  1557   }
  1558 
  1559   ///\e
  1560 
  1561   ///\relates LpSolverBase::Constr
  1562   ///
  1563   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1564 					 const LpSolverBase::Value &f) 
  1565   {
  1566     return LpSolverBase::Constr(f,e,f);
  1567   }
  1568 
  1569   ///\e
  1570   
  1571   ///\relates LpSolverBase::Constr
  1572   ///
  1573   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1574 					 const LpSolverBase::Expr &f) 
  1575   {
  1576     return LpSolverBase::Constr(0,e-f,0);
  1577   }
  1578 
  1579   ///\e
  1580   
  1581   ///\relates LpSolverBase::Constr
  1582   ///
  1583   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1584 					 const LpSolverBase::Constr&c) 
  1585   {
  1586     LpSolverBase::Constr tmp(c);
  1587     ///\todo Create an own exception type.
  1588     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1589     else tmp.lowerBound()=n;
  1590     return tmp;
  1591   }
  1592   ///\e
  1593   
  1594   ///\relates LpSolverBase::Constr
  1595   ///
  1596   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1597 					 const LpSolverBase::Value &n)
  1598   {
  1599     LpSolverBase::Constr tmp(c);
  1600     ///\todo Create an own exception type.
  1601     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1602     else tmp.upperBound()=n;
  1603     return tmp;
  1604   }
  1605 
  1606   ///\e
  1607   
  1608   ///\relates LpSolverBase::Constr
  1609   ///
  1610   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1611 					 const LpSolverBase::Constr&c) 
  1612   {
  1613     LpSolverBase::Constr tmp(c);
  1614     ///\todo Create an own exception type.
  1615     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1616     else tmp.upperBound()=n;
  1617     return tmp;
  1618   }
  1619   ///\e
  1620   
  1621   ///\relates LpSolverBase::Constr
  1622   ///
  1623   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1624 					 const LpSolverBase::Value &n)
  1625   {
  1626     LpSolverBase::Constr tmp(c);
  1627     ///\todo Create an own exception type.
  1628     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1629     else tmp.lowerBound()=n;
  1630     return tmp;
  1631   }
  1632 
  1633   ///\e
  1634   
  1635   ///\relates LpSolverBase::DualExpr
  1636   ///
  1637   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1638                                           const LpSolverBase::DualExpr &b) 
  1639   {
  1640     LpSolverBase::DualExpr tmp(a);
  1641     tmp+=b;
  1642     return tmp;
  1643   }
  1644   ///\e
  1645   
  1646   ///\relates LpSolverBase::DualExpr
  1647   ///
  1648   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1649                                           const LpSolverBase::DualExpr &b) 
  1650   {
  1651     LpSolverBase::DualExpr tmp(a);
  1652     tmp-=b;
  1653     return tmp;
  1654   }
  1655   ///\e
  1656   
  1657   ///\relates LpSolverBase::DualExpr
  1658   ///
  1659   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1660                                           const LpSolverBase::Value &b) 
  1661   {
  1662     LpSolverBase::DualExpr tmp(a);
  1663     tmp*=b;
  1664     return tmp;
  1665   }
  1666   
  1667   ///\e
  1668   
  1669   ///\relates LpSolverBase::DualExpr
  1670   ///
  1671   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1672                                           const LpSolverBase::DualExpr &b) 
  1673   {
  1674     LpSolverBase::DualExpr tmp(b);
  1675     tmp*=a;
  1676     return tmp;
  1677   }
  1678   ///\e
  1679   
  1680   ///\relates LpSolverBase::DualExpr
  1681   ///
  1682   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1683                                           const LpSolverBase::Value &b) 
  1684   {
  1685     LpSolverBase::DualExpr tmp(a);
  1686     tmp/=b;
  1687     return tmp;
  1688   }
  1689   
  1690 
  1691 } //namespace lemon
  1692 
  1693 #endif //LEMON_LP_BASE_H