lemon/full_graph.h
author ladanyi
Fri, 14 Apr 2006 18:35:55 +0000
changeset 2054 5363a9c49055
parent 1999 2ff283124dfc
child 2061 7ab148f53d66
permissions -rw-r--r--
bugfix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FULL_GRAPH_H
    20 #define LEMON_FULL_GRAPH_H
    21 
    22 #include <cmath>
    23 
    24 #include <lemon/bits/base_extender.h>
    25 #include <lemon/bits/graph_extender.h>
    26 
    27 #include <lemon/bits/invalid.h>
    28 #include <lemon/bits/utility.h>
    29 
    30 
    31 ///\ingroup graphs
    32 ///\file
    33 ///\brief FullGraph and FullUGraph classes.
    34 
    35 
    36 namespace lemon {
    37 
    38   /// \brief Base of the FullGrpah.
    39   ///
    40   /// Base of the FullGrpah.
    41   class FullGraphBase {
    42     int _nodeNum;
    43     int _edgeNum;
    44   public:
    45 
    46     typedef FullGraphBase Graph;
    47 
    48     class Node;
    49     class Edge;
    50 
    51   public:
    52 
    53     FullGraphBase() {}
    54 
    55 
    56     ///Creates a full graph with \c n nodes.
    57     void construct(int n) { _nodeNum = n; _edgeNum = n * n; }
    58     
    59     typedef True NodeNumTag;
    60     typedef True EdgeNumTag;
    61 
    62     /// \brief Returns the node with the given index.
    63     ///
    64     /// Returns the node with the given index. Because it is a
    65     /// static size graph the node's of the graph can be indiced
    66     /// by the range from 0 to \e nodeNum()-1 and the index of
    67     /// the node can accessed by the \e index() member.
    68     Node operator()(int index) const { return Node(index); }
    69 
    70     /// \brief Returns the index of the node.
    71     ///
    72     /// Returns the index of the node. Because it is a
    73     /// static size graph the node's of the graph can be indiced
    74     /// by the range from 0 to \e nodeNum()-1 and the index of
    75     /// the node can accessed by the \e index() member.
    76     int index(const Node& node) const { return node.id; }
    77 
    78     ///Number of nodes.
    79     int nodeNum() const { return _nodeNum; }
    80     ///Number of edges.
    81     int edgeNum() const { return _edgeNum; }
    82 
    83     /// Maximum node ID.
    84     
    85     /// Maximum node ID.
    86     ///\sa id(Node)
    87     int maxNodeId() const { return _nodeNum-1; }
    88     /// Maximum edge ID.
    89     
    90     /// Maximum edge ID.
    91     ///\sa id(Edge)
    92     int maxEdgeId() const { return _edgeNum-1; }
    93 
    94     Node source(Edge e) const { return e.id % _nodeNum; }
    95     Node target(Edge e) const { return e.id / _nodeNum; }
    96 
    97 
    98     /// Node ID.
    99     
   100     /// The ID of a valid Node is a nonnegative integer not greater than
   101     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   102     /// and the greatest node ID can be actually less then \ref maxNodeId().
   103     ///
   104     /// The ID of the \ref INVALID node is -1.
   105     ///\return The ID of the node \c v. 
   106 
   107     static int id(Node v) { return v.id; }
   108     /// Edge ID.
   109     
   110     /// The ID of a valid Edge is a nonnegative integer not greater than
   111     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   112     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   113     ///
   114     /// The ID of the \ref INVALID edge is -1.
   115     ///\return The ID of the edge \c e. 
   116     static int id(Edge e) { return e.id; }
   117 
   118     static Node nodeFromId(int id) { return Node(id);}
   119     
   120     static Edge edgeFromId(int id) { return Edge(id);}
   121 
   122     typedef True FindEdgeTag;
   123 
   124     /// Finds an edge between two nodes.
   125     
   126     /// Finds an edge from node \c u to node \c v.
   127     ///
   128     /// If \c prev is \ref INVALID (this is the default value), then
   129     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   130     /// the next edge from \c u to \c v after \c prev.
   131     /// \return The found edge or INVALID if there is no such an edge.
   132     Edge findEdge(Node u,Node v, Edge prev = INVALID) const {
   133       return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
   134     }
   135     
   136       
   137     class Node {
   138       friend class FullGraphBase;
   139 
   140     protected:
   141       int id;
   142       Node(int _id) : id(_id) {}
   143     public:
   144       Node() {}
   145       Node (Invalid) : id(-1) {}
   146       bool operator==(const Node node) const {return id == node.id;}
   147       bool operator!=(const Node node) const {return id != node.id;}
   148       bool operator<(const Node node) const {return id < node.id;}
   149     };
   150     
   151 
   152 
   153     class Edge {
   154       friend class FullGraphBase;
   155       
   156     protected:
   157       int id;  // _nodeNum * target + source;
   158 
   159       Edge(int _id) : id(_id) {}
   160 
   161       Edge(const FullGraphBase& _graph, int source, int target) 
   162 	: id(_graph._nodeNum * target+source) {}
   163     public:
   164       Edge() { }
   165       Edge (Invalid) { id = -1; }
   166       bool operator==(const Edge edge) const {return id == edge.id;}
   167       bool operator!=(const Edge edge) const {return id != edge.id;}
   168       bool operator<(const Edge edge) const {return id < edge.id;}
   169     };
   170 
   171     void first(Node& node) const {
   172       node.id = _nodeNum-1;
   173     }
   174 
   175     static void next(Node& node) {
   176       --node.id;
   177     }
   178 
   179     void first(Edge& edge) const {
   180       edge.id = _edgeNum-1;
   181     }
   182 
   183     static void next(Edge& edge) {
   184       --edge.id;
   185     }
   186 
   187     void firstOut(Edge& edge, const Node& node) const {
   188       edge.id = _edgeNum + node.id - _nodeNum;
   189     }
   190 
   191     void nextOut(Edge& edge) const {
   192       edge.id -= _nodeNum;
   193       if (edge.id < 0) edge.id = -1;
   194     }
   195 
   196     void firstIn(Edge& edge, const Node& node) const {
   197       edge.id = node.id * _nodeNum;
   198     }
   199     
   200     void nextIn(Edge& edge) const {
   201       ++edge.id;
   202       if (edge.id % _nodeNum == 0) edge.id = -1;
   203     }
   204 
   205   };
   206 
   207   typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
   208 
   209   /// \ingroup graphs
   210   ///
   211   /// \brief A full graph class.
   212   ///
   213   /// This is a simple and fast directed full graph implementation.
   214   /// It is completely static, so you can neither add nor delete either
   215   /// edges or nodes.
   216   /// Thus it conforms to
   217   /// the \ref concept::StaticGraph "StaticGraph" concept
   218   /// \sa concept::StaticGraph.
   219   ///
   220   /// \sa FullGraphBase
   221   /// \sa FullUGraph
   222   ///
   223   /// \author Alpar Juttner
   224   class FullGraph : public ExtendedFullGraphBase {
   225   public:
   226 
   227     typedef ExtendedFullGraphBase Parent;
   228 
   229     /// \brief Constructor
   230     FullGraph() { construct(0); }
   231 
   232     /// \brief Constructor
   233     ///
   234     FullGraph(int n) { construct(n); }
   235 
   236     /// \brief Resize the graph
   237     ///
   238     /// Resize the graph. The function will fully destroy and build the graph.
   239     /// This cause that the maps of the graph will reallocated
   240     /// automatically and the previous values will be lost.
   241     void resize(int n) {
   242       Parent::getNotifier(Edge()).clear();
   243       Parent::getNotifier(Node()).clear();
   244       construct(n);
   245       Parent::getNotifier(Node()).build();
   246       Parent::getNotifier(Edge()).build();
   247     }
   248   };
   249 
   250 
   251   /// \brief Base of the FullUGrpah.
   252   ///
   253   /// Base of the FullUGrpah.
   254   class FullUGraphBase {
   255     int _nodeNum;
   256     int _edgeNum;
   257   public:
   258 
   259     typedef FullUGraphBase Graph;
   260 
   261     class Node;
   262     class Edge;
   263 
   264   public:
   265 
   266     FullUGraphBase() {}
   267 
   268 
   269     ///Creates a full graph with \c n nodes.
   270     void construct(int n) { _nodeNum = n; _edgeNum = n * (n - 1) / 2; }
   271 
   272     /// \brief Returns the node with the given index.
   273     ///
   274     /// Returns the node with the given index. Because it is a
   275     /// static size graph the node's of the graph can be indiced
   276     /// by the range from 0 to \e nodeNum()-1 and the index of
   277     /// the node can accessed by the \e index() member.
   278     Node operator()(int index) const { return Node(index); }
   279 
   280     /// \brief Returns the index of the node.
   281     ///
   282     /// Returns the index of the node. Because it is a
   283     /// static size graph the node's of the graph can be indiced
   284     /// by the range from 0 to \e nodeNum()-1 and the index of
   285     /// the node can accessed by the \e index() member.
   286     int index(const Node& node) const { return node.id; }
   287 
   288     typedef True NodeNumTag;
   289     typedef True EdgeNumTag;
   290 
   291     ///Number of nodes.
   292     int nodeNum() const { return _nodeNum; }
   293     ///Number of edges.
   294     int edgeNum() const { return _edgeNum; }
   295 
   296     /// Maximum node ID.
   297     
   298     /// Maximum node ID.
   299     ///\sa id(Node)
   300     int maxNodeId() const { return _nodeNum-1; }
   301     /// Maximum edge ID.
   302     
   303     /// Maximum edge ID.
   304     ///\sa id(Edge)
   305     int maxEdgeId() const { return _edgeNum-1; }
   306 
   307     Node source(Edge e) const { 
   308       /// \todo we may do it faster
   309       return Node(((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2);
   310     }
   311 
   312     Node target(Edge e) const { 
   313       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   314       return Node(e.id - (source) * (source - 1) / 2);
   315     }
   316 
   317 
   318     /// \brief Node ID.
   319     ///
   320     /// The ID of a valid Node is a nonnegative integer not greater than
   321     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   322     /// and the greatest node ID can be actually less then \ref maxNodeId().
   323     ///
   324     /// The ID of the \ref INVALID node is -1.
   325     /// \return The ID of the node \c v. 
   326 
   327     static int id(Node v) { return v.id; }
   328 
   329     /// \brief Edge ID.
   330     ///
   331     /// The ID of a valid Edge is a nonnegative integer not greater than
   332     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   333     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   334     ///
   335     /// The ID of the \ref INVALID edge is -1.
   336     ///\return The ID of the edge \c e. 
   337     static int id(Edge e) { return e.id; }
   338 
   339     /// \brief Finds an edge between two nodes.
   340     ///
   341     /// Finds an edge from node \c u to node \c v.
   342     ///
   343     /// If \c prev is \ref INVALID (this is the default value), then
   344     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   345     /// the next edge from \c u to \c v after \c prev.
   346     /// \return The found edge or INVALID if there is no such an edge.
   347     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   348       if (prev.id != -1 || u.id <= v.id) return Edge(-1);
   349       return Edge(u.id * (u.id - 1) / 2 + v.id);
   350     }
   351 
   352     typedef True FindEdgeTag;
   353     
   354       
   355     class Node {
   356       friend class FullUGraphBase;
   357 
   358     protected:
   359       int id;
   360       Node(int _id) { id = _id;}
   361     public:
   362       Node() {}
   363       Node (Invalid) { id = -1; }
   364       bool operator==(const Node node) const {return id == node.id;}
   365       bool operator!=(const Node node) const {return id != node.id;}
   366       bool operator<(const Node node) const {return id < node.id;}
   367     };
   368     
   369 
   370 
   371     class Edge {
   372       friend class FullUGraphBase;
   373       
   374     protected:
   375       int id;  // _nodeNum * target + source;
   376 
   377       Edge(int _id) : id(_id) {}
   378 
   379     public:
   380       Edge() { }
   381       Edge (Invalid) { id = -1; }
   382       bool operator==(const Edge edge) const {return id == edge.id;}
   383       bool operator!=(const Edge edge) const {return id != edge.id;}
   384       bool operator<(const Edge edge) const {return id < edge.id;}
   385     };
   386 
   387     void first(Node& node) const {
   388       node.id = _nodeNum - 1;
   389     }
   390 
   391     static void next(Node& node) {
   392       --node.id;
   393     }
   394 
   395     void first(Edge& edge) const {
   396       edge.id = _edgeNum - 1;
   397     }
   398 
   399     static void next(Edge& edge) {
   400       --edge.id;
   401     }
   402 
   403     void firstOut(Edge& edge, const Node& node) const {      
   404       int src = node.id;
   405       int trg = 0;
   406       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   407     }
   408 
   409     /// \todo with specialized iterators we can make faster iterating
   410     void nextOut(Edge& edge) const {
   411       int src = source(edge).id;
   412       int trg = target(edge).id;
   413       ++trg;
   414       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   415     }
   416 
   417     void firstIn(Edge& edge, const Node& node) const {
   418       int src = node.id + 1;
   419       int trg = node.id;
   420       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   421     }
   422     
   423     void nextIn(Edge& edge) const {
   424       int src = source(edge).id;
   425       int trg = target(edge).id;
   426       ++src;
   427       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   428     }
   429 
   430   };
   431 
   432   typedef UGraphExtender<UGraphBaseExtender<FullUGraphBase> > 
   433   ExtendedFullUGraphBase;
   434 
   435   /// \ingroup graphs
   436   ///
   437   /// \brief An undirected full graph class.
   438   ///
   439   /// This is a simple and fast undirected full graph implementation.
   440   /// It is completely static, so you can neither add nor delete either
   441   /// edges or nodes.
   442   ///
   443   /// The main difference beetween the \e FullGraph and \e FullUGraph class
   444   /// is that this class conforms to the undirected graph concept and
   445   /// it does not contain the loop edges.
   446   ///
   447   /// \sa FullUGraphBase
   448   /// \sa FullGraph
   449   ///
   450   /// \author Balazs Dezso
   451   class FullUGraph : public ExtendedFullUGraphBase {
   452   public:
   453 
   454     typedef ExtendedFullUGraphBase Parent;
   455 
   456     /// \brief Constructor
   457     FullUGraph() { construct(0); }
   458 
   459     /// \brief Constructor
   460     FullUGraph(int n) { construct(n); }
   461 
   462     /// \brief Resize the graph
   463     ///
   464     /// Resize the graph. The function will fully destroy and build the graph.
   465     /// This cause that the maps of the graph will reallocated
   466     /// automatically and the previous values will be lost.
   467     void resize(int n) {
   468       Parent::getNotifier(Edge()).clear();
   469       Parent::getNotifier(UEdge()).clear();
   470       Parent::getNotifier(Node()).clear();
   471       construct(n);
   472       Parent::getNotifier(Node()).build();
   473       Parent::getNotifier(UEdge()).build();
   474       Parent::getNotifier(Edge()).build();
   475     }
   476   };
   477 
   478 
   479   class FullBpUGraphBase {
   480   protected:
   481 
   482     int _aNodeNum;
   483     int _bNodeNum;
   484 
   485     int _edgeNum;
   486 
   487   public:
   488 
   489     class NodeSetError : public LogicError {
   490       virtual const char* exceptionName() const { 
   491 	return "lemon::FullBpUGraph::NodeSetError";
   492       }
   493     };
   494   
   495     class Node {
   496       friend class FullBpUGraphBase;
   497     protected:
   498       int id;
   499 
   500       Node(int _id) : id(_id) {}
   501     public:
   502       Node() {}
   503       Node(Invalid) { id = -1; }
   504       bool operator==(const Node i) const {return id==i.id;}
   505       bool operator!=(const Node i) const {return id!=i.id;}
   506       bool operator<(const Node i) const {return id<i.id;}
   507     };
   508 
   509     class Edge {
   510       friend class FullBpUGraphBase;
   511     protected:
   512       int id;
   513 
   514       Edge(int _id) { id = _id;}
   515     public:
   516       Edge() {}
   517       Edge (Invalid) { id = -1; }
   518       bool operator==(const Edge i) const {return id==i.id;}
   519       bool operator!=(const Edge i) const {return id!=i.id;}
   520       bool operator<(const Edge i) const {return id<i.id;}
   521     };
   522 
   523     void construct(int aNodeNum, int bNodeNum) {
   524       _aNodeNum = aNodeNum;
   525       _bNodeNum = bNodeNum;
   526       _edgeNum = aNodeNum * bNodeNum;
   527     }
   528 
   529     void firstANode(Node& node) const {
   530       node.id = 2 * _aNodeNum - 2;
   531       if (node.id < 0) node.id = -1; 
   532     }
   533     void nextANode(Node& node) const {
   534       node.id -= 2;
   535       if (node.id < 0) node.id = -1; 
   536     }
   537 
   538     void firstBNode(Node& node) const {
   539       node.id = 2 * _bNodeNum - 1;
   540     }
   541     void nextBNode(Node& node) const {
   542       node.id -= 2;
   543     }
   544 
   545     void first(Node& node) const {
   546       if (_aNodeNum > 0) {
   547 	node.id = 2 * _aNodeNum - 2;
   548       } else {
   549 	node.id = 2 * _bNodeNum - 1;
   550       }
   551     }
   552     void next(Node& node) const {
   553       node.id -= 2;
   554       if (node.id == -2) {
   555 	node.id = 2 * _bNodeNum - 1;
   556       }
   557     }
   558   
   559     void first(Edge& edge) const {
   560       edge.id = _edgeNum - 1;
   561     }
   562     void next(Edge& edge) const {
   563       --edge.id;
   564     }
   565 
   566     void firstOut(Edge& edge, const Node& node) const {
   567       LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
   568       edge.id = (node.id >> 1) * _bNodeNum;
   569     }
   570     void nextOut(Edge& edge) const {
   571       ++(edge.id);
   572       if (edge.id % _bNodeNum == 0) edge.id = -1;
   573     }
   574 
   575     void firstIn(Edge& edge, const Node& node) const {
   576       LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
   577       edge.id = (node.id >> 1);
   578     }
   579     void nextIn(Edge& edge) const {
   580       edge.id += _bNodeNum;
   581       if (edge.id >= _edgeNum) edge.id = -1;
   582     }
   583 
   584     static int id(const Node& node) {
   585       return node.id;
   586     }
   587     static Node nodeFromId(int id) {
   588       return Node(id);
   589     }
   590     int maxNodeId() const {
   591       return _aNodeNum > _bNodeNum ? 
   592 	_aNodeNum * 2 - 2 : _bNodeNum * 2 - 1;
   593     }
   594   
   595     static int id(const Edge& edge) {
   596       return edge.id;
   597     }
   598     static Edge edgeFromId(int id) {
   599       return Edge(id);
   600     }
   601     int maxEdgeId() const {
   602       return _edgeNum - 1;
   603     }
   604   
   605     static int aNodeId(const Node& node) {
   606       return node.id >> 1;
   607     }
   608     static Node fromANodeId(int id) {
   609       return Node(id << 1);
   610     }
   611     int maxANodeId() const {
   612       return _aNodeNum;
   613     }
   614 
   615     static int bNodeId(const Node& node) {
   616       return node.id >> 1;
   617     }
   618     static Node fromBNodeId(int id) {
   619       return Node((id << 1) + 1);
   620     }
   621     int maxBNodeId() const {
   622       return _bNodeNum;
   623     }
   624 
   625     Node aNode(const Edge& edge) const {
   626       return Node((edge.id / _bNodeNum) << 1);
   627     }
   628     Node bNode(const Edge& edge) const {
   629       return Node(((edge.id % _bNodeNum) << 1) + 1);
   630     }
   631 
   632     static bool aNode(const Node& node) {
   633       return (node.id & 1) == 0;
   634     }
   635 
   636     static bool bNode(const Node& node) {
   637       return (node.id & 1) == 1;
   638     }
   639 
   640     static Node aNode(int index) {
   641       return Node(index << 1);
   642     }
   643 
   644     static Node bNode(int index) {
   645       return Node((index << 1) + 1);
   646     }
   647 
   648     typedef True NodeNumTag;
   649     int nodeNum() const { return _aNodeNum + _bNodeNum; }
   650     int aNodeNum() const { return _aNodeNum; }
   651     int bNodeNum() const { return _bNodeNum; }
   652 
   653     typedef True EdgeNumTag;
   654     int edgeNum() const { return _edgeNum; }
   655 
   656   };
   657 
   658 
   659   typedef BpUGraphExtender< BpUGraphBaseExtender<
   660     FullBpUGraphBase> > ExtendedFullBpUGraphBase;
   661 
   662 
   663   /// \ingroup graphs
   664   ///
   665   /// \brief An undirected full bipartite graph class.
   666   ///
   667   /// This is a simple and fast bipartite undirected full graph implementation.
   668   /// It is completely static, so you can neither add nor delete either
   669   /// edges or nodes.
   670   ///
   671   /// \sa FullUGraphBase
   672   /// \sa FullGraph
   673   ///
   674   /// \author Balazs Dezso
   675   class FullBpUGraph : 
   676     public ExtendedFullBpUGraphBase {
   677   public:
   678 
   679     typedef ExtendedFullBpUGraphBase Parent;
   680 
   681     FullBpUGraph() {
   682       Parent::construct(0, 0);
   683     }
   684 
   685     FullBpUGraph(int aNodeNum, int bNodeNum) {
   686       Parent::construct(aNodeNum, bNodeNum);
   687     }
   688 
   689     /// \brief Resize the graph
   690     ///
   691     void resize(int n, int m) {
   692       Parent::getNotifier(Edge()).clear();
   693       Parent::getNotifier(UEdge()).clear();
   694       Parent::getNotifier(Node()).clear();
   695       Parent::getNotifier(ANode()).clear();
   696       Parent::getNotifier(BNode()).clear();
   697       construct(n, m);
   698       Parent::getNotifier(ANode()).build();
   699       Parent::getNotifier(BNode()).build();
   700       Parent::getNotifier(Node()).build();
   701       Parent::getNotifier(UEdge()).build();
   702       Parent::getNotifier(Edge()).build();
   703     }
   704   };
   705 
   706 } //namespace lemon
   707 
   708 
   709 #endif //LEMON_FULL_GRAPH_H