lemon/path.h
author deba
Thu, 01 Mar 2007 16:50:12 +0000
changeset 2383 545926902c13
parent 2336 215a6f3e33c9
child 2386 81b47fc5c444
permissions -rw-r--r--
steiner.h into the makefile
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 
    20 ///\ingroup paths
    21 ///\file
    22 ///\brief Classes for representing paths in graphs.
    23 ///
    24 
    25 #ifndef LEMON_PATH_H
    26 #define LEMON_PATH_H
    27 
    28 #include <vector>
    29 #include <algorithm>
    30 
    31 #include <lemon/path_utils.h>
    32 #include <lemon/error.h>
    33 #include <lemon/bits/invalid.h>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup paths
    38   /// @{
    39 
    40 
    41   /// \brief A structure for representing directed paths in a graph.
    42   ///
    43   /// A structure for representing directed path in a graph.
    44   /// \param Graph The graph type in which the path is.
    45   ///
    46   /// In a sense, the path can be treated as a list of edges. The
    47   /// lemon path type stores just this list. As a consequence it
    48   /// cannot enumerate the nodes in the path and the zero length paths
    49   /// cannot store the source.
    50   ///
    51   /// This implementation is a back and front insertable and erasable
    52   /// path type. It can be indexed in O(1) time. The front and back
    53   /// insertion and erasure is amortized O(1) time. The
    54   /// impelementation is based on two opposite organized vectors.
    55   template <typename _Graph>
    56   class Path {
    57   public:
    58 
    59     typedef _Graph Graph;
    60     typedef typename Graph::Edge Edge;
    61 
    62     /// \brief Default constructor
    63     ///
    64     /// Default constructor
    65     Path() {}
    66 
    67     /// \brief Template copy constructor
    68     ///
    69     /// This path can be initialized with any other path type. It just
    70     /// makes a copy of the given path.
    71     template <typename CPath>
    72     Path(const CPath& cpath) {
    73       copyPath(*this, cpath);
    74     }
    75 
    76     /// \brief Template copy assignment
    77     ///
    78     /// This path can be initialized with any other path type. It just
    79     /// makes a copy of the given path.
    80     template <typename CPath>
    81     Path& operator=(const CPath& cpath) {
    82       copyPath(*this, cpath);
    83       return *this;
    84     }
    85 
    86     /// \brief Lemon style iterator for path edges
    87     ///
    88     /// This class is used to iterate on the edges of the paths.
    89     class EdgeIt {
    90       friend class Path;
    91     public:
    92       /// \brief Default constructor
    93       EdgeIt() {}
    94       /// \brief Invalid constructor
    95       EdgeIt(Invalid) : path(0), idx(-1) {}
    96       /// \brief Initializate the constructor to the first edge of path
    97       EdgeIt(const Path &_path) 
    98         : path(&_path), idx(_path.empty() ? -1 : 0) {}
    99 
   100     private:
   101 
   102       EdgeIt(const Path &_path, int _idx) 
   103         : idx(_idx), path(&_path) {}
   104 
   105     public:
   106 
   107       /// \brief Conversion to Edge
   108       operator const Edge&() const {
   109         return path->nth(idx);
   110       }
   111 
   112       /// \brief Next edge
   113       EdgeIt& operator++() { 
   114         ++idx;
   115         if (idx >= path->length()) idx = -1; 
   116         return *this; 
   117       }
   118 
   119       /// \brief Comparison operator
   120       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   121       /// \brief Comparison operator
   122       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   123       /// \brief Comparison operator
   124       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   125 
   126     private:
   127       const Path *path;
   128       int idx;
   129     };
   130 
   131     /// \brief Length of the path.
   132     int length() const { return head.size() + tail.size(); }
   133     /// \brief Returns whether the path is empty.
   134     bool empty() const { return head.empty() && tail.empty(); }
   135 
   136     /// \brief Resets the path to an empty path.
   137     void clear() { head.clear(); tail.clear(); }
   138 
   139     /// \brief Gives back the nth edge.
   140     ///
   141     /// \pre n is in the [0..length() - 1] range
   142     const Edge& nth(int n) const {
   143       return n < (int)head.size() ? *(head.rbegin() + n) :
   144         *(tail.begin() + (n - head.size()));
   145     }
   146 
   147     /// \brief Initializes edge iterator to point to the nth edge
   148     ///
   149     /// \pre n is in the [0..length() - 1] range
   150     EdgeIt nthIt(int n) const {
   151       return EdgeIt(*this, n);
   152     }
   153 
   154     /// \brief Gives back the first edge of the path
   155     const Edge& front() const {
   156       return head.empty() ? tail.front() : head.back();
   157     }
   158 
   159     /// \brief Add a new edge before the current path
   160     void addFront(const Edge& edge) {
   161       head.push_back(edge);
   162     }
   163 
   164     /// \brief Erase the first edge of the path
   165     void eraseFront() {
   166       if (!head.empty()) {
   167         head.pop_back();
   168       } else {
   169         head.clear();
   170         int halfsize = tail.size() / 2;
   171         head.resize(halfsize);
   172         std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
   173                   head.rbegin());
   174         std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
   175         tail.resize(tail.size() - halfsize - 1);
   176       }
   177     }
   178 
   179     /// \brief Gives back the last edge of the path
   180     const Edge& back() const {
   181       return tail.empty() ? head.front() : tail.back();
   182     }
   183 
   184     /// \brief Add a new edge behind the current path
   185     void addBack(const Edge& edge) {
   186       tail.push_back(edge);
   187     }
   188 
   189     /// \brief Erase the last edge of the path
   190     void eraseBack() {
   191       if (!tail.empty()) {
   192         tail.pop_back();
   193       } else {
   194         int halfsize = head.size() / 2;
   195         tail.resize(halfsize);
   196         std::copy(head.begin() + 1, head.begin() + halfsize + 1,
   197                   tail.rbegin());
   198         std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
   199         head.resize(head.size() - halfsize - 1);
   200       }
   201     }
   202 
   203 
   204 
   205     typedef True BuildTag;
   206 
   207     template <typename CPath>
   208     void build(const CPath& path) {
   209       int len = path.length();
   210       tail.reserve(len);
   211       for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
   212         tail.push_back(it);
   213       }
   214     }
   215 
   216     template <typename CPath>
   217     void buildRev(const CPath& path) {
   218       int len = path.length();
   219       head.reserve(len);
   220       for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
   221         head.push_back(it);
   222       }
   223     }
   224 
   225   protected:
   226     typedef std::vector<Edge> Container;
   227     Container head, tail;
   228 
   229   };
   230 
   231   /// \brief A structure for representing directed paths in a graph.
   232   ///
   233   /// A structure for representing directed path in a graph.
   234   /// \param Graph The graph type in which the path is.
   235   ///
   236   /// In a sense, the path can be treated as a list of edges. The
   237   /// lemon path type stores just this list. As a consequence it
   238   /// cannot enumerate the nodes in the path and the zero length paths
   239   /// cannot store the source.
   240   ///
   241   /// This implementation is a just back insertable and erasable path
   242   /// type. It can be indexed in O(1) time. The back insertion and
   243   /// erasure is amortized O(1) time. This implementation is faster
   244   /// then the \c Path type because it use just one vector for the
   245   /// edges.
   246   template <typename _Graph>
   247   class SimplePath {
   248   public:
   249 
   250     typedef _Graph Graph;
   251     typedef typename Graph::Edge Edge;
   252 
   253     /// \brief Default constructor
   254     ///
   255     /// Default constructor
   256     SimplePath() {}
   257 
   258     /// \brief Template copy constructor
   259     ///
   260     /// This path can be initialized with any other path type. It just
   261     /// makes a copy of the given path.
   262     template <typename CPath>
   263     SimplePath(const CPath& cpath) {
   264       copyPath(*this, cpath);
   265     }
   266 
   267     /// \brief Template copy assignment
   268     ///
   269     /// This path can be initialized with any other path type. It just
   270     /// makes a copy of the given path.
   271     template <typename CPath>
   272     SimplePath& operator=(const CPath& cpath) {
   273       copyPath(*this, cpath);
   274       return *this;
   275     }
   276 
   277     /// \brief Iterator class to iterate on the edges of the paths
   278     ///
   279     /// This class is used to iterate on the edges of the paths
   280     ///
   281     /// Of course it converts to Graph::Edge
   282     class EdgeIt {
   283       friend class SimplePath;
   284     public:
   285       /// Default constructor
   286       EdgeIt() {}
   287       /// Invalid constructor
   288       EdgeIt(Invalid) : path(0), idx(-1) {}
   289       /// \brief Initializate the constructor to the first edge of path
   290       EdgeIt(const SimplePath &_path) 
   291         : path(&_path), idx(_path.empty() ? -1 : 0) {}
   292 
   293     private:
   294 
   295       /// Constructor with starting point
   296       EdgeIt(const SimplePath &_path, int _idx) 
   297         : idx(_idx), path(&_path) {}
   298 
   299     public:
   300 
   301       ///Conversion to Graph::Edge
   302       operator const Edge&() const {
   303         return path->nth(idx);
   304       }
   305 
   306       /// Next edge
   307       EdgeIt& operator++() { 
   308         ++idx;
   309         if (idx >= path->length()) idx = -1; 
   310         return *this; 
   311       }
   312 
   313       /// Comparison operator
   314       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   315       /// Comparison operator
   316       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   317       /// Comparison operator
   318       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   319 
   320     private:
   321       const SimplePath *path;
   322       int idx;
   323     };
   324 
   325     /// \brief Length of the path.
   326     int length() const { return data.size(); }
   327     /// \brief Returns whether the path is empty.
   328     bool empty() const { return data.empty(); }
   329 
   330     /// \brief Resets the path to an empty path.
   331     void clear() { data.clear(); }
   332 
   333     /// \brief Gives back the nth edge.
   334     ///
   335     /// \pre n is in the [0..length() - 1] range
   336     const Edge& nth(int n) const {
   337       return data[n];
   338     }
   339 
   340     /// \brief  Initializes edge iterator to point to the nth edge.
   341     EdgeIt nthIt(int n) const {
   342       return EdgeIt(*this, n);
   343     }
   344 
   345     /// \brief Gives back the last edge of the path.
   346     const Edge& back() const {
   347       return data.back();
   348     }
   349 
   350     /// \brief Add a new edge behind the current path.
   351     void addBack(const Edge& edge) {
   352       data.push_back(edge);
   353     }
   354 
   355     /// \brief Erase the last edge of the path
   356     void eraseBack() {
   357       data.pop_back();
   358     }
   359 
   360     typedef True BuildTag;
   361 
   362     template <typename CPath>
   363     void build(const CPath& path) {
   364       int len = path.length();
   365       data.resize(len);
   366       int index = 0;
   367       for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
   368         data[index] = it;;
   369         ++index;
   370       }
   371     }
   372 
   373     template <typename CPath>
   374     void buildRev(const CPath& path) {
   375       int len = path.length();
   376       data.resize(len);
   377       int index = len;
   378       for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
   379         --index;
   380         data[index] = it;;
   381       }
   382     }
   383 
   384   protected:
   385     typedef std::vector<Edge> Container;
   386     Container data;
   387 
   388   };
   389 
   390   /// \brief A structure for representing directed paths in a graph.
   391   ///
   392   /// A structure for representing directed path in a graph.
   393   /// \param Graph The graph type in which the path is.
   394   ///
   395   /// In a sense, the path can be treated as a list of edges. The
   396   /// lemon path type stores just this list. As a consequence it
   397   /// cannot enumerate the nodes in the path and the zero length paths
   398   /// cannot store the source.
   399   ///
   400   /// This implementation is a back and front insertable and erasable
   401   /// path type. It can be indexed in O(k) time, where k is the rank
   402   /// of the edge in the path. The length can be computed in O(n)
   403   /// time. The front and back insertion and erasure is O(1) time
   404   /// and it can be splited and spliced in O(1) time.
   405   template <typename _Graph>
   406   class ListPath {
   407   public:
   408 
   409     typedef _Graph Graph;
   410     typedef typename Graph::Edge Edge;
   411 
   412   protected:
   413 
   414     // the std::list<> is incompatible 
   415     // hard to create invalid iterator
   416     struct Node {
   417       Edge edge;
   418       Node *next, *prev;
   419     };
   420 
   421     Node *first, *last;
   422 
   423     std::allocator<Node> alloc;
   424 
   425   public:
   426  
   427     /// \brief Default constructor
   428     ///
   429     /// Default constructor
   430     ListPath() : first(0), last(0) {}
   431 
   432     /// \brief Template copy constructor
   433     ///
   434     /// This path can be initialized with any other path type. It just
   435     /// makes a copy of the given path.
   436     template <typename CPath>
   437     ListPath(const CPath& cpath) : first(0), last(0) {
   438       copyPath(*this, cpath);
   439     }
   440 
   441     /// \brief Destructor of the path
   442     ///
   443     /// Destructor of the path
   444     ~ListPath() {
   445       clear();
   446     }
   447 
   448     /// \brief Template copy assignment
   449     ///
   450     /// This path can be initialized with any other path type. It just
   451     /// makes a copy of the given path.
   452     template <typename CPath>
   453     ListPath& operator=(const CPath& cpath) {
   454       copyPath(*this, cpath);
   455       return *this;
   456     }
   457 
   458     /// \brief Iterator class to iterate on the edges of the paths
   459     ///
   460     /// This class is used to iterate on the edges of the paths
   461     ///
   462     /// Of course it converts to Graph::Edge
   463     class EdgeIt {
   464       friend class ListPath;
   465     public:
   466       /// Default constructor
   467       EdgeIt() {}
   468       /// Invalid constructor
   469       EdgeIt(Invalid) : path(0), node(0) {}
   470       /// \brief Initializate the constructor to the first edge of path
   471       EdgeIt(const ListPath &_path) 
   472         : path(&_path), node(_path.first) {}
   473 
   474     protected:
   475 
   476       EdgeIt(const ListPath &_path, Node *_node) 
   477         : path(&_path), node(_node) {}
   478 
   479 
   480     public:
   481 
   482       ///Conversion to Graph::Edge
   483       operator const Edge&() const {
   484         return node->edge;
   485       }
   486 
   487       /// Next edge
   488       EdgeIt& operator++() { 
   489         node = node->next;
   490         return *this; 
   491       }
   492 
   493       /// Comparison operator
   494       bool operator==(const EdgeIt& e) const { return node==e.node; }
   495       /// Comparison operator
   496       bool operator!=(const EdgeIt& e) const { return node!=e.node; }
   497       /// Comparison operator
   498       bool operator<(const EdgeIt& e) const { return node<e.node; }
   499 
   500     private:
   501       const ListPath *path;
   502       Node *node;
   503     };
   504 
   505     /// \brief Gives back the nth edge.
   506     ///
   507     /// Gives back the nth edge in O(n) time.
   508     /// \pre n is in the [0..length() - 1] range
   509     const Edge& nth(int n) const {
   510       Node *node = first;
   511       for (int i = 0; i < n; ++i) {
   512         node = node->next;
   513       }
   514       return node->edge;
   515     }
   516 
   517     /// \brief Initializes edge iterator to point to the nth edge.
   518     EdgeIt nthIt(int n) const {
   519       Node *node = first;
   520       for (int i = 0; i < n; ++i) {
   521         node = node->next;
   522       }
   523       return EdgeIt(*this, node);
   524     }
   525 
   526     /// \brief Length of the path.
   527     int length() const {
   528       int len = 0;
   529       Node *node = first;
   530       while (node != 0) {
   531         node = node->next;
   532         ++len;
   533       }
   534       return len;
   535     }
   536 
   537     /// \brief Returns whether the path is empty.
   538     bool empty() const { return first == 0; }
   539 
   540     /// \brief Resets the path to an empty path.
   541     void clear() {
   542       while (first != 0) {
   543         last = first->next;
   544         alloc.destroy(first);
   545         alloc.deallocate(first, 1);
   546         first = last;
   547       }
   548     }
   549 
   550     /// \brief Gives back the first edge of the path
   551     const Edge& front() const {
   552       return first->edge;
   553     }
   554 
   555     /// \brief Add a new edge before the current path
   556     void addFront(const Edge& edge) {
   557       Node *node = alloc.allocate(1);
   558       alloc.construct(node, Node());
   559       node->prev = 0;
   560       node->next = first;
   561       node->edge = edge;
   562       if (first) {
   563         first->prev = node;
   564         first = node;
   565       } else {
   566         first = last = node;
   567       }
   568     }
   569 
   570     /// \brief Erase the first edge of the path
   571     void eraseFront() {
   572       Node *node = first;
   573       first = first->next;
   574       if (first) {
   575         first->prev = 0;
   576       } else {
   577         last = 0;
   578       }
   579       alloc.destroy(node);
   580       alloc.deallocate(node, 1);
   581     }
   582 
   583     /// \brief Gives back the last edge of the path.
   584     const Edge& back() const {
   585       return last->edge;
   586     }
   587 
   588     /// \brief Add a new edge behind the current path.
   589     void addBack(const Edge& edge) {
   590       Node *node = alloc.allocate(1);
   591       alloc.construct(node, Node());
   592       node->next = 0;
   593       node->prev = last;
   594       node->edge = edge;
   595       if (last) {
   596         last->next = node;
   597         last = node;
   598       } else {
   599         last = first = node;
   600       }
   601     }
   602 
   603     /// \brief Erase the last edge of the path
   604     void eraseBack() {
   605       Node *node = last;
   606       last = last->prev;
   607       if (last) {
   608         last->next = 0;
   609       } else {
   610         first = 0;
   611       }
   612       alloc.destroy(node);
   613       alloc.deallocate(node, 1);
   614     }
   615 
   616     /// \brief Splicing the given path to the current path.
   617     ///
   618     /// It splices the \c tpath to the back of the current path and \c
   619     /// tpath becomes empty. The time complexity of this function is
   620     /// O(1).
   621     void spliceBack(ListPath& tpath) {
   622       if (first) {
   623         if (tpath.first) {
   624           last->next = tpath.first;
   625           tpath.first->prev = last;
   626           last = tpath.last;
   627         }
   628       } else {
   629         first = tpath.first;
   630         last = tpath.last;
   631       }
   632       tpath.first = tpath.last = 0;
   633     }
   634 
   635     /// \brief Splicing the given path to the current path.
   636     ///
   637     /// It splices the \c tpath before the current path and \c tpath
   638     /// becomes empty. The time complexity of this function
   639     /// is O(1).
   640     void spliceFront(ListPath& tpath) {
   641       if (first) {
   642         if (tpath.first) {
   643           first->prev = tpath.last;
   644           tpath.last->next = first;
   645           first = tpath.first;
   646         }
   647       } else {
   648         first = tpath.first;
   649         last = tpath.last;
   650       }
   651       tpath.first = tpath.last = 0;
   652     }
   653 
   654     /// \brief Splicing the given path into the current path.
   655     ///
   656     /// It splices the \c tpath into the current path before the
   657     /// position of \c it iterator and \c tpath becomes empty. The
   658     /// time complexity of this function is O(1). If the \c it is \c
   659     /// INVALID then it will splice behind the current path.
   660     void splice(EdgeIt it, ListPath& tpath) {
   661       if (it.node) {
   662         if (tpath.first) {
   663           tpath.first->prev = it.node->prev;
   664           if (it.node->prev) {
   665             it.node->prev->next = tpath.first;
   666           } else {
   667             first = tpath.first;
   668           }
   669           it.node->prev = tpath.last;
   670           tpath.last->next = it.node;
   671         }
   672       } else {
   673         if (first) {
   674           if (tpath.first) {
   675             last->next = tpath.first;
   676             tpath.first->prev = last;
   677             last = tpath.last;
   678           }
   679         } else {
   680           first = tpath.first;
   681           last = tpath.last;
   682         }
   683       }
   684       tpath.first = tpath.last = 0;
   685     }
   686 
   687     /// \brief Spliting the current path.
   688     ///
   689     /// It splits the current path into two parts. The part before \c
   690     /// it iterator will remain in the current path and the part from
   691     /// the it will put into the \c tpath. If the \c tpath had edges
   692     /// before the operation they will be removed first.  The time
   693     /// complexity of this function is O(1) plus the clearing of \c
   694     /// tpath. If the \c it is \c INVALID then it just clears \c
   695     /// tpath.
   696     void split(EdgeIt it, ListPath& tpath) {
   697       tpath.clear();
   698       if (it.node) {
   699         tpath.first = it.node;
   700         tpath.last = last;
   701         if (it.node->prev) {
   702           last = it.node->prev;
   703           last->next = 0;
   704         } else {
   705           first = last = 0;
   706         }
   707         it.node->prev = 0;
   708       }
   709     }
   710 
   711 
   712     typedef True BuildTag;
   713 
   714     template <typename CPath>
   715     void build(const CPath& path) {
   716       for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
   717         addBack(it);
   718       }
   719     }
   720 
   721     template <typename CPath>
   722     void buildRev(const CPath& path) {
   723       for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
   724         addFront(it);
   725       }
   726     }
   727 
   728   };
   729 
   730   /// \brief A structure for representing directed paths in a graph.
   731   ///
   732   /// A structure for representing directed path in a graph.
   733   /// \param Graph The graph type in which the path is.
   734   ///
   735   /// In a sense, the path can be treated as a list of edges. The
   736   /// lemon path type stores just this list. As a consequence it
   737   /// cannot enumerate the nodes in the path and the zero length paths
   738   /// cannot store the source.
   739   ///
   740   /// This implementation is completly static, so it cannot be
   741   /// modified exclude the assign an other path. It is intented to be
   742   /// used when you want to store a large number of paths because it is
   743   /// the most memory efficient path type in the lemon.
   744   template <typename _Graph>
   745   class StaticPath {
   746   public:
   747 
   748     typedef _Graph Graph;
   749     typedef typename Graph::Edge Edge;
   750 
   751     /// \brief Default constructor
   752     ///
   753     /// Default constructor
   754     StaticPath() : len(0), edges(0) {}
   755     
   756     /// \brief Template copy constructor
   757     ///
   758     /// This path can be initialized with any other path type. It just
   759     /// makes a copy of the given path.
   760     template <typename CPath>
   761     StaticPath(const CPath& cpath) : edges(0) {
   762       copyPath(*this, cpath);
   763     }
   764 
   765     /// \brief Destructor of the path
   766     ///
   767     /// Destructor of the path
   768     ~StaticPath() {
   769       if (edges) delete[] edges;
   770     }
   771 
   772     /// \brief Template copy assignment
   773     ///
   774     /// This path can be initialized with any other path type. It just
   775     /// makes a copy of the given path.
   776     template <typename CPath>
   777     StaticPath& operator=(const CPath& cpath) {
   778       copyPath(*this, cpath);
   779       return *this;
   780     }
   781 
   782     /// \brief Iterator class to iterate on the edges of the paths
   783     ///
   784     /// This class is used to iterate on the edges of the paths
   785     ///
   786     /// Of course it converts to Graph::Edge
   787     class EdgeIt {
   788       friend class StaticPath;
   789     public:
   790       /// Default constructor
   791       EdgeIt() {}
   792       /// Invalid constructor
   793       EdgeIt(Invalid) : path(0), idx(-1) {}
   794       /// Initializate the constructor to the first edge of path
   795       EdgeIt(const StaticPath &_path) 
   796         : path(&_path), idx(_path.empty() ? -1 : 0) {}
   797 
   798     private:
   799 
   800       /// Constructor with starting point
   801       EdgeIt(const StaticPath &_path, int _idx) 
   802         : idx(_idx), path(&_path) {}
   803 
   804     public:
   805 
   806       ///Conversion to Graph::Edge
   807       operator const Edge&() const {
   808         return path->nth(idx);
   809       }
   810 
   811       /// Next edge
   812       EdgeIt& operator++() { 
   813         ++idx;
   814         if (idx >= path->length()) idx = -1; 
   815         return *this; 
   816       }
   817 
   818       /// Comparison operator
   819       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   820       /// Comparison operator
   821       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   822       /// Comparison operator
   823       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   824 
   825     private:
   826       const StaticPath *path;
   827       int idx;
   828     };
   829 
   830     /// \brief Gives back the nth edge.
   831     ///
   832     /// \pre n is in the [0..length() - 1] range
   833     const Edge& nth(int n) const {
   834       return edges[n];
   835     }
   836 
   837     /// \brief Initializes edge iterator to point to the nth edge.
   838     EdgeIt nthIt(int n) const {
   839       return EdgeIt(*this, n);
   840     }
   841 
   842     /// \brief Gives back the length of the path.
   843     int length() const { return len; }
   844 
   845     /// \brief Returns true when the path is empty.
   846     int empty() const { return len == 0; }
   847 
   848     /// \break Erase all edge in the graph.
   849     void clear() {
   850       len = 0;
   851       if (edges) delete[] edges;
   852       edges = 0;
   853     }
   854 
   855     /// \brief Gives back the first edge of the path.
   856     const Edge& front() const {
   857       return edges[0];
   858     }
   859 
   860     /// \brief Gives back the last edge of the path.
   861     const Edge& back() const {
   862       return edges[len - 1];
   863     }
   864 
   865 
   866     typedef True BuildTag;
   867 
   868     template <typename CPath>
   869     void build(const CPath& path) {
   870       len = path.length();
   871       edges = new Edge[len];
   872       int index = 0;
   873       for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
   874         edges[index] = it;
   875         ++index;
   876       }
   877     }
   878 
   879     template <typename CPath>
   880     void buildRev(const CPath& path) {
   881       len = path.length();
   882       edges = new Edge[len];
   883       int index = len;
   884       for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
   885         --index;
   886         edges[index] = it;
   887       }
   888     }
   889 
   890   private:
   891     int len;
   892     Edge* edges;
   893   };
   894 
   895   ///@}
   896 
   897 } // namespace lemon
   898 
   899 #endif // LEMON_PATH_H