lemon/graph_utils.h
author deba
Wed, 06 Sep 2006 10:28:13 +0000
changeset 2204 5617107d27e9
parent 2186 284a9ad118dd
child 2235 48801095a410
permissions -rw-r--r--
Some doc fix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 
    27 #include <lemon/bits/invalid.h>
    28 #include <lemon/bits/utility.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/traits.h>
    31 
    32 #include <lemon/bits/alteration_notifier.h>
    33 #include <lemon/bits/default_map.h>
    34 
    35 ///\ingroup gutils
    36 ///\file
    37 ///\brief Graph utilities.
    38 ///
    39 ///
    40 
    41 
    42 namespace lemon {
    43 
    44   /// \addtogroup gutils
    45   /// @{
    46 
    47   ///Creates convenience typedefs for the graph types and iterators
    48 
    49   ///This \c \#define creates convenience typedefs for the following types
    50   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    51   ///\c OutEdgeIt
    52   ///\note If \c G it a template parameter, it should be used in this way.
    53   ///\code
    54   ///  GRAPH_TYPEDEFS(typename G)
    55   ///\endcode
    56   ///
    57   ///\warning There are no typedefs for the graph maps because of the lack of
    58   ///template typedefs in C++.
    59 #define GRAPH_TYPEDEFS(Graph)				\
    60   typedef Graph::     Node      Node;			\
    61     typedef Graph::   NodeIt    NodeIt;			\
    62     typedef Graph::   Edge      Edge;			\
    63     typedef Graph::   EdgeIt    EdgeIt;			\
    64     typedef Graph:: InEdgeIt  InEdgeIt;			\
    65     typedef Graph::OutEdgeIt OutEdgeIt;			
    66 
    67   ///Creates convenience typedefs for the undirected graph types and iterators
    68 
    69   ///This \c \#define creates the same convenience typedefs as defined by
    70   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    71   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    72   ///
    73   ///\note If \c G it a template parameter, it should be used in this way.
    74   ///\code
    75   ///  UGRAPH_TYPEDEFS(typename G)
    76   ///\endcode
    77   ///
    78   ///\warning There are no typedefs for the graph maps because of the lack of
    79   ///template typedefs in C++.
    80 #define UGRAPH_TYPEDEFS(Graph)				\
    81   GRAPH_TYPEDEFS(Graph)						\
    82     typedef Graph:: UEdge   UEdge;			\
    83     typedef Graph:: UEdgeIt UEdgeIt;			\
    84     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    85 //     typedef Graph::template UEdgeMap<bool> BoolUEdgeMap;	 
    86 //     typedef Graph::template UEdgeMap<int> IntUEdgeMap;
    87 //     typedef Graph::template UEdgeMap<double> DoubleUEdgeMap;
    88 
    89   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    90   ///types and iterators
    91 
    92   ///This \c \#define creates the same convenience typedefs as defined by
    93   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    94   ///\c ANodeIt, \c BNodeIt, 
    95   ///
    96   ///\note If \c G it a template parameter, it should be used in this way.
    97   ///\code
    98   ///  BPUGRAPH_TYPEDEFS(typename G)
    99   ///\endcode
   100   ///
   101   ///\warning There are no typedefs for the graph maps because of the lack of
   102   ///template typedefs in C++.
   103 #define BPUGRAPH_TYPEDEFS(Graph)            \
   104   UGRAPH_TYPEDEFS(Graph)                    \
   105     typedef Graph::ANodeIt ANodeIt;	    \
   106     typedef Graph::BNodeIt BNodeIt;
   107 
   108   /// \brief Function to count the items in the graph.
   109   ///
   110   /// This function counts the items (nodes, edges etc) in the graph.
   111   /// The complexity of the function is O(n) because
   112   /// it iterates on all of the items.
   113 
   114   template <typename Graph, typename Item>
   115   inline int countItems(const Graph& g) {
   116     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   117     int num = 0;
   118     for (ItemIt it(g); it != INVALID; ++it) {
   119       ++num;
   120     }
   121     return num;
   122   }
   123 
   124   // Node counting:
   125 
   126   namespace _graph_utils_bits {
   127     
   128     template <typename Graph, typename Enable = void>
   129     struct CountNodesSelector {
   130       static int count(const Graph &g) {
   131         return countItems<Graph, typename Graph::Node>(g);
   132       }
   133     };
   134 
   135     template <typename Graph>
   136     struct CountNodesSelector<
   137       Graph, typename 
   138       enable_if<typename Graph::NodeNumTag, void>::type> 
   139     {
   140       static int count(const Graph &g) {
   141         return g.nodeNum();
   142       }
   143     };    
   144   }
   145 
   146   /// \brief Function to count the nodes in the graph.
   147   ///
   148   /// This function counts the nodes in the graph.
   149   /// The complexity of the function is O(n) but for some
   150   /// graph structures it is specialized to run in O(1).
   151   ///
   152   /// \todo refer how to specialize it
   153 
   154   template <typename Graph>
   155   inline int countNodes(const Graph& g) {
   156     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   157   }
   158 
   159   namespace _graph_utils_bits {
   160     
   161     template <typename Graph, typename Enable = void>
   162     struct CountANodesSelector {
   163       static int count(const Graph &g) {
   164         return countItems<Graph, typename Graph::ANode>(g);
   165       }
   166     };
   167 
   168     template <typename Graph>
   169     struct CountANodesSelector<
   170       Graph, typename 
   171       enable_if<typename Graph::NodeNumTag, void>::type> 
   172     {
   173       static int count(const Graph &g) {
   174         return g.aNodeNum();
   175       }
   176     };    
   177   }
   178 
   179   /// \brief Function to count the anodes in the graph.
   180   ///
   181   /// This function counts the anodes in the graph.
   182   /// The complexity of the function is O(an) but for some
   183   /// graph structures it is specialized to run in O(1).
   184   ///
   185   /// \todo refer how to specialize it
   186 
   187   template <typename Graph>
   188   inline int countANodes(const Graph& g) {
   189     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   190   }
   191 
   192   namespace _graph_utils_bits {
   193     
   194     template <typename Graph, typename Enable = void>
   195     struct CountBNodesSelector {
   196       static int count(const Graph &g) {
   197         return countItems<Graph, typename Graph::BNode>(g);
   198       }
   199     };
   200 
   201     template <typename Graph>
   202     struct CountBNodesSelector<
   203       Graph, typename 
   204       enable_if<typename Graph::NodeNumTag, void>::type> 
   205     {
   206       static int count(const Graph &g) {
   207         return g.bNodeNum();
   208       }
   209     };    
   210   }
   211 
   212   /// \brief Function to count the bnodes in the graph.
   213   ///
   214   /// This function counts the bnodes in the graph.
   215   /// The complexity of the function is O(bn) but for some
   216   /// graph structures it is specialized to run in O(1).
   217   ///
   218   /// \todo refer how to specialize it
   219 
   220   template <typename Graph>
   221   inline int countBNodes(const Graph& g) {
   222     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   223   }
   224 
   225 
   226   // Edge counting:
   227 
   228   namespace _graph_utils_bits {
   229     
   230     template <typename Graph, typename Enable = void>
   231     struct CountEdgesSelector {
   232       static int count(const Graph &g) {
   233         return countItems<Graph, typename Graph::Edge>(g);
   234       }
   235     };
   236 
   237     template <typename Graph>
   238     struct CountEdgesSelector<
   239       Graph, 
   240       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   241     {
   242       static int count(const Graph &g) {
   243         return g.edgeNum();
   244       }
   245     };    
   246   }
   247 
   248   /// \brief Function to count the edges in the graph.
   249   ///
   250   /// This function counts the edges in the graph.
   251   /// The complexity of the function is O(e) but for some
   252   /// graph structures it is specialized to run in O(1).
   253 
   254   template <typename Graph>
   255   inline int countEdges(const Graph& g) {
   256     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   257   }
   258 
   259   // Undirected edge counting:
   260   namespace _graph_utils_bits {
   261     
   262     template <typename Graph, typename Enable = void>
   263     struct CountUEdgesSelector {
   264       static int count(const Graph &g) {
   265         return countItems<Graph, typename Graph::UEdge>(g);
   266       }
   267     };
   268 
   269     template <typename Graph>
   270     struct CountUEdgesSelector<
   271       Graph, 
   272       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   273     {
   274       static int count(const Graph &g) {
   275         return g.uEdgeNum();
   276       }
   277     };    
   278   }
   279 
   280   /// \brief Function to count the undirected edges in the graph.
   281   ///
   282   /// This function counts the undirected edges in the graph.
   283   /// The complexity of the function is O(e) but for some
   284   /// graph structures it is specialized to run in O(1).
   285 
   286   template <typename Graph>
   287   inline int countUEdges(const Graph& g) {
   288     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   289 
   290   }
   291 
   292 
   293   template <typename Graph, typename DegIt>
   294   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   295     int num = 0;
   296     for (DegIt it(_g, _n); it != INVALID; ++it) {
   297       ++num;
   298     }
   299     return num;
   300   }
   301 
   302   /// \brief Function to count the number of the out-edges from node \c n.
   303   ///
   304   /// This function counts the number of the out-edges from node \c n
   305   /// in the graph.  
   306   template <typename Graph>
   307   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   308     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   309   }
   310 
   311   /// \brief Function to count the number of the in-edges to node \c n.
   312   ///
   313   /// This function counts the number of the in-edges to node \c n
   314   /// in the graph.  
   315   template <typename Graph>
   316   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   317     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   318   }
   319 
   320   /// \brief Function to count the number of the inc-edges to node \c n.
   321   ///
   322   /// This function counts the number of the inc-edges to node \c n
   323   /// in the graph.  
   324   template <typename Graph>
   325   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   326     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   327   }
   328 
   329   namespace _graph_utils_bits {
   330     
   331     template <typename Graph, typename Enable = void>
   332     struct FindEdgeSelector {
   333       typedef typename Graph::Node Node;
   334       typedef typename Graph::Edge Edge;
   335       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   336         if (e == INVALID) {
   337           g.firstOut(e, u);
   338         } else {
   339           g.nextOut(e);
   340         }
   341         while (e != INVALID && g.target(e) != v) {
   342           g.nextOut(e);
   343         }
   344         return e;
   345       }
   346     };
   347 
   348     template <typename Graph>
   349     struct FindEdgeSelector<
   350       Graph, 
   351       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   352     {
   353       typedef typename Graph::Node Node;
   354       typedef typename Graph::Edge Edge;
   355       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   356         return g.findEdge(u, v, prev);
   357       }
   358     };    
   359   }
   360 
   361   /// \brief Finds an edge between two nodes of a graph.
   362   ///
   363   /// Finds an edge from node \c u to node \c v in graph \c g.
   364   ///
   365   /// If \c prev is \ref INVALID (this is the default value), then
   366   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   367   /// the next edge from \c u to \c v after \c prev.
   368   /// \return The found edge or \ref INVALID if there is no such an edge.
   369   ///
   370   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   371   ///\code
   372   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   ///   ...
   374   /// }
   375   ///\endcode
   376   ///
   377   ///\sa ConEdgeIt
   378   template <typename Graph>
   379   inline typename Graph::Edge findEdge(const Graph &g,
   380 				       typename Graph::Node u, 
   381 				       typename Graph::Node v,
   382 				       typename Graph::Edge prev = INVALID) {
   383     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   384   }
   385 
   386   /// \brief Iterator for iterating on edges connected the same nodes.
   387   ///
   388   /// Iterator for iterating on edges connected the same nodes. It is 
   389   /// higher level interface for the findEdge() function. You can
   390   /// use it the following way:
   391   ///\code
   392   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   393   ///   ...
   394   /// }
   395   ///\endcode
   396   /// 
   397   ///\sa findEdge()
   398   ///
   399   /// \author Balazs Dezso 
   400   template <typename _Graph>
   401   class ConEdgeIt : public _Graph::Edge {
   402   public:
   403 
   404     typedef _Graph Graph;
   405     typedef typename Graph::Edge Parent;
   406 
   407     typedef typename Graph::Edge Edge;
   408     typedef typename Graph::Node Node;
   409 
   410     /// \brief Constructor.
   411     ///
   412     /// Construct a new ConEdgeIt iterating on the edges which
   413     /// connects the \c u and \c v node.
   414     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   415       Parent::operator=(findEdge(graph, u, v));
   416     }
   417 
   418     /// \brief Constructor.
   419     ///
   420     /// Construct a new ConEdgeIt which continues the iterating from 
   421     /// the \c e edge.
   422     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   423     
   424     /// \brief Increment operator.
   425     ///
   426     /// It increments the iterator and gives back the next edge.
   427     ConEdgeIt& operator++() {
   428       Parent::operator=(findEdge(graph, graph.source(*this), 
   429 				 graph.target(*this), *this));
   430       return *this;
   431     }
   432   private:
   433     const Graph& graph;
   434   };
   435 
   436   namespace _graph_utils_bits {
   437     
   438     template <typename Graph, typename Enable = void>
   439     struct FindUEdgeSelector {
   440       typedef typename Graph::Node Node;
   441       typedef typename Graph::UEdge UEdge;
   442       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   443         bool b;
   444         if (u != v) {
   445           if (e == INVALID) {
   446             g.firstInc(e, b, u);
   447           } else {
   448             b = g.source(e) == u;
   449             g.nextInc(e, b);
   450           }
   451           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   452             g.nextInc(e, b);
   453           }
   454         } else {
   455           if (e == INVALID) {
   456             g.firstInc(e, b, u);
   457           } else {
   458             b = true;
   459             g.nextInc(e, b);
   460           }
   461           while (e != INVALID && (!b || g.target(e) != v)) {
   462             g.nextInc(e, b);
   463           }
   464         }
   465         return e;
   466       }
   467     };
   468 
   469     template <typename Graph>
   470     struct FindUEdgeSelector<
   471       Graph, 
   472       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   473     {
   474       typedef typename Graph::Node Node;
   475       typedef typename Graph::UEdge UEdge;
   476       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   477         return g.findUEdge(u, v, prev);
   478       }
   479     };    
   480   }
   481 
   482   /// \brief Finds an uedge between two nodes of a graph.
   483   ///
   484   /// Finds an uedge from node \c u to node \c v in graph \c g.
   485   /// If the node \c u and node \c v is equal then each loop edge
   486   /// will be enumerated.
   487   ///
   488   /// If \c prev is \ref INVALID (this is the default value), then
   489   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   490   /// the next edge from \c u to \c v after \c prev.
   491   /// \return The found edge or \ref INVALID if there is no such an edge.
   492   ///
   493   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   494   ///\code
   495   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   496   ///     e = findUEdge(g,u,v,e)) {
   497   ///   ...
   498   /// }
   499   ///\endcode
   500   ///
   501   ///\sa ConEdgeIt
   502 
   503   template <typename Graph>
   504   inline typename Graph::UEdge findUEdge(const Graph &g,
   505                                          typename Graph::Node u, 
   506                                          typename Graph::Node v,
   507                                          typename Graph::UEdge p = INVALID) {
   508     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   509   }
   510 
   511   /// \brief Iterator for iterating on uedges connected the same nodes.
   512   ///
   513   /// Iterator for iterating on uedges connected the same nodes. It is 
   514   /// higher level interface for the findUEdge() function. You can
   515   /// use it the following way:
   516   ///\code
   517   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   518   ///   ...
   519   /// }
   520   ///\endcode
   521   ///
   522   ///\sa findUEdge()
   523   ///
   524   /// \author Balazs Dezso 
   525   template <typename _Graph>
   526   class ConUEdgeIt : public _Graph::UEdge {
   527   public:
   528 
   529     typedef _Graph Graph;
   530     typedef typename Graph::UEdge Parent;
   531 
   532     typedef typename Graph::UEdge UEdge;
   533     typedef typename Graph::Node Node;
   534 
   535     /// \brief Constructor.
   536     ///
   537     /// Construct a new ConUEdgeIt iterating on the edges which
   538     /// connects the \c u and \c v node.
   539     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   540       Parent::operator=(findUEdge(graph, u, v));
   541     }
   542 
   543     /// \brief Constructor.
   544     ///
   545     /// Construct a new ConUEdgeIt which continues the iterating from 
   546     /// the \c e edge.
   547     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   548     
   549     /// \brief Increment operator.
   550     ///
   551     /// It increments the iterator and gives back the next edge.
   552     ConUEdgeIt& operator++() {
   553       Parent::operator=(findUEdge(graph, graph.source(*this), 
   554 				      graph.target(*this), *this));
   555       return *this;
   556     }
   557   private:
   558     const Graph& graph;
   559   };
   560 
   561   /// \brief Copy a map.
   562   ///
   563   /// This function copies the \c source map to the \c target map. It uses the
   564   /// given iterator to iterate on the data structure and it uses the \c ref
   565   /// mapping to convert the source's keys to the target's keys.
   566   template <typename Target, typename Source, 
   567 	    typename ItemIt, typename Ref>	    
   568   void copyMap(Target& target, const Source& source, 
   569 	       ItemIt it, const Ref& ref) {
   570     for (; it != INVALID; ++it) {
   571       target[ref[it]] = source[it];
   572     }
   573   }
   574 
   575   /// \brief Copy the source map to the target map.
   576   ///
   577   /// Copy the \c source map to the \c target map. It uses the given iterator
   578   /// to iterate on the data structure.
   579   template <typename Target, typename Source, typename ItemIt>	    
   580   void copyMap(Target& target, const Source& source, ItemIt it) {
   581     for (; it != INVALID; ++it) {
   582       target[it] = source[it];
   583     }
   584   }
   585 
   586   /// \brief Class to copy a graph.
   587   ///
   588   /// Class to copy a graph to another graph (duplicate a graph). The
   589   /// simplest way of using it is through the \c copyGraph() function.
   590   template <typename Target, typename Source>
   591   class GraphCopy {
   592   public: 
   593     typedef typename Source::Node Node;
   594     typedef typename Source::NodeIt NodeIt;
   595     typedef typename Source::Edge Edge;
   596     typedef typename Source::EdgeIt EdgeIt;
   597 
   598     typedef typename Source::template NodeMap<typename Target::Node>NodeRefMap;
   599     typedef typename Source::template EdgeMap<typename Target::Edge>EdgeRefMap;
   600 
   601     /// \brief Constructor for the GraphCopy.
   602     ///
   603     /// It copies the content of the \c _source graph into the
   604     /// \c _target graph. It creates also two references, one beetween
   605     /// the two nodeset and one beetween the two edgesets.
   606     GraphCopy(Target& _target, const Source& _source) 
   607       : source(_source), target(_target), 
   608 	nodeRefMap(_source), edgeRefMap(_source) {
   609       for (NodeIt it(source); it != INVALID; ++it) {
   610 	nodeRefMap[it] = target.addNode();
   611       }
   612       for (EdgeIt it(source); it != INVALID; ++it) {
   613 	edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   614 					nodeRefMap[source.target(it)]);
   615       }
   616     }
   617 
   618     /// \brief Copies the node references into the given map.
   619     ///
   620     /// Copies the node references into the given map.
   621     template <typename NodeRef>
   622     const GraphCopy& nodeRef(NodeRef& map) const {
   623       for (NodeIt it(source); it != INVALID; ++it) {
   624 	map.set(it, nodeRefMap[it]);
   625       }
   626       return *this;
   627     }
   628 
   629     /// \brief Reverse and copies the node references into the given map.
   630     ///
   631     /// Reverse and copies the node references into the given map.
   632     template <typename NodeRef>
   633     const GraphCopy& nodeCrossRef(NodeRef& map) const {
   634       for (NodeIt it(source); it != INVALID; ++it) {
   635 	map.set(nodeRefMap[it], it);
   636       }
   637       return *this;
   638     }
   639 
   640     /// \brief Copies the edge references into the given map.
   641     ///
   642     /// Copies the edge references into the given map.
   643     template <typename EdgeRef>
   644     const GraphCopy& edgeRef(EdgeRef& map) const {
   645       for (EdgeIt it(source); it != INVALID; ++it) {
   646 	map.set(it, edgeRefMap[it]);
   647       }
   648       return *this;
   649     }
   650 
   651     /// \brief Reverse and copies the edge references into the given map.
   652     ///
   653     /// Reverse and copies the edge references into the given map.
   654     template <typename EdgeRef>
   655     const GraphCopy& edgeCrossRef(EdgeRef& map) const {
   656       for (EdgeIt it(source); it != INVALID; ++it) {
   657 	map.set(edgeRefMap[it], it);
   658       }
   659       return *this;
   660     }
   661 
   662     /// \brief Make copy of the given map.
   663     ///
   664     /// Makes copy of the given map for the newly created graph. 
   665     /// The new map's key type is the target graph's node type,
   666     /// and the copied map's key type is the source graph's node
   667     /// type.  
   668     template <typename TargetMap, typename SourceMap>
   669     const GraphCopy& nodeMap(TargetMap& tMap, const SourceMap& sMap) const {
   670       copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
   671       return *this;
   672     }
   673 
   674     /// \brief Make copy of the given map.
   675     ///
   676     /// Makes copy of the given map for the newly created graph. 
   677     /// The new map's key type is the target graph's edge type,
   678     /// and the copied map's key type is the source graph's edge
   679     /// type.  
   680     template <typename TargetMap, typename SourceMap>
   681     const GraphCopy& edgeMap(TargetMap& tMap, const SourceMap& sMap) const {
   682       copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
   683       return *this;
   684     }
   685 
   686     /// \brief Gives back the stored node references.
   687     ///
   688     /// Gives back the stored node references.
   689     const NodeRefMap& nodeRef() const {
   690       return nodeRefMap;
   691     }
   692 
   693     /// \brief Gives back the stored edge references.
   694     ///
   695     /// Gives back the stored edge references.
   696     const EdgeRefMap& edgeRef() const {
   697       return edgeRefMap;
   698     }
   699 
   700     void run() const {}
   701 
   702   private:
   703     
   704     const Source& source;
   705     Target& target;
   706 
   707     NodeRefMap nodeRefMap;
   708     EdgeRefMap edgeRefMap;
   709   };
   710 
   711   /// \brief Copy a graph to another graph.
   712   ///
   713   /// Copy a graph to another graph.
   714   /// The usage of the function:
   715   /// 
   716   ///\code
   717   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
   718   ///\endcode
   719   /// 
   720   /// After the copy the \c nr map will contain the mapping from the
   721   /// source graph's nodes to the target graph's nodes and the \c ecr will
   722   /// contain the mapping from the target graph's edges to the source's
   723   /// edges.
   724   template <typename Target, typename Source>
   725   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   726     return GraphCopy<Target, Source>(target, source);
   727   }
   728 
   729   /// \brief Class to copy an undirected graph.
   730   ///
   731   /// Class to copy an undirected graph to another graph (duplicate a graph).
   732   /// The simplest way of using it is through the \c copyUGraph() function.
   733   template <typename Target, typename Source>
   734   class UGraphCopy {
   735   public: 
   736     typedef typename Source::Node Node;
   737     typedef typename Source::NodeIt NodeIt;
   738     typedef typename Source::Edge Edge;
   739     typedef typename Source::EdgeIt EdgeIt;
   740     typedef typename Source::UEdge UEdge;
   741     typedef typename Source::UEdgeIt UEdgeIt;
   742 
   743     typedef typename Source::
   744     template NodeMap<typename Target::Node> NodeRefMap;
   745     
   746     typedef typename Source::
   747     template UEdgeMap<typename Target::UEdge> UEdgeRefMap;
   748 
   749   private:
   750 
   751     struct EdgeRefMap {
   752       EdgeRefMap(UGraphCopy& _gc) : gc(_gc) {}
   753       typedef typename Source::Edge Key;
   754       typedef typename Target::Edge Value;
   755 
   756       Value operator[](const Key& key) {
   757 	return gc.target.direct(gc.uEdgeRef[key], 
   758 				gc.target.direction(key));
   759       }
   760       
   761       UGraphCopy& gc;
   762     };
   763     
   764   public:
   765 
   766     /// \brief Constructor for the UGraphCopy.
   767     ///
   768     /// It copies the content of the \c _source graph into the
   769     /// \c _target graph. It creates also two references, one beetween
   770     /// the two nodeset and one beetween the two edgesets.
   771     UGraphCopy(Target& _target, const Source& _source) 
   772       : source(_source), target(_target), 
   773 	nodeRefMap(_source), edgeRefMap(*this), uEdgeRefMap(_source) {
   774       for (NodeIt it(source); it != INVALID; ++it) {
   775 	nodeRefMap[it] = target.addNode();
   776       }
   777       for (UEdgeIt it(source); it != INVALID; ++it) {
   778 	uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   779 					nodeRefMap[source.target(it)]);
   780       }
   781     }
   782 
   783     /// \brief Copies the node references into the given map.
   784     ///
   785     /// Copies the node references into the given map.
   786     template <typename NodeRef>
   787     const UGraphCopy& nodeRef(NodeRef& map) const {
   788       for (NodeIt it(source); it != INVALID; ++it) {
   789 	map.set(it, nodeRefMap[it]);
   790       }
   791       return *this;
   792     }
   793 
   794     /// \brief Reverse and copies the node references into the given map.
   795     ///
   796     /// Reverse and copies the node references into the given map.
   797     template <typename NodeRef>
   798     const UGraphCopy& nodeCrossRef(NodeRef& map) const {
   799       for (NodeIt it(source); it != INVALID; ++it) {
   800 	map.set(nodeRefMap[it], it);
   801       }
   802       return *this;
   803     }
   804 
   805     /// \brief Copies the edge references into the given map.
   806     ///
   807     /// Copies the edge references into the given map.
   808     template <typename EdgeRef>
   809     const UGraphCopy& edgeRef(EdgeRef& map) const {
   810       for (EdgeIt it(source); it != INVALID; ++it) {
   811 	map.set(edgeRefMap[it], it);
   812       }
   813       return *this;
   814     }
   815 
   816     /// \brief Reverse and copies the undirected edge references into the 
   817     /// given map.
   818     ///
   819     /// Reverse and copies the undirected edge references into the given map.
   820     template <typename EdgeRef>
   821     const UGraphCopy& edgeCrossRef(EdgeRef& map) const {
   822       for (EdgeIt it(source); it != INVALID; ++it) {
   823 	map.set(it, edgeRefMap[it]);
   824       }
   825       return *this;
   826     }
   827 
   828     /// \brief Copies the undirected edge references into the given map.
   829     ///
   830     /// Copies the undirected edge references into the given map.
   831     template <typename EdgeRef>
   832     const UGraphCopy& uEdgeRef(EdgeRef& map) const {
   833       for (UEdgeIt it(source); it != INVALID; ++it) {
   834 	map.set(it, uEdgeRefMap[it]);
   835       }
   836       return *this;
   837     }
   838 
   839     /// \brief Reverse and copies the undirected edge references into the 
   840     /// given map.
   841     ///
   842     /// Reverse and copies the undirected edge references into the given map.
   843     template <typename EdgeRef>
   844     const UGraphCopy& uEdgeCrossRef(EdgeRef& map) const {
   845       for (UEdgeIt it(source); it != INVALID; ++it) {
   846 	map.set(uEdgeRefMap[it], it);
   847       }
   848       return *this;
   849     }
   850 
   851     /// \brief Make copy of the given map.
   852     ///
   853     /// Makes copy of the given map for the newly created graph. 
   854     /// The new map's key type is the target graph's node type,
   855     /// and the copied map's key type is the source graph's node
   856     /// type.  
   857     template <typename TargetMap, typename SourceMap>
   858     const UGraphCopy& nodeMap(TargetMap& tMap, 
   859 				  const SourceMap& sMap) const {
   860       copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
   861       return *this;
   862     }
   863 
   864     /// \brief Make copy of the given map.
   865     ///
   866     /// Makes copy of the given map for the newly created graph. 
   867     /// The new map's key type is the target graph's edge type,
   868     /// and the copied map's key type is the source graph's edge
   869     /// type.  
   870     template <typename TargetMap, typename SourceMap>
   871     const UGraphCopy& edgeMap(TargetMap& tMap, 
   872 				  const SourceMap& sMap) const {
   873       copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
   874       return *this;
   875     }
   876 
   877     /// \brief Make copy of the given map.
   878     ///
   879     /// Makes copy of the given map for the newly created graph. 
   880     /// The new map's key type is the target graph's edge type,
   881     /// and the copied map's key type is the source graph's edge
   882     /// type.  
   883     template <typename TargetMap, typename SourceMap>
   884     const UGraphCopy& uEdgeMap(TargetMap& tMap, 
   885 				  const SourceMap& sMap) const {
   886       copyMap(tMap, sMap, UEdgeIt(source), uEdgeRefMap);
   887       return *this;
   888     }
   889 
   890     /// \brief Gives back the stored node references.
   891     ///
   892     /// Gives back the stored node references.
   893     const NodeRefMap& nodeRef() const {
   894       return nodeRefMap;
   895     }
   896 
   897     /// \brief Gives back the stored edge references.
   898     ///
   899     /// Gives back the stored edge references.
   900     const EdgeRefMap& edgeRef() const {
   901       return edgeRefMap;
   902     }
   903 
   904     /// \brief Gives back the stored uedge references.
   905     ///
   906     /// Gives back the stored uedge references.
   907     const UEdgeRefMap& uEdgeRef() const {
   908       return uEdgeRefMap;
   909     }
   910 
   911     void run() const {}
   912 
   913   private:
   914     
   915     const Source& source;
   916     Target& target;
   917 
   918     NodeRefMap nodeRefMap;
   919     EdgeRefMap edgeRefMap;
   920     UEdgeRefMap uEdgeRefMap;
   921   };
   922 
   923   /// \brief Copy a graph to another graph.
   924   ///
   925   /// Copy a graph to another graph.
   926   /// The usage of the function:
   927   /// 
   928   ///\code
   929   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
   930   ///\endcode
   931   /// 
   932   /// After the copy the \c nr map will contain the mapping from the
   933   /// source graph's nodes to the target graph's nodes and the \c ecr will
   934   /// contain the mapping from the target graph's edges to the source's
   935   /// edges.
   936   template <typename Target, typename Source>
   937   UGraphCopy<Target, Source> 
   938   copyUGraph(Target& target, const Source& source) {
   939     return UGraphCopy<Target, Source>(target, source);
   940   }
   941 
   942 
   943   /// @}
   944 
   945   /// \addtogroup graph_maps
   946   /// @{
   947 
   948   /// Provides an immutable and unique id for each item in the graph.
   949 
   950   /// The IdMap class provides a unique and immutable id for each item of the
   951   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
   952   /// different items (nodes) get different ids <li>\b immutable: the id of an
   953   /// item (node) does not change (even if you delete other nodes).  </ul>
   954   /// Through this map you get access (i.e. can read) the inner id values of
   955   /// the items stored in the graph. This map can be inverted with its member
   956   /// class \c InverseMap.
   957   ///
   958   template <typename _Graph, typename _Item>
   959   class IdMap {
   960   public:
   961     typedef _Graph Graph;
   962     typedef int Value;
   963     typedef _Item Item;
   964     typedef _Item Key;
   965 
   966     /// \brief Constructor.
   967     ///
   968     /// Constructor for creating id map.
   969     IdMap(const Graph& _graph) : graph(&_graph) {}
   970 
   971     /// \brief Gives back the \e id of the item.
   972     ///
   973     /// Gives back the immutable and unique \e id of the map.
   974     int operator[](const Item& item) const { return graph->id(item);}
   975 
   976 
   977   private:
   978     const Graph* graph;
   979 
   980   public:
   981 
   982     /// \brief The class represents the inverse of its owner (IdMap).
   983     ///
   984     /// The class represents the inverse of its owner (IdMap).
   985     /// \see inverse()
   986     class InverseMap {
   987     public:
   988 
   989       /// \brief Constructor.
   990       ///
   991       /// Constructor for creating an id-to-item map.
   992       InverseMap(const Graph& _graph) : graph(&_graph) {}
   993 
   994       /// \brief Constructor.
   995       ///
   996       /// Constructor for creating an id-to-item map.
   997       InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
   998 
   999       /// \brief Gives back the given item from its id.
  1000       ///
  1001       /// Gives back the given item from its id.
  1002       /// 
  1003       Item operator[](int id) const { return graph->fromId(id, Item());}
  1004     private:
  1005       const Graph* graph;
  1006     };
  1007 
  1008     /// \brief Gives back the inverse of the map.
  1009     ///
  1010     /// Gives back the inverse of the IdMap.
  1011     InverseMap inverse() const { return InverseMap(*graph);} 
  1012 
  1013   };
  1014 
  1015   
  1016   /// \brief General invertable graph-map type.
  1017 
  1018   /// This type provides simple invertable graph-maps. 
  1019   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1020   /// and if a key is set to a new value then store it
  1021   /// in the inverse map.
  1022   ///
  1023   /// The values of the map can be accessed
  1024   /// with stl compatible forward iterator.
  1025   ///
  1026   /// \param _Graph The graph type.
  1027   /// \param _Item The item type of the graph.
  1028   /// \param _Value The value type of the map.
  1029   ///
  1030   /// \see IterableValueMap
  1031 #ifndef DOXYGEN
  1032   /// \param _Map A ReadWriteMap mapping from the item type to integer.
  1033   template <
  1034     typename _Graph, typename _Item, typename _Value, 
  1035     typename _Map = DefaultMap<_Graph, _Item, _Value>
  1036   >
  1037 #else
  1038   template <typename _Graph, typename _Item, typename _Value>
  1039 #endif
  1040   class InvertableMap : protected _Map {
  1041   public:
  1042 
  1043     /// The key type of InvertableMap (Node, Edge, UEdge).
  1044     typedef typename _Map::Key Key;
  1045     /// The value type of the InvertableMap.
  1046     typedef typename _Map::Value Value;
  1047 
  1048   private:
  1049     
  1050     typedef _Map Map;
  1051     typedef _Graph Graph;
  1052 
  1053     typedef std::map<Value, Key> Container;
  1054     Container invMap;    
  1055 
  1056   public:
  1057  
  1058 
  1059 
  1060     /// \brief Constructor.
  1061     ///
  1062     /// Construct a new InvertableMap for the graph.
  1063     ///
  1064     InvertableMap(const Graph& graph) : Map(graph) {} 
  1065 
  1066     /// \brief Forward iterator for values.
  1067     ///
  1068     /// This iterator is an stl compatible forward
  1069     /// iterator on the values of the map. The values can
  1070     /// be accessed in the [beginValue, endValue) range.
  1071     ///
  1072     class ValueIterator 
  1073       : public std::iterator<std::forward_iterator_tag, Value> {
  1074       friend class InvertableMap;
  1075     private:
  1076       ValueIterator(typename Container::const_iterator _it) 
  1077         : it(_it) {}
  1078     public:
  1079       
  1080       ValueIterator() {}
  1081 
  1082       ValueIterator& operator++() { ++it; return *this; }
  1083       ValueIterator operator++(int) { 
  1084         ValueIterator tmp(*this); 
  1085         operator++();
  1086         return tmp; 
  1087       }
  1088 
  1089       const Value& operator*() const { return it->first; }
  1090       const Value* operator->() const { return &(it->first); }
  1091 
  1092       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1093       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1094       
  1095     private:
  1096       typename Container::const_iterator it;
  1097     };
  1098 
  1099     /// \brief Returns an iterator to the first value.
  1100     ///
  1101     /// Returns an stl compatible iterator to the 
  1102     /// first value of the map. The values of the
  1103     /// map can be accessed in the [beginValue, endValue)
  1104     /// range.
  1105     ValueIterator beginValue() const {
  1106       return ValueIterator(invMap.begin());
  1107     }
  1108 
  1109     /// \brief Returns an iterator after the last value.
  1110     ///
  1111     /// Returns an stl compatible iterator after the 
  1112     /// last value of the map. The values of the
  1113     /// map can be accessed in the [beginValue, endValue)
  1114     /// range.
  1115     ValueIterator endValue() const {
  1116       return ValueIterator(invMap.end());
  1117     }
  1118     
  1119     /// \brief The setter function of the map.
  1120     ///
  1121     /// Sets the mapped value.
  1122     void set(const Key& key, const Value& val) {
  1123       Value oldval = Map::operator[](key);
  1124       typename Container::iterator it = invMap.find(oldval);
  1125       if (it != invMap.end() && it->second == key) {
  1126 	invMap.erase(it);
  1127       }      
  1128       invMap.insert(make_pair(val, key));
  1129       Map::set(key, val);
  1130     }
  1131 
  1132     /// \brief The getter function of the map.
  1133     ///
  1134     /// It gives back the value associated with the key.
  1135     typename MapTraits<Map>::ConstReturnValue 
  1136     operator[](const Key& key) const {
  1137       return Map::operator[](key);
  1138     }
  1139 
  1140   protected:
  1141 
  1142     /// \brief Erase the key from the map.
  1143     ///
  1144     /// Erase the key to the map. It is called by the
  1145     /// \c AlterationNotifier.
  1146     virtual void erase(const Key& key) {
  1147       Value val = Map::operator[](key);
  1148       typename Container::iterator it = invMap.find(val);
  1149       if (it != invMap.end() && it->second == key) {
  1150 	invMap.erase(it);
  1151       }
  1152       Map::erase(key);
  1153     }
  1154 
  1155     /// \brief Erase more keys from the map.
  1156     ///
  1157     /// Erase more keys from the map. It is called by the
  1158     /// \c AlterationNotifier.
  1159     virtual void erase(const std::vector<Key>& keys) {
  1160       for (int i = 0; i < (int)keys.size(); ++i) {
  1161 	Value val = Map::operator[](keys[i]);
  1162 	typename Container::iterator it = invMap.find(val);
  1163 	if (it != invMap.end() && it->second == keys[i]) {
  1164 	  invMap.erase(it);
  1165 	}
  1166       }
  1167       Map::erase(keys);
  1168     }
  1169 
  1170     /// \brief Clear the keys from the map and inverse map.
  1171     ///
  1172     /// Clear the keys from the map and inverse map. It is called by the
  1173     /// \c AlterationNotifier.
  1174     virtual void clear() {
  1175       invMap.clear();
  1176       Map::clear();
  1177     }
  1178 
  1179   public:
  1180 
  1181     /// \brief The inverse map type.
  1182     ///
  1183     /// The inverse of this map. The subscript operator of the map
  1184     /// gives back always the item what was last assigned to the value. 
  1185     class InverseMap {
  1186     public:
  1187       /// \brief Constructor of the InverseMap.
  1188       ///
  1189       /// Constructor of the InverseMap.
  1190       InverseMap(const InvertableMap& _inverted) : inverted(_inverted) {}
  1191 
  1192       /// The value type of the InverseMap.
  1193       typedef typename InvertableMap::Key Value;
  1194       /// The key type of the InverseMap.
  1195       typedef typename InvertableMap::Value Key; 
  1196 
  1197       /// \brief Subscript operator. 
  1198       ///
  1199       /// Subscript operator. It gives back always the item 
  1200       /// what was last assigned to the value.
  1201       Value operator[](const Key& key) const {
  1202 	typename Container::const_iterator it = inverted.invMap.find(key);
  1203 	return it->second;
  1204       }
  1205       
  1206     private:
  1207       const InvertableMap& inverted;
  1208     };
  1209 
  1210     /// \brief It gives back the just readable inverse map.
  1211     ///
  1212     /// It gives back the just readable inverse map.
  1213     InverseMap inverse() const {
  1214       return InverseMap(*this);
  1215     } 
  1216 
  1217 
  1218     
  1219   };
  1220 
  1221   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1222   /// item in the graph.
  1223   ///
  1224   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1225   /// descriptor (id) for each item of the same type (e.g. node) in the
  1226   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1227   /// different ids <li>\b continuous: the range of the ids is the set of
  1228   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1229   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1230   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1231   /// with its member class \c InverseMap.
  1232   ///
  1233   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1234   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1235   /// UEdge.
  1236 #ifndef DOXYGEN
  1237   /// \param _Map A ReadWriteMap mapping from the item type to integer.
  1238   template <
  1239     typename _Graph, typename _Item,
  1240     typename _Map = DefaultMap<_Graph, _Item, int>
  1241   >
  1242 #else
  1243   template <typename _Graph, typename _Item>
  1244 #endif
  1245   class DescriptorMap : protected _Map {
  1246 
  1247     typedef _Item Item;
  1248     typedef _Map Map;
  1249 
  1250   public:
  1251     /// The graph class of DescriptorMap.
  1252     typedef _Graph Graph;
  1253 
  1254     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1255     typedef typename _Map::Key Key;
  1256     /// The value type of DescriptorMap.
  1257     typedef typename _Map::Value Value;
  1258 
  1259     /// \brief Constructor.
  1260     ///
  1261     /// Constructor for descriptor map.
  1262     DescriptorMap(const Graph& _graph) : Map(_graph) {
  1263       Item it;
  1264       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1265       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1266 	Map::set(it, invMap.size());
  1267 	invMap.push_back(it);	
  1268       }      
  1269     }
  1270 
  1271   protected:
  1272 
  1273     /// \brief Add a new key to the map.
  1274     ///
  1275     /// Add a new key to the map. It is called by the
  1276     /// \c AlterationNotifier.
  1277     virtual void add(const Item& item) {
  1278       Map::add(item);
  1279       Map::set(item, invMap.size());
  1280       invMap.push_back(item);
  1281     }
  1282 
  1283     /// \brief Add more new keys to the map.
  1284     ///
  1285     /// Add more new keys to the map. It is called by the
  1286     /// \c AlterationNotifier.
  1287     virtual void add(const std::vector<Item>& items) {
  1288       Map::add(items);
  1289       for (int i = 0; i < (int)items.size(); ++i) {
  1290 	Map::set(items[i], invMap.size());
  1291 	invMap.push_back(items[i]);
  1292       }
  1293     }
  1294 
  1295     /// \brief Erase the key from the map.
  1296     ///
  1297     /// Erase the key from the map. It is called by the
  1298     /// \c AlterationNotifier.
  1299     virtual void erase(const Item& item) {
  1300       Map::set(invMap.back(), Map::operator[](item));
  1301       invMap[Map::operator[](item)] = invMap.back();
  1302       invMap.pop_back();
  1303       Map::erase(item);
  1304     }
  1305 
  1306     /// \brief Erase more keys from the map.
  1307     ///
  1308     /// Erase more keys from the map. It is called by the
  1309     /// \c AlterationNotifier.
  1310     virtual void erase(const std::vector<Item>& items) {
  1311       for (int i = 0; i < (int)items.size(); ++i) {
  1312 	Map::set(invMap.back(), Map::operator[](items[i]));
  1313 	invMap[Map::operator[](items[i])] = invMap.back();
  1314 	invMap.pop_back();
  1315       }
  1316       Map::erase(items);
  1317     }
  1318 
  1319     /// \brief Build the unique map.
  1320     ///
  1321     /// Build the unique map. It is called by the
  1322     /// \c AlterationNotifier.
  1323     virtual void build() {
  1324       Map::build();
  1325       Item it;
  1326       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1327       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1328 	Map::set(it, invMap.size());
  1329 	invMap.push_back(it);	
  1330       }      
  1331     }
  1332     
  1333     /// \brief Clear the keys from the map.
  1334     ///
  1335     /// Clear the keys from the map. It is called by the
  1336     /// \c AlterationNotifier.
  1337     virtual void clear() {
  1338       invMap.clear();
  1339       Map::clear();
  1340     }
  1341 
  1342   public:
  1343 
  1344     /// \brief Returns the maximal value plus one.
  1345     ///
  1346     /// Returns the maximal value plus one in the map.
  1347     unsigned int size() const {
  1348       return invMap.size();
  1349     }
  1350 
  1351     /// \brief Swaps the position of the two items in the map.
  1352     ///
  1353     /// Swaps the position of the two items in the map.
  1354     void swap(const Item& p, const Item& q) {
  1355       int pi = Map::operator[](p);
  1356       int qi = Map::operator[](q);
  1357       Map::set(p, qi);
  1358       invMap[qi] = p;
  1359       Map::set(q, pi);
  1360       invMap[pi] = q;
  1361     }
  1362 
  1363     /// \brief Gives back the \e descriptor of the item.
  1364     ///
  1365     /// Gives back the mutable and unique \e descriptor of the map.
  1366     int operator[](const Item& item) const {
  1367       return Map::operator[](item);
  1368     }
  1369     
  1370   private:
  1371 
  1372     typedef std::vector<Item> Container;
  1373     Container invMap;
  1374 
  1375   public:
  1376     /// \brief The inverse map type of DescriptorMap.
  1377     ///
  1378     /// The inverse map type of DescriptorMap.
  1379     class InverseMap {
  1380     public:
  1381       /// \brief Constructor of the InverseMap.
  1382       ///
  1383       /// Constructor of the InverseMap.
  1384       InverseMap(const DescriptorMap& _inverted) 
  1385 	: inverted(_inverted) {}
  1386 
  1387 
  1388       /// The value type of the InverseMap.
  1389       typedef typename DescriptorMap::Key Value;
  1390       /// The key type of the InverseMap.
  1391       typedef typename DescriptorMap::Value Key; 
  1392 
  1393       /// \brief Subscript operator. 
  1394       ///
  1395       /// Subscript operator. It gives back the item 
  1396       /// that the descriptor belongs to currently.
  1397       Value operator[](const Key& key) const {
  1398 	return inverted.invMap[key];
  1399       }
  1400 
  1401       /// \brief Size of the map.
  1402       ///
  1403       /// Returns the size of the map.
  1404       unsigned int size() const {
  1405 	return inverted.invMap.size();
  1406       }
  1407       
  1408     private:
  1409       const DescriptorMap& inverted;
  1410     };
  1411 
  1412     /// \brief Gives back the inverse of the map.
  1413     ///
  1414     /// Gives back the inverse of the map.
  1415     const InverseMap inverse() const {
  1416       return InverseMap(*this);
  1417     }
  1418   };
  1419 
  1420   /// \brief Returns the source of the given edge.
  1421   ///
  1422   /// The SourceMap gives back the source Node of the given edge. 
  1423   /// \author Balazs Dezso
  1424   template <typename Graph>
  1425   class SourceMap {
  1426   public:
  1427 
  1428     typedef typename Graph::Node Value;
  1429     typedef typename Graph::Edge Key;
  1430 
  1431     /// \brief Constructor
  1432     ///
  1433     /// Constructor
  1434     /// \param _graph The graph that the map belongs to.
  1435     SourceMap(const Graph& _graph) : graph(_graph) {}
  1436 
  1437     /// \brief The subscript operator.
  1438     ///
  1439     /// The subscript operator.
  1440     /// \param edge The edge 
  1441     /// \return The source of the edge 
  1442     Value operator[](const Key& edge) const {
  1443       return graph.source(edge);
  1444     }
  1445 
  1446   private:
  1447     const Graph& graph;
  1448   };
  1449 
  1450   /// \brief Returns a \ref SourceMap class
  1451   ///
  1452   /// This function just returns an \ref SourceMap class.
  1453   /// \relates SourceMap
  1454   template <typename Graph>
  1455   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  1456     return SourceMap<Graph>(graph);
  1457   } 
  1458 
  1459   /// \brief Returns the target of the given edge.
  1460   ///
  1461   /// The TargetMap gives back the target Node of the given edge. 
  1462   /// \author Balazs Dezso
  1463   template <typename Graph>
  1464   class TargetMap {
  1465   public:
  1466 
  1467     typedef typename Graph::Node Value;
  1468     typedef typename Graph::Edge Key;
  1469 
  1470     /// \brief Constructor
  1471     ///
  1472     /// Constructor
  1473     /// \param _graph The graph that the map belongs to.
  1474     TargetMap(const Graph& _graph) : graph(_graph) {}
  1475 
  1476     /// \brief The subscript operator.
  1477     ///
  1478     /// The subscript operator.
  1479     /// \param e The edge 
  1480     /// \return The target of the edge 
  1481     Value operator[](const Key& e) const {
  1482       return graph.target(e);
  1483     }
  1484 
  1485   private:
  1486     const Graph& graph;
  1487   };
  1488 
  1489   /// \brief Returns a \ref TargetMap class
  1490   ///
  1491   /// This function just returns a \ref TargetMap class.
  1492   /// \relates TargetMap
  1493   template <typename Graph>
  1494   inline TargetMap<Graph> targetMap(const Graph& graph) {
  1495     return TargetMap<Graph>(graph);
  1496   }
  1497 
  1498   /// \brief Returns the "forward" directed edge view of an undirected edge.
  1499   ///
  1500   /// Returns the "forward" directed edge view of an undirected edge.
  1501   /// \author Balazs Dezso
  1502   template <typename Graph>
  1503   class ForwardMap {
  1504   public:
  1505 
  1506     typedef typename Graph::Edge Value;
  1507     typedef typename Graph::UEdge Key;
  1508 
  1509     /// \brief Constructor
  1510     ///
  1511     /// Constructor
  1512     /// \param _graph The graph that the map belongs to.
  1513     ForwardMap(const Graph& _graph) : graph(_graph) {}
  1514 
  1515     /// \brief The subscript operator.
  1516     ///
  1517     /// The subscript operator.
  1518     /// \param key An undirected edge 
  1519     /// \return The "forward" directed edge view of undirected edge 
  1520     Value operator[](const Key& key) const {
  1521       return graph.direct(key, true);
  1522     }
  1523 
  1524   private:
  1525     const Graph& graph;
  1526   };
  1527 
  1528   /// \brief Returns a \ref ForwardMap class
  1529   ///
  1530   /// This function just returns an \ref ForwardMap class.
  1531   /// \relates ForwardMap
  1532   template <typename Graph>
  1533   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  1534     return ForwardMap<Graph>(graph);
  1535   }
  1536 
  1537   /// \brief Returns the "backward" directed edge view of an undirected edge.
  1538   ///
  1539   /// Returns the "backward" directed edge view of an undirected edge.
  1540   /// \author Balazs Dezso
  1541   template <typename Graph>
  1542   class BackwardMap {
  1543   public:
  1544 
  1545     typedef typename Graph::Edge Value;
  1546     typedef typename Graph::UEdge Key;
  1547 
  1548     /// \brief Constructor
  1549     ///
  1550     /// Constructor
  1551     /// \param _graph The graph that the map belongs to.
  1552     BackwardMap(const Graph& _graph) : graph(_graph) {}
  1553 
  1554     /// \brief The subscript operator.
  1555     ///
  1556     /// The subscript operator.
  1557     /// \param key An undirected edge 
  1558     /// \return The "backward" directed edge view of undirected edge 
  1559     Value operator[](const Key& key) const {
  1560       return graph.direct(key, false);
  1561     }
  1562 
  1563   private:
  1564     const Graph& graph;
  1565   };
  1566 
  1567   /// \brief Returns a \ref BackwardMap class
  1568 
  1569   /// This function just returns a \ref BackwardMap class.
  1570   /// \relates BackwardMap
  1571   template <typename Graph>
  1572   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  1573     return BackwardMap<Graph>(graph);
  1574   }
  1575 
  1576   /// \brief Potential difference map
  1577   ///
  1578   /// If there is an potential map on the nodes then we
  1579   /// can get an edge map as we get the substraction of the
  1580   /// values of the target and source.
  1581   template <typename Graph, typename NodeMap>
  1582   class PotentialDifferenceMap {
  1583   public:
  1584     typedef typename Graph::Edge Key;
  1585     typedef typename NodeMap::Value Value;
  1586 
  1587     /// \brief Constructor
  1588     ///
  1589     /// Contructor of the map
  1590     PotentialDifferenceMap(const Graph& _graph, const NodeMap& _potential) 
  1591       : graph(_graph), potential(_potential) {}
  1592 
  1593     /// \brief Const subscription operator
  1594     ///
  1595     /// Const subscription operator
  1596     Value operator[](const Key& edge) const {
  1597       return potential[graph.target(edge)] - potential[graph.source(edge)];
  1598     }
  1599 
  1600   private:
  1601     const Graph& graph;
  1602     const NodeMap& potential;
  1603   };
  1604 
  1605   /// \brief Just returns a PotentialDifferenceMap
  1606   ///
  1607   /// Just returns a PotentialDifferenceMap
  1608   /// \relates PotentialDifferenceMap
  1609   template <typename Graph, typename NodeMap>
  1610   PotentialDifferenceMap<Graph, NodeMap> 
  1611   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  1612     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  1613   }
  1614 
  1615   /// \brief Map of the node in-degrees.
  1616   ///
  1617   /// This map returns the in-degree of a node. Once it is constructed,
  1618   /// the degrees are stored in a standard NodeMap, so each query is done
  1619   /// in constant time. On the other hand, the values are updated automatically
  1620   /// whenever the graph changes.
  1621   ///
  1622   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1623   /// alternative ways to modify the graph. The correct behavior of InDegMap
  1624   /// is not guarantied if these additional features are used. For example
  1625   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1626   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1627   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1628   /// of \ref ListGraph will \e not update the degree values correctly.
  1629   ///
  1630   /// \sa OutDegMap
  1631 
  1632   template <typename _Graph>
  1633   class InDegMap  
  1634     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1635       ::ItemNotifier::ObserverBase {
  1636 
  1637   public:
  1638     
  1639     typedef _Graph Graph;
  1640     typedef int Value;
  1641     typedef typename Graph::Node Key;
  1642 
  1643     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1644     ::ItemNotifier::ObserverBase Parent;
  1645 
  1646   private:
  1647 
  1648     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1649     public:
  1650 
  1651       typedef DefaultMap<_Graph, Key, int> Parent;
  1652       typedef typename Parent::Graph Graph;
  1653 
  1654       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1655       
  1656       virtual void add(const Key& key) {
  1657 	Parent::add(key);
  1658 	Parent::set(key, 0);
  1659       }
  1660 
  1661       virtual void add(const std::vector<Key>& keys) {
  1662 	Parent::add(keys);
  1663 	for (int i = 0; i < (int)keys.size(); ++i) {
  1664 	  Parent::set(keys[i], 0);
  1665 	}
  1666       }
  1667     };
  1668 
  1669   public:
  1670 
  1671     /// \brief Constructor.
  1672     ///
  1673     /// Constructor for creating in-degree map.
  1674     InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1675       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1676       
  1677       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1678 	deg[it] = countInEdges(graph, it);
  1679       }
  1680     }
  1681     
  1682     /// Gives back the in-degree of a Node.
  1683     int operator[](const Key& key) const {
  1684       return deg[key];
  1685     }
  1686 
  1687   protected:
  1688     
  1689     typedef typename Graph::Edge Edge;
  1690 
  1691     virtual void add(const Edge& edge) {
  1692       ++deg[graph.target(edge)];
  1693     }
  1694 
  1695     virtual void add(const std::vector<Edge>& edges) {
  1696       for (int i = 0; i < (int)edges.size(); ++i) {
  1697         ++deg[graph.target(edges[i])];
  1698       }
  1699     }
  1700 
  1701     virtual void erase(const Edge& edge) {
  1702       --deg[graph.target(edge)];
  1703     }
  1704 
  1705     virtual void erase(const std::vector<Edge>& edges) {
  1706       for (int i = 0; i < (int)edges.size(); ++i) {
  1707         --deg[graph.target(edges[i])];
  1708       }
  1709     }
  1710 
  1711     virtual void build() {
  1712       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1713 	deg[it] = countInEdges(graph, it);
  1714       }      
  1715     }
  1716 
  1717     virtual void clear() {
  1718       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1719 	deg[it] = 0;
  1720       }
  1721     }
  1722   private:
  1723     
  1724     const _Graph& graph;
  1725     AutoNodeMap deg;
  1726   };
  1727 
  1728   /// \brief Map of the node out-degrees.
  1729   ///
  1730   /// This map returns the out-degree of a node. Once it is constructed,
  1731   /// the degrees are stored in a standard NodeMap, so each query is done
  1732   /// in constant time. On the other hand, the values are updated automatically
  1733   /// whenever the graph changes.
  1734   ///
  1735   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1736   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  1737   /// is not guarantied if these additional features are used. For example
  1738   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1739   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1740   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1741   /// of \ref ListGraph will \e not update the degree values correctly.
  1742   ///
  1743   /// \sa InDegMap
  1744 
  1745   template <typename _Graph>
  1746   class OutDegMap  
  1747     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1748       ::ItemNotifier::ObserverBase {
  1749 
  1750   public:
  1751 
  1752     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1753     ::ItemNotifier::ObserverBase Parent;
  1754     
  1755     typedef _Graph Graph;
  1756     typedef int Value;
  1757     typedef typename Graph::Node Key;
  1758 
  1759   private:
  1760 
  1761     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1762     public:
  1763 
  1764       typedef DefaultMap<_Graph, Key, int> Parent;
  1765       typedef typename Parent::Graph Graph;
  1766 
  1767       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1768       
  1769       virtual void add(const Key& key) {
  1770 	Parent::add(key);
  1771 	Parent::set(key, 0);
  1772       }
  1773       virtual void add(const std::vector<Key>& keys) {
  1774 	Parent::add(keys);
  1775 	for (int i = 0; i < (int)keys.size(); ++i) {
  1776 	  Parent::set(keys[i], 0);
  1777 	}
  1778       }
  1779     };
  1780 
  1781   public:
  1782 
  1783     /// \brief Constructor.
  1784     ///
  1785     /// Constructor for creating out-degree map.
  1786     OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1787       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1788       
  1789       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1790 	deg[it] = countOutEdges(graph, it);
  1791       }
  1792     }
  1793 
  1794     /// Gives back the out-degree of a Node.
  1795     int operator[](const Key& key) const {
  1796       return deg[key];
  1797     }
  1798 
  1799   protected:
  1800     
  1801     typedef typename Graph::Edge Edge;
  1802 
  1803     virtual void add(const Edge& edge) {
  1804       ++deg[graph.source(edge)];
  1805     }
  1806 
  1807     virtual void add(const std::vector<Edge>& edges) {
  1808       for (int i = 0; i < (int)edges.size(); ++i) {
  1809         ++deg[graph.source(edges[i])];
  1810       }
  1811     }
  1812 
  1813     virtual void erase(const Edge& edge) {
  1814       --deg[graph.source(edge)];
  1815     }
  1816 
  1817     virtual void erase(const std::vector<Edge>& edges) {
  1818       for (int i = 0; i < (int)edges.size(); ++i) {
  1819         --deg[graph.source(edges[i])];
  1820       }
  1821     }
  1822 
  1823     virtual void build() {
  1824       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1825 	deg[it] = countOutEdges(graph, it);
  1826       }      
  1827     }
  1828 
  1829     virtual void clear() {
  1830       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1831 	deg[it] = 0;
  1832       }
  1833     }
  1834   private:
  1835     
  1836     const _Graph& graph;
  1837     AutoNodeMap deg;
  1838   };
  1839 
  1840 
  1841   /// @}
  1842 
  1843 } //END OF NAMESPACE LEMON
  1844 
  1845 #endif