src/hugo/minlengthpaths.h
author alpar
Mon, 06 Sep 2004 08:22:48 +0000
changeset 805 59b8cb2cb2f8
parent 776 f2994a2b10b2
child 851 209c9d53e195
permissions -rw-r--r--
Changes in doc.
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINLENGTHPATHS_H
     3 #define HUGO_MINLENGTHPATHS_H
     4 
     5 ///\ingroup flowalgs
     6 ///\file
     7 ///\brief An algorithm for finding k paths of minimal total length.
     8 
     9 
    10 //#include <hugo/dijkstra.h>
    11 //#include <hugo/graph_wrapper.h>
    12 #include <hugo/maps.h>
    13 #include <vector>
    14 #include <hugo/mincostflows.h>
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup flowalgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    22   /// of minimal total length 
    23   ///
    24   /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    25   /// an algorithm for finding k edge-disjoint paths
    26   /// from a given source node to a given target node in an
    27   /// edge-weighted directed graph having minimal total weigth (length).
    28   ///
    29   ///\warning It is assumed that the lengths are positive, since the
    30   /// general flow-decomposition is not implemented yet.
    31   ///
    32   ///\author Attila Bernath
    33   template <typename Graph, typename LengthMap>
    34   class MinLengthPaths{
    35 
    36 
    37     typedef typename LengthMap::ValueType Length;
    38     
    39     typedef typename Graph::Node Node;
    40     typedef typename Graph::NodeIt NodeIt;
    41     typedef typename Graph::Edge Edge;
    42     typedef typename Graph::OutEdgeIt OutEdgeIt;
    43     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    44 
    45     typedef ConstMap<Edge,int> ConstMap;
    46 
    47     //Input
    48     const Graph& G;
    49 
    50     //Auxiliary variables
    51     //This is the capacity map for the mincostflow problem
    52     ConstMap const1map;
    53     //This MinCostFlows instance will actually solve the problem
    54     MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow;
    55 
    56     //Container to store found paths
    57     std::vector< std::vector<Edge> > paths;
    58 
    59   public :
    60 
    61 
    62     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
    63       const1map(1), mincost_flow(_G, _length, const1map){}
    64 
    65     ///Runs the algorithm.
    66 
    67     ///Runs the algorithm.
    68     ///Returns k if there are at least k edge-disjoint paths from s to t.
    69    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    70     int run(Node s, Node t, int k) {
    71 
    72       int i = mincost_flow.run(s,t,k);
    73       
    74 
    75 
    76       //Let's find the paths
    77       //We put the paths into stl vectors (as an inner representation). 
    78       //In the meantime we lose the information stored in 'reversed'.
    79       //We suppose the lengths to be positive now.
    80 
    81       //We don't want to change the flow of mincost_flow, so we make a copy
    82       //The name here suggests that the flow has only 0/1 values.
    83       EdgeIntMap reversed(G); 
    84 
    85       for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
    86 	reversed[e] = mincost_flow.getFlow()[e];
    87       
    88       paths.clear();
    89       //total_length=0;
    90       paths.resize(k);
    91       for (int j=0; j<i; ++j){
    92 	Node n=s;
    93 	OutEdgeIt e;
    94 
    95 	while (n!=t){
    96 
    97 
    98 	  G.first(e,n);
    99 	  
   100 	  while (!reversed[e]){
   101 	    ++e;
   102 	  }
   103 	  n = G.head(e);
   104 	  paths[j].push_back(e);
   105 	  //total_length += length[e];
   106 	  reversed[e] = 1-reversed[e];
   107 	}
   108 	
   109       }
   110       return i;
   111     }
   112 
   113     
   114     ///This function gives back the total length of the found paths.
   115     ///Assumes that \c run() has been run and nothing changed since then.
   116     Length totalLength(){
   117       return mincost_flow.totalLength();
   118     }
   119 
   120     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   121     ///be called before using this function.
   122     const EdgeIntMap &getFlow() const { return mincost_flow.flow;}
   123 
   124   ///Returns a const reference to the NodeMap \c potential (the dual solution).
   125     /// \pre \ref run() must be called before using this function.
   126     const EdgeIntMap &getPotential() const { return mincost_flow.potential;}
   127 
   128     ///This function checks, whether the given solution is optimal
   129     ///Running after a \c run() should return with true
   130     ///In this "state of the art" this only checks optimality, doesn't bother with feasibility
   131     ///
   132     ///\todo Is this OK here?
   133     bool checkComplementarySlackness(){
   134       return mincost_flow.checkComplementarySlackness();
   135     }
   136 
   137     ///This function gives back the \c j-th path in argument p.
   138     ///Assumes that \c run() has been run and nothing changed since then.
   139     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is not less than the result of previous \c run, then the result here will be an empty path (\c j can be 0 as well).
   140     template<typename DirPath>
   141     void getPath(DirPath& p, size_t j){
   142       
   143       p.clear();
   144       if (j>paths.size()-1){
   145 	return;
   146       }
   147       typename DirPath::Builder B(p);
   148       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   149 	  i!=paths[j].end(); ++i ){
   150 	B.pushBack(*i);
   151       }
   152 
   153       B.commit();
   154     }
   155 
   156   }; //class MinLengthPaths
   157 
   158   ///@}
   159 
   160 } //namespace hugo
   161 
   162 #endif //HUGO_MINLENGTHPATHS_H