src/hugo/bfs.h
author marci
Mon, 27 Sep 2004 18:11:27 +0000
changeset 910 5a89cacf17f1
parent 802 bc0c74eeb151
child 911 89a4fbb99cad
permissions -rw-r--r--
minor corrections
     1 /* -*- C++ -*-
     2  * src/hugo/bfs.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_BFS_H
    18 #define HUGO_BFS_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Bfs algorithm.
    23 ///
    24 ///\todo Revise Manual.
    25 
    26 #include <hugo/bin_heap.h>
    27 #include <hugo/invalid.h>
    28 
    29 namespace hugo {
    30 
    31 /// \addtogroup flowalgs
    32 /// @{
    33 
    34   ///%BFS algorithm class.
    35 
    36   ///This class provides an efficient implementation of %BFS algorithm.
    37   ///\param GR The graph type the algorithm runs on.
    38   ///This class does the same as Dijkstra does with constant 1 edge length,
    39   ///but it is faster.
    40   ///
    41   ///\author Alpar Juttner
    42 
    43 #ifdef DOXYGEN
    44   template <typename GR>
    45 #else
    46   template <typename GR>
    47 #endif
    48   class Bfs{
    49   public:
    50     ///The type of the underlying graph.
    51     typedef GR Graph;
    52     ///.
    53     typedef typename Graph::Node Node;
    54     ///.
    55     typedef typename Graph::NodeIt NodeIt;
    56     ///.
    57     typedef typename Graph::Edge Edge;
    58     ///.
    59     typedef typename Graph::OutEdgeIt OutEdgeIt;
    60     
    61     ///\brief The type of the map that stores the last
    62     ///edges of the shortest paths.
    63     typedef typename Graph::template NodeMap<Edge> PredMap;
    64     ///\brief The type of the map that stores the last but one
    65     ///nodes of the shortest paths.
    66     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    67     ///The type of the map that stores the dists of the nodes.
    68     typedef typename Graph::template NodeMap<int> DistMap;
    69 
    70   private:
    71     /// Pointer to the underlying graph.
    72     const Graph *G;
    73     ///Pointer to the map of predecessors edges.
    74     PredMap *predecessor;
    75     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
    76     bool local_predecessor;
    77     ///Pointer to the map of predecessors nodes.
    78     PredNodeMap *pred_node;
    79     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
    80     bool local_pred_node;
    81     ///Pointer to the map of distances.
    82     DistMap *distance;
    83     ///Indicates if \ref distance is locally allocated (\c true) or not.
    84     bool local_distance;
    85 
    86     ///The source node of the last execution.
    87     Node source;
    88 
    89 
    90     ///Initializes the maps.
    91     void init_maps() 
    92     {
    93       if(!predecessor) {
    94 	local_predecessor = true;
    95 	predecessor = new PredMap(*G);
    96       }
    97       if(!pred_node) {
    98 	local_pred_node = true;
    99 	pred_node = new PredNodeMap(*G);
   100       }
   101       if(!distance) {
   102 	local_distance = true;
   103 	distance = new DistMap(*G);
   104       }
   105     }
   106     
   107   public :    
   108     ///Constructor.
   109     
   110     ///\param _G the graph the algorithm will run on.
   111     Bfs(const Graph& _G) :
   112       G(&_G),
   113       predecessor(NULL), local_predecessor(false),
   114       pred_node(NULL), local_pred_node(false),
   115       distance(NULL), local_distance(false)
   116     { }
   117     
   118     ///Destructor.
   119     ~Bfs() 
   120     {
   121       if(local_predecessor) delete predecessor;
   122       if(local_pred_node) delete pred_node;
   123       if(local_distance) delete distance;
   124     }
   125 
   126     ///Sets the map storing the predecessor edges.
   127 
   128     ///Sets the map storing the predecessor edges.
   129     ///If you don't use this function before calling \ref run(),
   130     ///it will allocate one. The destuctor deallocates this
   131     ///automatically allocated map, of course.
   132     ///\return <tt> (*this) </tt>
   133     Bfs &setPredMap(PredMap &m) 
   134     {
   135       if(local_predecessor) {
   136 	delete predecessor;
   137 	local_predecessor=false;
   138       }
   139       predecessor = &m;
   140       return *this;
   141     }
   142 
   143     ///Sets the map storing the predecessor nodes.
   144 
   145     ///Sets the map storing the predecessor nodes.
   146     ///If you don't use this function before calling \ref run(),
   147     ///it will allocate one. The destuctor deallocates this
   148     ///automatically allocated map, of course.
   149     ///\return <tt> (*this) </tt>
   150     Bfs &setPredNodeMap(PredNodeMap &m) 
   151     {
   152       if(local_pred_node) {
   153 	delete pred_node;
   154 	local_pred_node=false;
   155       }
   156       pred_node = &m;
   157       return *this;
   158     }
   159 
   160     ///Sets the map storing the distances calculated by the algorithm.
   161 
   162     ///Sets the map storing the distances calculated by the algorithm.
   163     ///If you don't use this function before calling \ref run(),
   164     ///it will allocate one. The destuctor deallocates this
   165     ///automatically allocated map, of course.
   166     ///\return <tt> (*this) </tt>
   167     Bfs &setDistMap(DistMap &m) 
   168     {
   169       if(local_distance) {
   170 	delete distance;
   171 	local_distance=false;
   172       }
   173       distance = &m;
   174       return *this;
   175     }
   176     
   177   ///Runs %BFS algorithm from node \c s.
   178 
   179   ///This method runs the %BFS algorithm from a root node \c s
   180   ///in order to
   181   ///compute a
   182   ///shortest path to each node. The algorithm computes
   183   ///- The %BFS tree.
   184   ///- The distance of each node from the root.
   185  
   186     void run(Node s) {
   187       
   188       init_maps();
   189       
   190       source = s;
   191       
   192       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   193 	predecessor->set(u,INVALID);
   194 	pred_node->set(u,INVALID);
   195       }
   196       
   197       int N=G->nodeNum();
   198       std::vector<typename Graph::Node> Q(N);
   199       int Qh=0;
   200       int Qt=0;
   201       
   202       Q[Qh++]=source;
   203       distance->set(s, 0);
   204       do {
   205 	Node m;
   206 	Node n=Q[Qt++];
   207 	int d= (*distance)[n]+1;
   208 	
   209 	for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   210 	  if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) {
   211 	    Q[Qh++]=m;
   212 	    predecessor->set(m,e);
   213 	    pred_node->set(m,n);
   214 	    distance->set(m,d);
   215 	  }
   216       } while(Qt!=Qh);
   217     }
   218     
   219     ///The distance of a node from the root.
   220 
   221     ///Returns the distance of a node from the root.
   222     ///\pre \ref run() must be called before using this function.
   223     ///\warning If node \c v in unreachable from the root the return value
   224     ///of this funcion is undefined.
   225     int dist(Node v) const { return (*distance)[v]; }
   226 
   227     ///Returns the 'previous edge' of the %BFS path tree.
   228 
   229     ///For a node \c v it returns the 'previous edge' of the %BFS tree,
   230     ///i.e. it returns the last edge of a shortest path from the root to \c
   231     ///v. It is \ref INVALID
   232     ///if \c v is unreachable from the root or if \c v=s. The
   233     ///%BFS tree used here is equal to the %BFS tree used in
   234     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   235     ///this function.
   236     Edge pred(Node v) const { return (*predecessor)[v]; }
   237 
   238     ///Returns the 'previous node' of the %BFS tree.
   239 
   240     ///For a node \c v it returns the 'previous node' on the %BFS tree,
   241     ///i.e. it returns the last but one node from a shortest path from the
   242     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   243     ///\c v=s. The shortest path tree used here is equal to the %BFS
   244     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   245     ///using this function.
   246     Node predNode(Node v) const { return (*pred_node)[v]; }
   247     
   248     ///Returns a reference to the NodeMap of distances.
   249     
   250     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   251     ///be called before using this function.
   252     const DistMap &distMap() const { return *distance;}
   253  
   254     ///Returns a reference to the %BFS tree map.
   255 
   256     ///Returns a reference to the NodeMap of the edges of the
   257     ///%BFS tree.
   258     ///\pre \ref run() must be called before using this function.
   259     const PredMap &predMap() const { return *predecessor;}
   260  
   261     ///Returns a reference to the map of last but one nodes of shortest paths.
   262 
   263     ///Returns a reference to the NodeMap of the last but one nodes on the
   264     ///%BFS tree.
   265     ///\pre \ref run() must be called before using this function.
   266     const PredNodeMap &predNodeMap() const { return *pred_node;}
   267 
   268     ///Checks if a node is reachable from the root.
   269 
   270     ///Returns \c true if \c v is reachable from the root.
   271     ///\note The root node is reported to be reached!
   272     ///
   273     ///\pre \ref run() must be called before using this function.
   274     ///
   275     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   276     
   277   };
   278   
   279 /// @}
   280   
   281 } //END OF NAMESPACE HUGO
   282 
   283 #endif
   284 
   285