src/lemon/list_graph.h
author alpar
Mon, 01 Nov 2004 19:00:19 +0000
changeset 954 5b1ffef43d4c
parent 948 bc86b64f958e
child 959 c80ef5912903
permissions -rw-r--r--
Improved docs.
     1 /* -*- C++ -*-
     2  * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LIST_GRAPH_H
    18 #define LEMON_LIST_GRAPH_H
    19 
    20 ///\ingroup graphs
    21 ///\file
    22 ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
    23 
    24 #include <lemon/erasable_graph_extender.h>
    25 #include <lemon/clearable_graph_extender.h>
    26 #include <lemon/extendable_graph_extender.h>
    27 
    28 #include <lemon/idmappable_graph_extender.h>
    29 
    30 #include <lemon/iterable_graph_extender.h>
    31 
    32 #include <lemon/alteration_observer_registry.h>
    33 
    34 #include <lemon/default_map.h>
    35 
    36 
    37 namespace lemon {
    38 
    39   class ListGraphBase {
    40 
    41   protected:
    42     struct NodeT {
    43       int first_in,first_out;
    44       int prev, next;
    45     };
    46  
    47     struct EdgeT {
    48       int head, tail;
    49       int prev_in, prev_out;
    50       int next_in, next_out;
    51     };
    52 
    53     std::vector<NodeT> nodes;
    54 
    55     int first_node;
    56 
    57     int first_free_node;
    58 
    59     std::vector<EdgeT> edges;
    60 
    61     int first_free_edge;
    62     
    63   public:
    64     
    65     typedef ListGraphBase Graph;
    66     
    67     class Node {
    68       friend class Graph;
    69     protected:
    70 
    71       int id;
    72       Node(int pid) { id = pid;}
    73 
    74     public:
    75       Node() {}
    76       Node (Invalid) { id = -1; }
    77       bool operator==(const Node& node) const {return id == node.id;}
    78       bool operator!=(const Node& node) const {return id != node.id;}
    79       bool operator<(const Node& node) const {return id < node.id;}
    80     };
    81 
    82     class Edge {
    83       friend class Graph;
    84     protected:
    85 
    86       int id;
    87       Edge(int pid) { id = pid;}
    88 
    89     public:
    90       Edge() {}
    91       Edge (Invalid) { id = -1; }
    92       bool operator==(const Edge& edge) const {return id == edge.id;}
    93       bool operator!=(const Edge& edge) const {return id != edge.id;}
    94       bool operator<(const Edge& edge) const {return id < edge.id;}
    95     };
    96 
    97 
    98 
    99     ListGraphBase()
   100       : nodes(), first_node(-1),
   101 	first_free_node(-1), edges(), first_free_edge(-1) {}
   102 
   103     
   104     /// Maximum node ID.
   105     
   106     /// Maximum node ID.
   107     ///\sa id(Node)
   108     int maxNodeId() const { return nodes.size()-1; } 
   109 
   110     /// Maximum edge ID.
   111     
   112     /// Maximum edge ID.
   113     ///\sa id(Edge)
   114     int maxEdgeId() const { return edges.size()-1; }
   115 
   116     Node tail(Edge e) const { return edges[e.id].tail; }
   117     Node head(Edge e) const { return edges[e.id].head; }
   118 
   119 
   120     void first(Node& node) const { 
   121       node.id = first_node;
   122     }
   123 
   124     void next(Node& node) const {
   125       node.id = nodes[node.id].next;
   126     }
   127 
   128 
   129     void first(Edge& e) const { 
   130       int n;
   131       for(n = first_node; 
   132 	  n!=-1 && nodes[n].first_in == -1; 
   133 	  n = nodes[n].next);
   134       e.id = (n == -1) ? -1 : nodes[n].first_in;
   135     }
   136 
   137     void next(Edge& edge) const {
   138       if (edges[edge.id].next_in != -1) {
   139 	edge.id = edges[edge.id].next_in;
   140       } else {
   141 	int n;
   142 	for(n = nodes[edges[edge.id].head].next;
   143 	  n!=-1 && nodes[n].first_in == -1; 
   144 	  n = nodes[n].next);
   145 	edge.id = (n == -1) ? -1 : nodes[n].first_in;
   146       }      
   147     }
   148 
   149     void firstOut(Edge &e, const Node& v) const {
   150       e.id = nodes[v.id].first_out;
   151     }
   152     void nextOut(Edge &e) const {
   153       e.id=edges[e.id].next_out;
   154     }
   155 
   156     void firstIn(Edge &e, const Node& v) const {
   157       e.id = nodes[v.id].first_in;
   158     }
   159     void nextIn(Edge &e) const {
   160       e.id=edges[e.id].next_in;
   161     }
   162 
   163     
   164     static int id(Node v) { return v.id; }
   165     static int id(Edge e) { return e.id; }
   166 
   167     /// Adds a new node to the graph.
   168 
   169     /// \warning It adds the new node to the front of the list.
   170     /// (i.e. the lastly added node becomes the first.)
   171     Node addNode() {     
   172       int n;
   173       
   174       if(first_free_node==-1) {
   175 	n = nodes.size();
   176 	nodes.push_back(NodeT());
   177       } else {
   178 	n = first_free_node;
   179 	first_free_node = nodes[n].next;
   180       }
   181       
   182       nodes[n].next = first_node;
   183       if(first_node != -1) nodes[first_node].prev = n;
   184       first_node = n;
   185       nodes[n].prev = -1;
   186       
   187       nodes[n].first_in = nodes[n].first_out = -1;
   188       
   189       return Node(n);
   190     }
   191     
   192     Edge addEdge(Node u, Node v) {
   193       int n;      
   194 
   195       if (first_free_edge == -1) {
   196 	n = edges.size();
   197 	edges.push_back(EdgeT());
   198       } else {
   199 	n = first_free_edge;
   200 	first_free_edge = edges[n].next_in;
   201       }
   202       
   203       edges[n].tail = u.id; 
   204       edges[n].head = v.id;
   205 
   206       edges[n].next_out = nodes[u.id].first_out;
   207       if(nodes[u.id].first_out != -1) {
   208 	edges[nodes[u.id].first_out].prev_out = n;
   209       }
   210       
   211       edges[n].next_in = nodes[v.id].first_in;
   212       if(nodes[v.id].first_in != -1) {
   213 	edges[nodes[v.id].first_in].prev_in = n;
   214       }
   215       
   216       edges[n].prev_in = edges[n].prev_out = -1;
   217 	
   218       nodes[u.id].first_out = nodes[v.id].first_in = n;
   219 
   220       return Edge(n);
   221     }
   222     
   223     void erase(const Node& node) {
   224       int n = node.id;
   225       
   226       if(nodes[n].next != -1) {
   227 	nodes[nodes[n].next].prev = nodes[n].prev;
   228       }
   229       
   230       if(nodes[n].prev != -1) {
   231 	nodes[nodes[n].prev].next = nodes[n].next;
   232       } else {
   233 	first_node = nodes[n].next;
   234       }
   235       
   236       nodes[n].next = first_free_node;
   237       first_free_node = n;
   238 
   239     }
   240     
   241     void erase(const Edge& edge) {
   242       int n = edge.id;
   243       
   244       if(edges[n].next_in!=-1) {
   245 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   246       }
   247 
   248       if(edges[n].prev_in!=-1) {
   249 	edges[edges[n].prev_in].next_in = edges[n].next_in;
   250       } else {
   251 	nodes[edges[n].head].first_in = edges[n].next_in;
   252       }
   253 
   254       
   255       if(edges[n].next_out!=-1) {
   256 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   257       } 
   258 
   259       if(edges[n].prev_out!=-1) {
   260 	edges[edges[n].prev_out].next_out = edges[n].next_out;
   261       } else {
   262 	nodes[edges[n].tail].first_out = edges[n].next_out;
   263       }
   264       
   265       edges[n].next_in = first_free_edge;
   266       first_free_edge = n;      
   267 
   268     }
   269 
   270     void clear() {
   271       edges.clear();
   272       nodes.clear();
   273       first_node = first_free_node = first_free_edge = -1;
   274     }
   275 
   276   protected:
   277     void _moveHead(Edge e, Node n) 
   278     {
   279       if(edges[e.id].next_in != -1)
   280 	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
   281       if(edges[e.id].prev_in != -1)
   282 	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
   283       else nodes[edges[e.id].head].first_in = edges[e.id].next_in;
   284       edges[e.id].head = n.id;
   285       edges[e.id].prev_in = -1;
   286       edges[e.id].next_in = nodes[n.id].first_in;
   287       nodes[n.id].first_in = e.id;
   288     }
   289     void _moveTail(Edge e, Node n) 
   290     {
   291       if(edges[e.id].next_out != -1)
   292 	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
   293       if(edges[e.id].prev_out != -1)
   294 	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
   295       else nodes[edges[e.id].tail].first_out = edges[e.id].next_out;
   296       edges[e.id].tail = n.id;
   297       edges[e.id].prev_out = -1;
   298       edges[e.id].next_out = nodes[n.id].first_out;
   299       nodes[n.id].first_out = e.id;
   300     }
   301 
   302   };
   303 
   304   typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
   305   typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
   306   typedef IdMappableGraphExtender<IterableListGraphBase> IdMappableListGraphBase;
   307   typedef DefaultMappableGraphExtender<IdMappableListGraphBase> MappableListGraphBase;
   308   typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
   309   typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
   310   typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
   311 
   312 /// \addtogroup graphs
   313 /// @{
   314 
   315   ///A list graph class.
   316 
   317   ///This is a simple and fast erasable graph implementation.
   318   ///
   319   ///It conforms to the
   320   ///\ref skeleton::ErasableGraph "ErasableGraph" concept.
   321   ///\sa skeleton::ErasableGraph.
   322 
   323   class ListGraph : public ErasableListGraphBase 
   324   {
   325   public:
   326     /// Moves the head of \c e to \c n
   327 
   328     /// Moves the head of \c e to \c n
   329     ///
   330     void moveHead(Edge e, Node n) { _moveHead(e,n); }
   331     /// Moves the tail of \c e to \c n
   332 
   333     /// Moves the tail of \c e to \c n
   334     ///
   335     void moveTail(Edge e, Node n) { _moveTail(e,n); }
   336 
   337     ///Using this it possible to avoid the superfluous memory allocation.
   338     ///\todo more docs...
   339     void reserveEdge(int n) { edges.reserve(n); };
   340     
   341   };
   342   
   343   /// @}  
   344 } //namespace lemon
   345   
   346 
   347 #endif