src/work/athos/mincostflows.h
author marci
Thu, 06 May 2004 13:46:07 +0000
changeset 541 5c5d970ef2f0
parent 527 7550fed0cd91
child 547 50184b822370
permissions -rw-r--r--
(none)
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOWS_H
     3 #define HUGO_MINCOSTFLOWS_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
     8 
     9 #include <iostream>
    10 #include <dijkstra.h>
    11 #include <graph_wrapper.h>
    12 #include <maps.h>
    13 #include <vector.h>
    14 #include <for_each_macros.h>
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup galgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
    23   /// 
    24   ///
    25   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    26   /// an algorithm for finding a flow of value \c k 
    27   ///(for small values of \c k) having minimal total cost  
    28   /// from a given source node to a given target node in an
    29   /// edge-weighted directed graph having nonnegative integer capacities.
    30   /// The range of the length (weight) function is nonnegative reals but 
    31   /// the range of capacity function is the set of nonnegative integers. 
    32   /// It is not a polinomial time algorithm for counting the minimum cost
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    34   /// where \c M is the value of the maximal flow.
    35   ///
    36   ///\author Attila Bernath
    37   template <typename Graph, typename LengthMap, typename CapacityMap>
    38   class MinCostFlows {
    39 
    40     typedef typename LengthMap::ValueType Length;
    41 
    42     //Warning: this should be integer type
    43     typedef typename CapacityMap::ValueType Capacity;
    44     
    45     typedef typename Graph::Node Node;
    46     typedef typename Graph::NodeIt NodeIt;
    47     typedef typename Graph::Edge Edge;
    48     typedef typename Graph::OutEdgeIt OutEdgeIt;
    49     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    50 
    51     //    typedef ConstMap<Edge,int> ConstMap;
    52 
    53     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    54     typedef typename ResGraphType::Edge ResGraphEdge;
    55     class ModLengthMap {   
    56       typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    57       const ResGraphType& G;
    58       //      const EdgeIntMap& rev;
    59       const LengthMap &ol;
    60       const NodeMap &pot;
    61     public :
    62       typedef typename LengthMap::KeyType KeyType;
    63       typedef typename LengthMap::ValueType ValueType;
    64 	
    65       ValueType operator[](typename ResGraphType::Edge e) const {     
    66 	if (G.forward(e))
    67 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    68 	else
    69 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    70       }     
    71 	
    72       ModLengthMap(const ResGraphType& _G,
    73 		   const LengthMap &o,  const NodeMap &p) : 
    74 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    75     };//ModLengthMap
    76 
    77 
    78     
    79     //Input
    80     const Graph& G;
    81     const LengthMap& length;
    82     const CapacityMap& capacity;
    83 
    84     //auxiliary variables
    85 
    86     //The value is 1 iff the edge is reversed. 
    87     //If the algorithm has finished, the edges of the seeked paths are 
    88     //exactly those that are reversed 
    89     EdgeIntMap flow; 
    90     
    91     //Container to store found paths
    92     std::vector< std::vector<Edge> > paths;
    93     //typedef DirPath<Graph> DPath;
    94     //DPath paths;
    95 
    96 
    97     Length total_length;
    98 
    99   public :
   100 
   101 
   102     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   103       length(_length), capacity(_cap), flow(_G)/*, dijkstra_dist(_G)*/{ }
   104 
   105     
   106     ///Runs the algorithm.
   107 
   108     ///Runs the algorithm.
   109     ///Returns k if there are at least k edge-disjoint paths from s to t.
   110     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   111     int run(Node s, Node t, int k) {
   112 
   113       //Resetting variables from previous runs
   114       total_length = 0;
   115       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   116 	flow.set(e,0);
   117       }
   118 
   119       
   120       //We need a residual graph
   121       ResGraphType res_graph(G, capacity, flow);
   122 
   123       //Initialize the copy of the Dijkstra potential to zero
   124       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
   125       ModLengthMap mod_length(res_graph, length, dijkstra_dist);
   126 
   127       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   128 
   129       int i;
   130       for (i=0; i<k; ++i){
   131 	dijkstra.run(s);
   132 	if (!dijkstra.reached(t)){
   133 	  //There are no k paths from s to t
   134 	  break;
   135 	};
   136 	
   137 	{
   138 	  //We have to copy the potential
   139 	  typename ResGraphType::NodeIt n;
   140 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   141 	      dijkstra_dist[n] += dijkstra.distMap()[n];
   142 	  }
   143 	}
   144 
   145 
   146 	//Augmenting on the sortest path
   147 	Node n=t;
   148 	ResGraphEdge e;
   149 	while (n!=s){
   150 	  e = dijkstra.pred(n);
   151 	  n = dijkstra.predNode(n);
   152 	  res_graph.augment(e,1);
   153 	  //Let's update the total length
   154 	  if (res_graph.forward(e))
   155 	    total_length += length[e];
   156 	  else 
   157 	    total_length -= length[e];	    
   158 	}
   159 
   160 	  
   161       }
   162       
   163 
   164       return i;
   165     }
   166 
   167 
   168 
   169     ///This function gives back the total length of the found paths.
   170     ///Assumes that \c run() has been run and nothing changed since then.
   171     Length totalLength(){
   172       return total_length;
   173     }
   174 
   175     /*
   176       ///\todo To be implemented later
   177 
   178     ///This function gives back the \c j-th path in argument p.
   179     ///Assumes that \c run() has been run and nothing changed since then.
   180     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   181     template<typename DirPath>
   182     void getPath(DirPath& p, int j){
   183       p.clear();
   184       typename DirPath::Builder B(p);
   185       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   186 	  i!=paths[j].end(); ++i ){
   187 	B.pushBack(*i);
   188       }
   189 
   190       B.commit();
   191     }
   192 
   193     */
   194 
   195   }; //class MinCostFlows
   196 
   197   ///@}
   198 
   199 } //namespace hugo
   200 
   201 #endif //HUGO_MINCOSTFLOW_H