Connected components, etc...
Based on the dfs visitor interface
2 * lemon/fib_heap.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_FIB_HEAP_H
18 #define LEMON_FIB_HEAP_H
22 ///\brief Fibonacci Heap implementation.
30 /// \addtogroup auxdat
35 ///This class implements the \e Fibonacci \e heap data structure. A \e heap
36 ///is a data structure for storing items with specified values called \e
37 ///priorities in such a way that finding the item with minimum priority is
38 ///efficient. \c Compare specifies the ordering of the priorities. In a heap
39 ///one can change the priority of an item, add or erase an item, etc.
41 ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
42 ///heap. In case of many calls to these operations, it is better to use a
45 ///\param Item Type of the items to be stored.
46 ///\param Prio Type of the priority of the items.
47 ///\param ItemIntMap A read and writable Item int map, used internally
48 ///to handle the cross references.
49 ///\param Compare A class for the ordering of the priorities. The
50 ///default is \c std::less<Prio>.
54 ///\author Jacint Szabo
57 template <typename Item,
62 template <typename Item,
65 typename Compare = std::less<Prio> >
69 typedef Prio PrioType;
74 std::vector<store> container;
81 ///Status of the nodes
83 ///The node is in the heap
85 ///The node has never been in the heap
87 ///The node was in the heap but it got out of it
91 /// \brief The constructor
93 /// \c _iimap should be given to the constructor, since it is
94 /// used internally to handle the cross references.
95 explicit FibHeap(ItemIntMap &_iimap)
96 : minimum(0), iimap(_iimap), num_items() {}
98 /// \brief The constructor
100 /// \c _iimap should be given to the constructor, since it is used
101 /// internally to handle the cross references. \c _comp is an
102 /// object for ordering of the priorities.
103 FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0),
104 iimap(_iimap), comp(_comp), num_items() {}
106 /// \brief The number of items stored in the heap.
108 /// Returns the number of items stored in the heap.
109 int size() const { return num_items; }
111 /// \brief Checks if the heap stores no items.
113 /// Returns \c true if and only if the heap stores no items.
114 bool empty() const { return num_items==0; }
116 /// \brief Make empty this heap.
118 /// Make empty this heap.
120 for (int i = 0; i < (int)container.size(); ++i) {
121 iimap[container[i].name] = -2;
123 container.clear(); minimum = 0; num_items = 0;
126 /// \brief \c item gets to the heap with priority \c value independently
127 /// if \c item was already there.
129 /// This method calls \ref push(\c item, \c value) if \c item is not
130 /// stored in the heap and it calls \ref decrease(\c item, \c value) or
131 /// \ref increase(\c item, \c value) otherwise.
132 void set (Item const item, PrioType const value);
134 /// \brief Adds \c item to the heap with priority \c value.
136 /// Adds \c item to the heap with priority \c value.
137 /// \pre \c item must not be stored in the heap.
138 void push (Item const item, PrioType const value);
140 /// \brief Returns the item with minimum priority relative to \c Compare.
142 /// This method returns the item with minimum priority relative to \c
144 /// \pre The heap must be nonempty.
145 Item top() const { return container[minimum].name; }
147 /// \brief Returns the minimum priority relative to \c Compare.
149 /// It returns the minimum priority relative to \c Compare.
150 /// \pre The heap must be nonempty.
151 PrioType prio() const { return container[minimum].prio; }
153 /// \brief Returns the priority of \c item.
155 /// This function returns the priority of \c item.
156 /// \pre \c item must be in the heap.
157 PrioType& operator[](const Item& item) {
158 return container[iimap[item]].prio;
161 /// \brief Returns the priority of \c item.
163 /// It returns the priority of \c item.
164 /// \pre \c item must be in the heap.
165 const PrioType& operator[](const Item& item) const {
166 return container[iimap[item]].prio;
170 /// \brief Deletes the item with minimum priority relative to \c Compare.
172 /// This method deletes the item with minimum priority relative to \c
173 /// Compare from the heap.
174 /// \pre The heap must be non-empty.
177 /// \brief Deletes \c item from the heap.
179 /// This method deletes \c item from the heap, if \c item was already
180 /// stored in the heap. It is quite inefficient in Fibonacci heaps.
181 void erase (const Item& item);
183 /// \brief Decreases the priority of \c item to \c value.
185 /// This method decreases the priority of \c item to \c value.
186 /// \pre \c item must be stored in the heap with priority at least \c
187 /// value relative to \c Compare.
188 void decrease (Item item, PrioType const value);
190 /// \brief Increases the priority of \c item to \c value.
192 /// This method sets the priority of \c item to \c value. Though
193 /// there is no precondition on the priority of \c item, this
194 /// method should be used only if it is indeed necessary to increase
195 /// (relative to \c Compare) the priority of \c item, because this
196 /// method is inefficient.
197 void increase (Item item, PrioType const value) {
203 /// \brief Returns if \c item is in, has already been in, or has never
204 /// been in the heap.
206 /// This method returns PRE_HEAP if \c item has never been in the
207 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
208 /// otherwise. In the latter case it is possible that \c item will
209 /// get back to the heap again.
210 state_enum state(const Item &item) const {
213 if ( container[i].in ) i=0;
216 return state_enum(i);
222 void makeroot(int c);
223 void cut(int a, int b);
225 void fuse(int a, int b);
230 friend class FibHeap;
242 store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
248 // **********************************************************************
250 // **********************************************************************
252 template <typename Item, typename Prio, typename ItemIntMap,
254 void FibHeap<Item, Prio, ItemIntMap, Compare>::set
255 (Item const item, PrioType const value)
258 if ( i >= 0 && container[i].in ) {
259 if ( comp(value, container[i].prio) ) decrease(item, value);
260 if ( comp(container[i].prio, value) ) increase(item, value);
261 } else push(item, value);
264 template <typename Item, typename Prio, typename ItemIntMap,
266 void FibHeap<Item, Prio, ItemIntMap, Compare>::push
267 (Item const item, PrioType const value) {
270 int s=container.size();
271 iimap.set( item, s );
274 container.push_back(st);
277 container[i].parent=container[i].child=-1;
278 container[i].degree=0;
279 container[i].in=true;
280 container[i].marked=false;
284 container[container[minimum].right_neighbor].left_neighbor=i;
285 container[i].right_neighbor=container[minimum].right_neighbor;
286 container[minimum].right_neighbor=i;
287 container[i].left_neighbor=minimum;
288 if ( comp( value, container[minimum].prio) ) minimum=i;
290 container[i].right_neighbor=container[i].left_neighbor=i;
293 container[i].prio=value;
297 template <typename Item, typename Prio, typename ItemIntMap,
299 void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
300 /*The first case is that there are only one root.*/
301 if ( container[minimum].left_neighbor==minimum ) {
302 container[minimum].in=false;
303 if ( container[minimum].degree!=0 ) {
304 makeroot(container[minimum].child);
305 minimum=container[minimum].child;
309 int right=container[minimum].right_neighbor;
311 container[minimum].in=false;
312 if ( container[minimum].degree > 0 ) {
313 int left=container[minimum].left_neighbor;
314 int child=container[minimum].child;
315 int last_child=container[child].left_neighbor;
319 container[left].right_neighbor=child;
320 container[child].left_neighbor=left;
321 container[right].left_neighbor=last_child;
322 container[last_child].right_neighbor=right;
326 } // the case where there are more roots
331 template <typename Item, typename Prio, typename ItemIntMap,
333 void FibHeap<Item, Prio, ItemIntMap, Compare>::erase
337 if ( i >= 0 && container[i].in ) {
338 if ( container[i].parent!=-1 ) {
339 int p=container[i].parent;
343 minimum=i; //As if its prio would be -infinity
348 template <typename Item, typename Prio, typename ItemIntMap,
350 void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease
351 (Item item, PrioType const value) {
353 container[i].prio=value;
354 int p=container[i].parent;
356 if ( p!=-1 && comp(value, container[p].prio) ) {
360 if ( comp(value, container[minimum].prio) ) minimum=i;
364 template <typename Item, typename Prio, typename ItemIntMap,
366 void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {
368 int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
370 std::vector<int> A(maxdeg,-1);
373 *Recall that now minimum does not point to the minimum prio element.
374 *We set minimum to this during balance().
376 int anchor=container[minimum].left_neighbor;
382 if ( anchor==active ) end=true;
383 int d=container[active].degree;
384 next=container[active].right_neighbor;
387 if( comp(container[active].prio, container[A[d]].prio) ) {
400 while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
404 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
405 s=container[s].right_neighbor;
409 template <typename Item, typename Prio, typename ItemIntMap,
411 void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot
415 container[s].parent=-1;
416 s=container[s].right_neighbor;
421 template <typename Item, typename Prio, typename ItemIntMap,
423 void FibHeap<Item, Prio, ItemIntMap, Compare>::cut
426 *Replacing a from the children of b.
428 --container[b].degree;
430 if ( container[b].degree !=0 ) {
431 int child=container[b].child;
433 container[b].child=container[child].right_neighbor;
438 /*Lacing a to the roots.*/
439 int right=container[minimum].right_neighbor;
440 container[minimum].right_neighbor=a;
441 container[a].left_neighbor=minimum;
442 container[a].right_neighbor=right;
443 container[right].left_neighbor=a;
445 container[a].parent=-1;
446 container[a].marked=false;
450 template <typename Item, typename Prio, typename ItemIntMap,
452 void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade
455 if ( container[a].parent!=-1 ) {
456 int p=container[a].parent;
458 if ( container[a].marked==false ) container[a].marked=true;
467 template <typename Item, typename Prio, typename ItemIntMap,
469 void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse
473 /*Lacing b under a.*/
474 container[b].parent=a;
476 if (container[a].degree==0) {
477 container[b].left_neighbor=b;
478 container[b].right_neighbor=b;
479 container[a].child=b;
481 int child=container[a].child;
482 int last_child=container[child].left_neighbor;
483 container[child].left_neighbor=b;
484 container[b].right_neighbor=child;
485 container[last_child].right_neighbor=b;
486 container[b].left_neighbor=last_child;
489 ++container[a].degree;
491 container[b].marked=false;
496 *It is invoked only if a has siblings.
498 template <typename Item, typename Prio, typename ItemIntMap,
500 void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace
502 int leftn=container[a].left_neighbor;
503 int rightn=container[a].right_neighbor;
504 container[leftn].right_neighbor=rightn;
505 container[rightn].left_neighbor=leftn;
512 #endif //LEMON_FIB_HEAP_H