lemon/linear_heap.h
author deba
Wed, 02 Nov 2005 15:23:46 +0000
changeset 1750 5c76ebbb4818
child 1758 4bfe670710e0
permissions -rw-r--r--
Connected components, etc...
Based on the dfs visitor interface
     1 /* -*- C++ -*-
     2  * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LINEAR_HEAP_H
    18 #define LEMON_LINEAR_HEAP_H
    19 
    20 ///\ingroup auxdat
    21 ///\file
    22 ///\brief Binary Heap implementation.
    23 
    24 #include <vector>
    25 #include <utility>
    26 #include <functional>
    27 
    28 namespace lemon {
    29 
    30   /// \addtogroup auxdat
    31   /// @{
    32 
    33   /// \brief A Linear Heap implementation.
    34   ///
    35   /// This class implements the \e linear \e heap data structure. A \e heap
    36   /// is a data structure for storing items with specified values called \e
    37   /// priorities in such a way that finding the item with minimum priority is
    38   /// efficient. The linear heap is very simple implementation, it can store
    39   /// only integer priorities and it stores for each priority in the [0..C]
    40   /// range a list of items. So it should be used only when the priorities
    41   /// are small. It is not intended to use as dijkstra heap.
    42   ///
    43   /// \param _Item Type of the items to be stored.  
    44   /// \param _ItemIntMap A read and writable Item int map, used internally
    45   /// to handle the cross references.
    46   /// \param minimize If the given parameter is true then the heap gives back
    47   /// the lowest priority. 
    48   template <typename _Item, typename _ItemIntMap, bool minimize = true >
    49   class LinearHeap {
    50 
    51   public:
    52     typedef _Item Item;
    53     typedef int Prio;
    54     typedef std::pair<Item, Prio> Pair;
    55     typedef _ItemIntMap ItemIntMap;
    56 
    57     /// \brief Type to represent the items states.
    58     ///
    59     /// Each Item element have a state associated to it. It may be "in heap",
    60     /// "pre heap" or "post heap". The latter two are indifferent from the
    61     /// heap's point of view, but may be useful to the user.
    62     ///
    63     /// The ItemIntMap \e should be initialized in such way that it maps
    64     /// PRE_HEAP (-1) to any element to be put in the heap...
    65     enum state_enum {
    66       IN_HEAP = 0,
    67       PRE_HEAP = -1,
    68       POST_HEAP = -2
    69     };
    70 
    71   public:
    72     /// \brief The constructor.
    73     ///
    74     /// The constructor.
    75     /// \param _index should be given to the constructor, since it is used
    76     /// internally to handle the cross references. The value of the map
    77     /// should be PRE_HEAP (-1) for each element.
    78     explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
    79     
    80     /// The number of items stored in the heap.
    81     ///
    82     /// \brief Returns the number of items stored in the heap.
    83     int size() const { return data.size(); }
    84     
    85     /// \brief Checks if the heap stores no items.
    86     ///
    87     /// Returns \c true if and only if the heap stores no items.
    88     bool empty() const { return data.empty(); }
    89 
    90     /// \brief Make empty this heap.
    91     /// 
    92     /// Make empty this heap.
    93     void clear() { 
    94       for (int i = 0; i < (int)data.size(); ++i) {
    95 	index[data[i].item] = -2;
    96       }
    97       data.clear(); first.clear(); minimal = 0;
    98     }
    99 
   100   private:
   101 
   102     void relocate_last(int idx) {
   103       if (idx + 1 < (int)data.size()) {
   104 	data[idx] = data.back();
   105 	if (data[idx].prev != -1) {
   106 	  data[data[idx].prev].next = idx;
   107 	} else {
   108 	  first[data[idx].value] = idx;
   109 	}
   110 	if (data[idx].next != -1) {
   111 	  data[data[idx].next].prev = idx;
   112 	}
   113 	index[data[idx].item] = idx;
   114       }
   115       data.pop_back();
   116     }
   117 
   118     void unlace(int idx) {
   119       if (data[idx].prev != -1) {
   120 	data[data[idx].prev].next = data[idx].next;
   121       } else {
   122 	first[data[idx].value] = data[idx].next;
   123       }
   124       if (data[idx].next != -1) {
   125 	data[data[idx].next].prev = data[idx].prev;
   126       }
   127     }
   128 
   129     void lace(int idx) {
   130       if ((int)first.size() <= data[idx].value) {
   131 	first.resize(data[idx].value + 1, -1);
   132       }
   133       data[idx].next = first[data[idx].value];
   134       if (data[idx].next != -1) {
   135 	data[data[idx].next].prev = idx;
   136       }
   137       first[data[idx].value] = idx;
   138       data[idx].prev = -1;
   139     }
   140 
   141   public:
   142     /// \brief Insert a pair of item and priority into the heap.
   143     ///
   144     /// Adds \c p.first to the heap with priority \c p.second.
   145     /// \param p The pair to insert.
   146     void push(const Pair& p) {
   147       push(p.first, p.second);
   148     }
   149 
   150     /// \brief Insert an item into the heap with the given priority.
   151     ///    
   152     /// Adds \c i to the heap with priority \c p. 
   153     /// \param i The item to insert.
   154     /// \param p The priority of the item.
   155     void push(const Item &i, const Prio &p) { 
   156       int idx = data.size();
   157       index[i] = idx;
   158       data.push_back(LinearItem(i, p));
   159       lace(idx);
   160       if (p < minimal) {
   161 	minimal = p;
   162       }
   163     }
   164 
   165     /// \brief Returns the item with minimum priority relative to \c Compare.
   166     ///
   167     /// This method returns the item with minimum priority relative to \c
   168     /// Compare.  
   169     /// \pre The heap must be nonempty.  
   170     Item top() const {
   171       while (first[minimal] == -1) {
   172 	++minimal;
   173       }
   174       return data[first[minimal]].item;
   175     }
   176 
   177     /// \brief Returns the minimum priority relative to \c Compare.
   178     ///
   179     /// It returns the minimum priority relative to \c Compare.
   180     /// \pre The heap must be nonempty.
   181     Prio prio() const {
   182       while (first[minimal] == -1) {
   183 	++minimal;
   184       }
   185       return minimal;
   186     }
   187 
   188     /// \brief Deletes the item with minimum priority relative to \c Compare.
   189     ///
   190     /// This method deletes the item with minimum priority relative to \c
   191     /// Compare from the heap.  
   192     /// \pre The heap must be non-empty.  
   193     void pop() {
   194       while (first[minimal] == -1) {
   195 	++minimal;
   196       }
   197       int idx = first[minimal];
   198       index[data[idx].item] = -2;
   199       unlace(idx);
   200       relocate_last(idx);
   201     }
   202 
   203     /// \brief Deletes \c i from the heap.
   204     ///
   205     /// This method deletes item \c i from the heap, if \c i was
   206     /// already stored in the heap.
   207     /// \param i The item to erase. 
   208     void erase(const Item &i) {
   209       int idx = index[i];
   210       index[data[idx].item] = -2;
   211       unlace(idx);
   212       relocate_last(idx);
   213     }
   214 
   215     
   216     /// \brief Returns the priority of \c i.
   217     ///
   218     /// This function returns the priority of item \c i.  
   219     /// \pre \c i must be in the heap.
   220     /// \param i The item.
   221     Prio operator[](const Item &i) const {
   222       int idx = index[i];
   223       return data[idx].value;
   224     }
   225 
   226     /// \brief \c i gets to the heap with priority \c p independently 
   227     /// if \c i was already there.
   228     ///
   229     /// This method calls \ref push(\c i, \c p) if \c i is not stored
   230     /// in the heap and sets the priority of \c i to \c p otherwise.
   231     /// \param i The item.
   232     /// \param p The priority.
   233     void set(const Item &i, const Prio &p) {
   234       int idx = index[i];
   235       if (idx < 0) {
   236 	push(i,p);
   237       } else if (p > data[idx].value) {
   238 	increase(i, p);
   239       } else {
   240 	decrease(i, p);
   241       }
   242     }
   243 
   244     /// \brief Decreases the priority of \c i to \c p.
   245 
   246     /// This method decreases the priority of item \c i to \c p.
   247     /// \pre \c i must be stored in the heap with priority at least \c
   248     /// p relative to \c Compare.
   249     /// \param i The item.
   250     /// \param p The priority.
   251     void decrease(const Item &i, const Prio &p) {
   252       int idx = index[i];
   253       unlace(idx);
   254       data[idx].value = p;
   255       if (p < minimal) {
   256 	minimal = p;
   257       }
   258       lace(idx);
   259     }
   260     
   261     /// \brief Increases the priority of \c i to \c p.
   262     ///
   263     /// This method sets the priority of item \c i to \c p. 
   264     /// \pre \c i must be stored in the heap with priority at most \c
   265     /// p relative to \c Compare.
   266     /// \param i The item.
   267     /// \param p The priority.
   268     void increase(const Item &i, const Prio &p) {
   269       int idx = index[i];
   270       unlace(idx);
   271       data[idx].value = p;
   272       lace(idx);
   273     }
   274 
   275     /// \brief Returns if \c item is in, has already been in, or has 
   276     /// never been in the heap.
   277     ///
   278     /// This method returns PRE_HEAP if \c item has never been in the
   279     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   280     /// otherwise. In the latter case it is possible that \c item will
   281     /// get back to the heap again.
   282     /// \param i The item.
   283     state_enum state(const Item &i) const {
   284       int idx = index[i];
   285       if (idx >= 0) idx = 0;
   286       return state_enum(idx);
   287     }
   288 
   289   private:
   290 
   291     struct LinearItem {
   292       LinearItem(const Item& _item, int _value) 
   293 	: item(_item), value(_value) {}
   294 
   295       Item item;
   296       int value;
   297 
   298       int prev, next;
   299     };
   300 
   301     ItemIntMap& index;
   302     std::vector<int> first;
   303     std::vector<LinearItem> data;
   304     mutable int minimal;
   305 
   306   }; // class LinearHeap
   307 
   308 
   309   template <typename _Item, typename _ItemIntMap>
   310   class LinearHeap<_Item, _ItemIntMap, false> {
   311 
   312   public:
   313     typedef _Item Item;
   314     typedef int Prio;
   315     typedef std::pair<Item, Prio> Pair;
   316     typedef _ItemIntMap ItemIntMap;
   317 
   318     enum state_enum {
   319       IN_HEAP = 0,
   320       PRE_HEAP = -1,
   321       POST_HEAP = -2
   322     };
   323 
   324   public:
   325 
   326     explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
   327 
   328     int size() const { return data.size(); }
   329     bool empty() const { return data.empty(); }
   330 
   331     void clear() { 
   332       for (int i = 0; i < (int)data.size(); ++i) {
   333 	index[data[i].item] = -2;
   334       }
   335       data.clear(); first.clear(); maximal = -1; 
   336     }
   337 
   338   private:
   339 
   340     void relocate_last(int idx) {
   341       if (idx + 1 != (int)data.size()) {
   342 	data[idx] = data.back();
   343 	if (data[idx].prev != -1) {
   344 	  data[data[idx].prev].next = idx;
   345 	} else {
   346 	  first[data[idx].value] = idx;
   347 	}
   348 	if (data[idx].next != -1) {
   349 	  data[data[idx].next].prev = idx;
   350 	}
   351 	index[data[idx].item] = idx;
   352       }
   353       data.pop_back();
   354     }
   355 
   356     void unlace(int idx) {
   357       if (data[idx].prev != -1) {
   358 	data[data[idx].prev].next = data[idx].next;
   359       } else {
   360 	first[data[idx].value] = data[idx].next;
   361       }
   362       if (data[idx].next != -1) {
   363 	data[data[idx].next].prev = data[idx].prev;
   364       }
   365     }
   366 
   367     void lace(int idx) {
   368       if ((int)first.size() <= data[idx].value) {
   369 	first.resize(data[idx].value + 1, -1);
   370       }
   371       data[idx].next = first[data[idx].value];
   372       if (data[idx].next != -1) {
   373 	data[data[idx].next].prev = idx;
   374       }
   375       first[data[idx].value] = idx;
   376       data[idx].prev = -1;
   377     }
   378 
   379   public:
   380 
   381     void push(const Pair& p) {
   382       push(p.first, p.second);
   383     }
   384 
   385     void push(const Item &i, const Prio &p) { 
   386       int idx = data.size();
   387       index[i] = idx;
   388       data.push_back(LinearItem(i, p));
   389       lace(idx);
   390       if (data[idx].value > maximal) {
   391 	maximal = data[idx].value;
   392       }
   393     }
   394 
   395     Item top() const {
   396       while (first[maximal] == -1) {
   397 	--maximal;
   398       }
   399       return data[first[maximal]].item;
   400     }
   401 
   402     Prio prio() const {
   403       while (first[maximal] == -1) {
   404 	--maximal;
   405       }
   406       return maximal;
   407     }
   408 
   409     void pop() {
   410       while (first[maximal] == -1) {
   411 	--maximal;
   412       }
   413       int idx = first[maximal];
   414       index[data[idx].item] = -2;
   415       unlace(idx);
   416       relocate_last(idx);
   417     }
   418 
   419     void erase(const Item &i) {
   420       int idx = index[i];
   421       index[data[idx].item] = -2;
   422       unlace(idx);
   423       relocate_last(idx);
   424     }
   425 
   426     Prio operator[](const Item &i) const {
   427       int idx = index[i];
   428       return data[idx].value;
   429     }
   430 
   431     void set(const Item &i, const Prio &p) {
   432       int idx = index[i];
   433       if (idx < 0) {
   434 	push(i,p);
   435       } else if (p > data[idx].value) {
   436 	decrease(i, p);
   437       } else {
   438 	increase(i, p);
   439       }
   440     }
   441 
   442     void decrease(const Item &i, const Prio &p) {
   443       int idx = index[i];
   444       unlace(idx);
   445       data[idx].value = p;
   446       if (p > maximal) {
   447 	maximal = p;
   448       }
   449       lace(idx);
   450     }
   451     
   452     void increase(const Item &i, const Prio &p) {
   453       int idx = index[i];
   454       unlace(idx);
   455       data[idx].value = p;
   456       lace(idx);
   457     }
   458 
   459     state_enum state(const Item &i) const {
   460       int idx = index[i];
   461       if (idx >= 0) idx = 0;
   462       return state_enum(idx);
   463     }
   464 
   465   private:
   466 
   467     struct LinearItem {
   468       LinearItem(const Item& _item, int _value) 
   469 	: item(_item), value(_value) {}
   470 
   471       Item item;
   472       int value;
   473 
   474       int prev, next;
   475     };
   476 
   477     ItemIntMap& index;
   478     std::vector<int> first;
   479     std::vector<LinearItem> data;
   480     mutable int maximal;
   481 
   482   }; // class LinearHeap
   483 
   484 }
   485   
   486 #endif