Fight with Doxygen.
Victory hasn't been reached yet, but it's on the horizon.
2 * lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_KRUSKAL_H
18 #define LEMON_KRUSKAL_H
22 #include <lemon/unionfind.h>
23 #include <lemon/utility.h>
26 @defgroup spantree Minimum Cost Spanning Tree Algorithms
28 \brief This group containes the algorithms for finding a minimum cost spanning
31 This group containes the algorithms for finding a minimum cost spanning
37 ///\brief Kruskal's algorithm to compute a minimum cost tree
39 ///Kruskal's algorithm to compute a minimum cost tree.
41 ///\todo The file still needs some clean-up.
45 /// \addtogroup spantree
48 /// Kruskal's algorithm to find a minimum cost tree of a graph.
50 /// This function runs Kruskal's algorithm to find a minimum cost tree.
51 /// Due to hard C++ hacking, it accepts various input and output types.
53 /// \param g The graph the algorithm runs on.
54 /// It can be either \ref concept::StaticGraph "directed" or
55 /// \ref concept::UGraph "undirected".
56 /// If the graph is directed, the algorithm consider it to be
57 /// undirected by disregarding the direction of the edges.
59 /// \param in This object is used to describe the edge costs. It can be one
60 /// of the following choices.
61 /// - An STL compatible 'Forward Container'
62 /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
63 /// where \c X is the type of the costs. The pairs indicates the edges along
64 /// with the assigned cost. <em>They must be in a
65 /// cost-ascending order.</em>
66 /// - Any readable Edge map. The values of the map indicate the edge costs.
68 /// \retval out Here we also have a choise.
69 /// - Is can be a writable \c bool edge map.
70 /// After running the algorithm
71 /// this will contain the found minimum cost spanning tree: the value of an
72 /// edge will be set to \c true if it belongs to the tree, otherwise it will
73 /// be set to \c false. The value of each edge will be set exactly once.
74 /// - It can also be an iteraror of an STL Container with
75 /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
76 /// The algorithm copies the elements of the found tree into this sequence.
77 /// For example, if we know that the spanning tree of the graph \c g has
78 /// say 53 edges, then
79 /// we can put its edges into a STL vector \c tree with a code like this.
81 /// std::vector<Edge> tree(53);
82 /// kruskal(g,cost,tree.begin());
84 /// Or if we don't know in advance the size of the tree, we can write this.
86 /// std::vector<Edge> tree;
87 /// kruskal(g,cost,std::back_inserter(tree));
90 /// \return The cost of the found tree.
92 /// \warning If kruskal is run on an
93 /// \ref lemon::concept::UGraph "undirected graph", be sure that the
94 /// map storing the tree is also undirected
95 /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
96 /// half of the edges will not be set.
98 /// \todo Discuss the case of undirected graphs: In this case the algorithm
99 /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
100 /// people would expect. So, one should be careful not to add both of the
101 /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
102 /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
105 template <class GR, class IN, class OUT>
106 typename IN::value_type::second_type
107 kruskal(GR const& g, IN const& in,
110 template <class GR, class IN, class OUT>
111 typename IN::value_type::second_type
112 kruskal(GR const& g, IN const& in,
114 // typename IN::value_type::first_type = typename GR::Edge()
115 // ,typename OUT::Key = OUT::Key()
116 // //,typename OUT::Key = typename GR::Edge()
117 const typename IN::value_type::first_type * =
118 (const typename IN::value_type::first_type *)(0),
119 const typename OUT::Key * = (const typename OUT::Key *)(0)
123 typedef typename IN::value_type::second_type EdgeCost;
124 typedef typename GR::template NodeMap<int> NodeIntMap;
125 typedef typename GR::Node Node;
127 NodeIntMap comp(g, -1);
128 UnionFind<Node,NodeIntMap> uf(comp);
130 EdgeCost tot_cost = 0;
131 for (typename IN::const_iterator p = in.begin();
133 if ( uf.join(g.target((*p).first),
134 g.source((*p).first)) ) {
135 out.set((*p).first, true);
136 tot_cost += (*p).second;
139 out.set((*p).first, false);
149 /* A work-around for running Kruskal with const-reference bool maps... */
151 /// Helper class for calling kruskal with "constant" output map.
153 /// Helper class for calling kruskal with output maps constructed
156 /// A typical examle is the following call:
157 /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
158 /// Here, the third argument is a temporary object (which wraps around an
159 /// iterator with a writable bool map interface), and thus by rules of C++
160 /// is a \c const object. To enable call like this exist this class and
161 /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
164 class NonConstMapWr {
167 typedef typename Map::Key Key;
168 typedef typename Map::Value Value;
170 NonConstMapWr(const Map &_m) : m(_m) {}
173 void set(Key const& k, Value const &v) const { m.set(k,v); }
176 template <class GR, class IN, class OUT>
178 typename IN::value_type::second_type
179 kruskal(GR const& g, IN const& edges, OUT const& out_map,
180 // typename IN::value_type::first_type = typename GR::Edge(),
181 // typename OUT::Key = GR::Edge()
182 const typename IN::value_type::first_type * =
183 (const typename IN::value_type::first_type *)(0),
184 const typename OUT::Key * = (const typename OUT::Key *)(0)
187 NonConstMapWr<OUT> map_wr(out_map);
188 return kruskal(g, edges, map_wr);
191 /* ** ** Input-objects ** ** */
193 /// Kruskal's input source.
195 /// Kruskal's input source.
197 /// In most cases you possibly want to use the \ref kruskal() instead.
199 /// \sa makeKruskalMapInput()
201 ///\param GR The type of the graph the algorithm runs on.
202 ///\param Map An edge map containing the cost of the edges.
204 ///The cost type can be any type satisfying
205 ///the STL 'LessThan comparable'
206 ///concept if it also has an operator+() implemented. (It is necessary for
207 ///computing the total cost of the tree).
209 template<class GR, class Map>
210 class KruskalMapInput
211 : public std::vector< std::pair<typename GR::Edge,
212 typename Map::Value> > {
215 typedef std::vector< std::pair<typename GR::Edge,
216 typename Map::Value> > Parent;
217 typedef typename Parent::value_type value_type;
222 bool operator()(const value_type& a,
223 const value_type& b) {
224 return a.second < b.second;
229 typename enable_if<typename _GR::UTag,void>::type
230 fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0)
232 for(typename GR::UEdgeIt e(g);e!=INVALID;++e)
233 push_back(value_type(g.direct(e, true), m[e]));
237 typename disable_if<typename _GR::UTag,void>::type
238 fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1)
240 for(typename GR::EdgeIt e(g);e!=INVALID;++e)
241 push_back(value_type(e, m[e]));
248 std::sort(this->begin(), this->end(), comparePair());
251 KruskalMapInput(GR const& g, Map const& m) {
257 /// Creates a KruskalMapInput object for \ref kruskal()
259 /// It makes easier to use
260 /// \ref KruskalMapInput by making it unnecessary
261 /// to explicitly give the type of the parameters.
263 /// In most cases you possibly
264 /// want to use \ref kruskal() instead.
266 ///\param g The type of the graph the algorithm runs on.
267 ///\param m An edge map containing the cost of the edges.
269 ///The cost type can be any type satisfying the
270 ///STL 'LessThan Comparable'
271 ///concept if it also has an operator+() implemented. (It is necessary for
272 ///computing the total cost of the tree).
274 ///\return An appropriate input source for \ref kruskal().
276 template<class GR, class Map>
278 KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
280 return KruskalMapInput<GR,Map>(g,m);
285 /* ** ** Output-objects: simple writable bool maps ** ** */
289 /// A writable bool-map that makes a sequence of "true" keys
291 /// A writable bool-map that creates a sequence out of keys that receives
292 /// the value "true".
294 /// \sa makeKruskalSequenceOutput()
296 /// Very often, when looking for a min cost spanning tree, we want as
297 /// output a container containing the edges of the found tree. For this
298 /// purpose exist this class that wraps around an STL iterator with a
299 /// writable bool map interface. When a key gets value "true" this key
300 /// is added to sequence pointed by the iterator.
304 /// std::vector<Graph::Edge> v;
305 /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
308 /// For the most common case, when the input is given by a simple edge
309 /// map and the output is a sequence of the tree edges, a special
310 /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
312 /// \warning Not a regular property map, as it doesn't know its Key
314 template<class Iterator>
315 class KruskalSequenceOutput {
319 typedef typename std::iterator_traits<Iterator>::value_type Key;
322 KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
324 template<typename Key>
325 void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
328 template<class Iterator>
330 KruskalSequenceOutput<Iterator>
331 makeKruskalSequenceOutput(Iterator it) {
332 return KruskalSequenceOutput<Iterator>(it);
337 /* ** ** Wrapper funtions ** ** */
339 // \brief Wrapper function to kruskal().
340 // Input is from an edge map, output is a plain bool map.
342 // Wrapper function to kruskal().
343 // Input is from an edge map, output is a plain bool map.
345 // \param g The type of the graph the algorithm runs on.
346 // \param in An edge map containing the cost of the edges.
348 // The cost type can be any type satisfying the
349 // STL 'LessThan Comparable'
350 // concept if it also has an operator+() implemented. (It is necessary for
351 // computing the total cost of the tree).
353 // \retval out This must be a writable \c bool edge map.
354 // After running the algorithm
355 // this will contain the found minimum cost spanning tree: the value of an
356 // edge will be set to \c true if it belongs to the tree, otherwise it will
357 // be set to \c false. The value of each edge will be set exactly once.
359 // \return The cost of the found tree.
361 template <class GR, class IN, class RET>
367 // typename IN::Key = typename GR::Edge(),
368 //typename IN::Key = typename IN::Key (),
369 // typename RET::Key = typename GR::Edge()
370 const typename IN::Key * = (const typename IN::Key *)(0),
371 const typename RET::Key * = (const typename RET::Key *)(0)
375 KruskalMapInput<GR,IN>(g,in),
379 // \brief Wrapper function to kruskal().
380 // Input is from an edge map, output is an STL Sequence.
382 // Wrapper function to kruskal().
383 // Input is from an edge map, output is an STL Sequence.
385 // \param g The type of the graph the algorithm runs on.
386 // \param in An edge map containing the cost of the edges.
388 // The cost type can be any type satisfying the
389 // STL 'LessThan Comparable'
390 // concept if it also has an operator+() implemented. (It is necessary for
391 // computing the total cost of the tree).
393 // \retval out This must be an iteraror of an STL Container with
394 // <tt>GR::Edge</tt> as its <tt>value_type</tt>.
395 // The algorithm copies the elements of the found tree into this sequence.
396 // For example, if we know that the spanning tree of the graph \c g has
397 // say 53 edges, then
398 // we can put its edges into a STL vector \c tree with a code like this.
400 // std::vector<Edge> tree(53);
401 // kruskal(g,cost,tree.begin());
403 // Or if we don't know in advance the size of the tree, we can write this.
405 // std::vector<Edge> tree;
406 // kruskal(g,cost,std::back_inserter(tree));
409 // \return The cost of the found tree.
411 // \bug its name does not follow the coding style.
413 template <class GR, class IN, class RET>
419 const typename RET::value_type * =
420 (const typename RET::value_type *)(0)
423 KruskalSequenceOutput<RET> _out(out);
424 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
427 template <class GR, class IN, class RET>
435 KruskalSequenceOutput<RET*> _out(out);
436 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
443 #endif //LEMON_KRUSKAL_H