lemon/maps.h
author kpeter
Fri, 04 Jan 2008 00:47:08 +0000
changeset 2552 5f711e4668f5
parent 2489 48dddc283cfc
child 2553 bfced05fa852
permissions -rw-r--r--
Improved rename script to avoid "undirected digraph".
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 #include <vector>
    25 
    26 #include <lemon/bits/utility.h>
    27 #include <lemon/bits/traits.h>
    28 
    29 ///\file
    30 ///\ingroup maps
    31 ///\brief Miscellaneous property maps
    32 ///
    33 #include <map>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup maps
    38   /// @{
    39 
    40   /// Base class of maps.
    41 
    42   /// Base class of maps.
    43   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    44   template<typename K, typename T>
    45   class MapBase {
    46   public:
    47     ///\e
    48     typedef K Key;
    49     ///\e
    50     typedef T Value;
    51   };
    52 
    53   /// Null map. (a.k.a. DoNothingMap)
    54 
    55   /// If you have to provide a map only for its type definitions,
    56   /// or if you have to provide a writable map, but
    57   /// data written to it will sent to <tt>/dev/null</tt>...
    58   template<typename K, typename T>
    59   class NullMap : public MapBase<K, T> {
    60   public:
    61     typedef MapBase<K, T> Parent;
    62     typedef typename Parent::Key Key;
    63     typedef typename Parent::Value Value;
    64     
    65     /// Gives back a default constructed element.
    66     T operator[](const K&) const { return T(); }
    67     /// Absorbs the value.
    68     void set(const K&, const T&) {}
    69   };
    70 
    71   template <typename K, typename V> 
    72   NullMap<K, V> nullMap() {
    73     return NullMap<K, V>();
    74   }
    75 
    76 
    77   /// Constant map.
    78 
    79   /// This is a readable map which assigns a specified value to each key.
    80   /// In other aspects it is equivalent to the \c NullMap.
    81   template<typename K, typename T>
    82   class ConstMap : public MapBase<K, T> {
    83   private:
    84     T v;
    85   public:
    86 
    87     typedef MapBase<K, T> Parent;
    88     typedef typename Parent::Key Key;
    89     typedef typename Parent::Value Value;
    90 
    91     /// Default constructor
    92 
    93     /// The value of the map will be uninitialized. 
    94     /// (More exactly it will be default constructed.)
    95     ConstMap() {}
    96     ///\e
    97 
    98     /// \param _v The initial value of the map.
    99     ///
   100     ConstMap(const T &_v) : v(_v) {}
   101     
   102     ///\e
   103     T operator[](const K&) const { return v; }
   104 
   105     ///\e
   106     void setAll(const T &t) {
   107       v = t;
   108     }    
   109 
   110     template<typename T1>
   111     struct rebind {
   112       typedef ConstMap<K, T1> other;
   113     };
   114 
   115     template<typename T1>
   116     ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
   117   };
   118 
   119   ///Returns a \c ConstMap class
   120 
   121   ///This function just returns a \c ConstMap class.
   122   ///\relates ConstMap
   123   template<typename K, typename V> 
   124   inline ConstMap<K, V> constMap(const V &v) {
   125     return ConstMap<K, V>(v);
   126   }
   127 
   128 
   129   template<typename T, T v>
   130   struct Const { };
   131 
   132   /// Constant map with inlined constant value.
   133 
   134   /// This is a readable map which assigns a specified value to each key.
   135   /// In other aspects it is equivalent to the \c NullMap.
   136   template<typename K, typename V, V v>
   137   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   138   public:
   139     typedef MapBase<K, V> Parent;
   140     typedef typename Parent::Key Key;
   141     typedef typename Parent::Value Value;
   142 
   143     ConstMap() { }
   144     ///\e
   145     V operator[](const K&) const { return v; }
   146     ///\e
   147     void set(const K&, const V&) { }
   148   };
   149 
   150   ///Returns a \c ConstMap class
   151 
   152   ///This function just returns a \c ConstMap class with inlined value.
   153   ///\relates ConstMap
   154   template<typename K, typename V, V v> 
   155   inline ConstMap<K, Const<V, v> > constMap() {
   156     return ConstMap<K, Const<V, v> >();
   157   }
   158 
   159   ///Map based on std::map
   160 
   161   ///This is essentially a wrapper for \c std::map. With addition that
   162   ///you can specify a default value different from \c Value() .
   163   template <typename K, typename T, typename Compare = std::less<K> >
   164   class StdMap {
   165     template <typename K1, typename T1, typename C1>
   166     friend class StdMap;
   167   public:
   168 
   169     typedef True ReferenceMapTag;
   170     ///\e
   171     typedef K Key;
   172     ///\e
   173     typedef T Value;
   174     ///\e
   175     typedef T& Reference;
   176     ///\e
   177     typedef const T& ConstReference;
   178 
   179   private:
   180     
   181     typedef std::map<K, T, Compare> Map;
   182     Value _value;
   183     Map _map;
   184 
   185   public:
   186 
   187     /// Constructor with specified default value
   188     StdMap(const T& value = T()) : _value(value) {}
   189     /// \brief Constructs the map from an appropriate std::map, and explicitly
   190     /// specifies a default value.
   191     template <typename T1, typename Comp1>
   192     StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
   193       : _map(map.begin(), map.end()), _value(value) {}
   194     
   195     /// \brief Constructs a map from an other StdMap.
   196     template<typename T1, typename Comp1>
   197     StdMap(const StdMap<Key, T1, Comp1> &c) 
   198       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   199 
   200   private:
   201 
   202     StdMap& operator=(const StdMap&);
   203 
   204   public:
   205 
   206     ///\e
   207     Reference operator[](const Key &k) {
   208       typename Map::iterator it = _map.lower_bound(k);
   209       if (it != _map.end() && !_map.key_comp()(k, it->first))
   210 	return it->second;
   211       else
   212 	return _map.insert(it, std::make_pair(k, _value))->second;
   213     }
   214 
   215     /// \e 
   216     ConstReference operator[](const Key &k) const {
   217       typename Map::const_iterator it = _map.find(k);
   218       if (it != _map.end())
   219 	return it->second;
   220       else
   221 	return _value;
   222     }
   223 
   224     /// \e 
   225     void set(const Key &k, const T &t) {
   226       typename Map::iterator it = _map.lower_bound(k);
   227       if (it != _map.end() && !_map.key_comp()(k, it->first))
   228 	it->second = t;
   229       else
   230 	_map.insert(it, std::make_pair(k, t));
   231     }
   232 
   233     /// \e
   234     void setAll(const T &t) {
   235       _value = t;
   236       _map.clear();
   237     }    
   238 
   239     template <typename T1, typename C1 = std::less<T1> >
   240     struct rebind {
   241       typedef StdMap<Key, T1, C1> other;
   242     };
   243   };
   244 
   245   /// \brief Map for storing values for the range \c [0..size-1] range keys
   246   ///
   247   /// The current map has the \c [0..size-1] keyset and the values
   248   /// are stored in a \c std::vector<T>  container. It can be used with
   249   /// some data structures, for example \c UnionFind, \c BinHeap, when 
   250   /// the used items are small integer numbers.
   251   template <typename T>
   252   class IntegerMap {
   253 
   254     template <typename T1>
   255     friend class IntegerMap;
   256 
   257   public:
   258 
   259     typedef True ReferenceMapTag;
   260     ///\e
   261     typedef int Key;
   262     ///\e
   263     typedef T Value;
   264     ///\e
   265     typedef T& Reference;
   266     ///\e
   267     typedef const T& ConstReference;
   268 
   269   private:
   270     
   271     typedef std::vector<T> Vector;
   272     Vector _vector;
   273 
   274   public:
   275 
   276     /// Constructor with specified default value
   277     IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
   278 
   279     /// \brief Constructs the map from an appropriate std::vector.
   280     template <typename T1>
   281     IntegerMap(const std::vector<T1>& vector) 
   282       : _vector(vector.begin(), vector.end()) {}
   283     
   284     /// \brief Constructs a map from an other IntegerMap.
   285     template <typename T1>
   286     IntegerMap(const IntegerMap<T1> &c) 
   287       : _vector(c._vector.begin(), c._vector.end()) {}
   288 
   289     /// \brief Resize the container
   290     void resize(int size, const T& value = T()) {
   291       _vector.resize(size, value);
   292     }
   293 
   294   private:
   295 
   296     IntegerMap& operator=(const IntegerMap&);
   297 
   298   public:
   299 
   300     ///\e
   301     Reference operator[](Key k) {
   302       return _vector[k];
   303     }
   304 
   305     /// \e 
   306     ConstReference operator[](Key k) const {
   307       return _vector[k];
   308     }
   309 
   310     /// \e 
   311     void set(const Key &k, const T& t) {
   312       _vector[k] = t;
   313     }
   314 
   315   };
   316 
   317   /// @}
   318 
   319   /// \addtogroup map_adaptors
   320   /// @{
   321 
   322   /// \brief Identity mapping.
   323   ///
   324   /// This mapping gives back the given key as value without any
   325   /// modification. 
   326   template <typename T>
   327   class IdentityMap : public MapBase<T, T> {
   328   public:
   329     typedef MapBase<T, T> Parent;
   330     typedef typename Parent::Key Key;
   331     typedef typename Parent::Value Value;
   332 
   333     /// \e
   334     const T& operator[](const T& t) const {
   335       return t;
   336     }
   337   };
   338 
   339   ///Returns an \c IdentityMap class
   340 
   341   ///This function just returns an \c IdentityMap class.
   342   ///\relates IdentityMap
   343   template<typename T>
   344   inline IdentityMap<T> identityMap() {
   345     return IdentityMap<T>();
   346   }
   347   
   348 
   349   ///Convert the \c Value of a map to another type.
   350 
   351   ///This \c concepts::ReadMap "read only map"
   352   ///converts the \c Value of a maps to type \c T.
   353   ///Its \c Key is inherited from \c M.
   354   template <typename M, typename T> 
   355   class ConvertMap : public MapBase<typename M::Key, T> {
   356     const M& m;
   357   public:
   358     typedef MapBase<typename M::Key, T> Parent;
   359     typedef typename Parent::Key Key;
   360     typedef typename Parent::Value Value;
   361 
   362     ///Constructor
   363 
   364     ///Constructor
   365     ///\param _m is the underlying map
   366     ConvertMap(const M &_m) : m(_m) {};
   367 
   368     /// \brief The subscript operator.
   369     ///
   370     /// The subscript operator.
   371     /// \param k The key
   372     /// \return The target of the edge 
   373     Value operator[](const Key& k) const {return m[k];}
   374   };
   375   
   376   ///Returns an \c ConvertMap class
   377 
   378   ///This function just returns an \c ConvertMap class.
   379   ///\relates ConvertMap
   380   template<typename T, typename M>
   381   inline ConvertMap<M, T> convertMap(const M &m) {
   382     return ConvertMap<M, T>(m);
   383   }
   384 
   385   ///Simple wrapping of the map
   386 
   387   ///This \c concepts::ReadMap "read only map" returns the simple
   388   ///wrapping of the given map. Sometimes the reference maps cannot be
   389   ///combined with simple read maps. This map adaptor wraps the given
   390   ///map to simple read map.
   391   template<typename M> 
   392   class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
   393     const M& m;
   394 
   395   public:
   396     typedef MapBase<typename M::Key, typename M::Value> Parent;
   397     typedef typename Parent::Key Key;
   398     typedef typename Parent::Value Value;
   399 
   400     ///Constructor
   401     SimpleMap(const M &_m) : m(_m) {};
   402     ///\e
   403     Value operator[](Key k) const {return m[k];}
   404   };
   405 
   406   ///Simple writeable wrapping of the map
   407 
   408   ///This \c concepts::ReadMap "read only map" returns the simple
   409   ///wrapping of the given map. Sometimes the reference maps cannot be
   410   ///combined with simple read-write maps. This map adaptor wraps the
   411   ///given map to simple read-write map.
   412   template<typename M> 
   413   class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   414     M& m;
   415 
   416   public:
   417     typedef MapBase<typename M::Key, typename M::Value> Parent;
   418     typedef typename Parent::Key Key;
   419     typedef typename Parent::Value Value;
   420 
   421     ///Constructor
   422     SimpleWriteMap(M &_m) : m(_m) {};
   423     ///\e
   424     Value operator[](Key k) const {return m[k];}
   425     ///\e
   426     void set(Key k, const Value& c) { m.set(k, c); }
   427   };
   428 
   429   ///Sum of two maps
   430 
   431   ///This \c concepts::ReadMap "read only map" returns the sum of the two
   432   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   433   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   434 
   435   template<typename M1, typename M2> 
   436   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   437     const M1& m1;
   438     const M2& m2;
   439 
   440   public:
   441     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   442     typedef typename Parent::Key Key;
   443     typedef typename Parent::Value Value;
   444 
   445     ///Constructor
   446     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   447     ///\e
   448     Value operator[](Key k) const {return m1[k]+m2[k];}
   449   };
   450   
   451   ///Returns an \c AddMap class
   452 
   453   ///This function just returns an \c AddMap class.
   454   ///\todo How to call these type of functions?
   455   ///
   456   ///\relates AddMap
   457   template<typename M1, typename M2> 
   458   inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
   459     return AddMap<M1, M2>(m1,m2);
   460   }
   461 
   462   ///Shift a map with a constant.
   463 
   464   ///This \c concepts::ReadMap "read only map" returns the sum of the
   465   ///given map and a constant value.
   466   ///Its \c Key and \c Value is inherited from \c M.
   467   ///
   468   ///Actually,
   469   ///\code
   470   ///  ShiftMap<X> sh(x,v);
   471   ///\endcode
   472   ///is equivalent with
   473   ///\code
   474   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   475   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   476   ///\endcode
   477   template<typename M, typename C = typename M::Value> 
   478   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   479     const M& m;
   480     C v;
   481   public:
   482     typedef MapBase<typename M::Key, typename M::Value> Parent;
   483     typedef typename Parent::Key Key;
   484     typedef typename Parent::Value Value;
   485 
   486     ///Constructor
   487 
   488     ///Constructor
   489     ///\param _m is the undelying map
   490     ///\param _v is the shift value
   491     ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   492     ///\e
   493     Value operator[](Key k) const {return m[k] + v;}
   494   };
   495 
   496   ///Shift a map with a constant.
   497 
   498   ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
   499   ///given map and a constant value. It makes also possible to write the map.
   500   ///Its \c Key and \c Value is inherited from \c M.
   501   ///
   502   ///Actually,
   503   ///\code
   504   ///  ShiftMap<X> sh(x,v);
   505   ///\endcode
   506   ///is equivalent with
   507   ///\code
   508   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   509   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   510   ///\endcode
   511   template<typename M, typename C = typename M::Value> 
   512   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
   513     M& m;
   514     C v;
   515   public:
   516     typedef MapBase<typename M::Key, typename M::Value> Parent;
   517     typedef typename Parent::Key Key;
   518     typedef typename Parent::Value Value;
   519 
   520     ///Constructor
   521 
   522     ///Constructor
   523     ///\param _m is the undelying map
   524     ///\param _v is the shift value
   525     ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   526     /// \e
   527     Value operator[](Key k) const {return m[k] + v;}
   528     /// \e
   529     void set(Key k, const Value& c) { m.set(k, c - v); }
   530   };
   531   
   532   ///Returns an \c ShiftMap class
   533 
   534   ///This function just returns an \c ShiftMap class.
   535   ///\relates ShiftMap
   536   template<typename M, typename C> 
   537   inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
   538     return ShiftMap<M, C>(m,v);
   539   }
   540 
   541   template<typename M, typename C> 
   542   inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
   543     return ShiftWriteMap<M, C>(m,v);
   544   }
   545 
   546   ///Difference of two maps
   547 
   548   ///This \c concepts::ReadMap "read only map" returns the difference
   549   ///of the values of the two
   550   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   551   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   552 
   553   template<typename M1, typename M2> 
   554   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   555     const M1& m1;
   556     const M2& m2;
   557   public:
   558     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   559     typedef typename Parent::Key Key;
   560     typedef typename Parent::Value Value;
   561 
   562     ///Constructor
   563     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   564     /// \e
   565     Value operator[](Key k) const {return m1[k]-m2[k];}
   566   };
   567   
   568   ///Returns a \c SubMap class
   569 
   570   ///This function just returns a \c SubMap class.
   571   ///
   572   ///\relates SubMap
   573   template<typename M1, typename M2> 
   574   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   575     return SubMap<M1, M2>(m1, m2);
   576   }
   577 
   578   ///Product of two maps
   579 
   580   ///This \c concepts::ReadMap "read only map" returns the product of the
   581   ///values of the two
   582   ///given
   583   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   584   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   585 
   586   template<typename M1, typename M2> 
   587   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   588     const M1& m1;
   589     const M2& m2;
   590   public:
   591     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   592     typedef typename Parent::Key Key;
   593     typedef typename Parent::Value Value;
   594 
   595     ///Constructor
   596     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   597     /// \e
   598     Value operator[](Key k) const {return m1[k]*m2[k];}
   599   };
   600   
   601   ///Returns a \c MulMap class
   602 
   603   ///This function just returns a \c MulMap class.
   604   ///\relates MulMap
   605   template<typename M1, typename M2> 
   606   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   607     return MulMap<M1, M2>(m1,m2);
   608   }
   609  
   610   ///Scales a maps with a constant.
   611 
   612   ///This \c concepts::ReadMap "read only map" returns the value of the
   613   ///given map multiplied from the left side with a constant value.
   614   ///Its \c Key and \c Value is inherited from \c M.
   615   ///
   616   ///Actually,
   617   ///\code
   618   ///  ScaleMap<X> sc(x,v);
   619   ///\endcode
   620   ///is equivalent with
   621   ///\code
   622   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   623   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   624   ///\endcode
   625   template<typename M, typename C = typename M::Value> 
   626   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
   627     const M& m;
   628     C v;
   629   public:
   630     typedef MapBase<typename M::Key, typename M::Value> Parent;
   631     typedef typename Parent::Key Key;
   632     typedef typename Parent::Value Value;
   633 
   634     ///Constructor
   635 
   636     ///Constructor
   637     ///\param _m is the undelying map
   638     ///\param _v is the scaling value
   639     ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   640     /// \e
   641     Value operator[](Key k) const {return v * m[k];}
   642   };
   643 
   644   ///Scales a maps with a constant.
   645 
   646   ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
   647   ///given map multiplied from the left side with a constant value. It can
   648   ///be used as write map also if the given multiplier is not zero.
   649   ///Its \c Key and \c Value is inherited from \c M.
   650   template<typename M, typename C = typename M::Value> 
   651   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   652     M& m;
   653     C v;
   654   public:
   655     typedef MapBase<typename M::Key, typename M::Value> Parent;
   656     typedef typename Parent::Key Key;
   657     typedef typename Parent::Value Value;
   658 
   659     ///Constructor
   660 
   661     ///Constructor
   662     ///\param _m is the undelying map
   663     ///\param _v is the scaling value
   664     ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   665     /// \e
   666     Value operator[](Key k) const {return v * m[k];}
   667     /// \e
   668     void set(Key k, const Value& c) { m.set(k, c / v);}
   669   };
   670   
   671   ///Returns an \c ScaleMap class
   672 
   673   ///This function just returns an \c ScaleMap class.
   674   ///\relates ScaleMap
   675   template<typename M, typename C> 
   676   inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
   677     return ScaleMap<M, C>(m,v);
   678   }
   679 
   680   template<typename M, typename C> 
   681   inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
   682     return ScaleWriteMap<M, C>(m,v);
   683   }
   684 
   685   ///Quotient of two maps
   686 
   687   ///This \c concepts::ReadMap "read only map" returns the quotient of the
   688   ///values of the two
   689   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   690   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   691 
   692   template<typename M1, typename M2> 
   693   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   694     const M1& m1;
   695     const M2& m2;
   696   public:
   697     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   698     typedef typename Parent::Key Key;
   699     typedef typename Parent::Value Value;
   700 
   701     ///Constructor
   702     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   703     /// \e
   704     Value operator[](Key k) const {return m1[k]/m2[k];}
   705   };
   706   
   707   ///Returns a \c DivMap class
   708 
   709   ///This function just returns a \c DivMap class.
   710   ///\relates DivMap
   711   template<typename M1, typename M2> 
   712   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   713     return DivMap<M1, M2>(m1,m2);
   714   }
   715   
   716   ///Composition of two maps
   717 
   718   ///This \c concepts::ReadMap "read only map" returns the composition of
   719   ///two
   720   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   721   ///of \c M2,
   722   ///then for
   723   ///\code
   724   ///  ComposeMap<M1, M2> cm(m1,m2);
   725   ///\endcode
   726   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   727   ///
   728   ///Its \c Key is inherited from \c M2 and its \c Value is from
   729   ///\c M1.
   730   ///The \c M2::Value must be convertible to \c M1::Key.
   731   ///\todo Check the requirements.
   732   template <typename M1, typename M2> 
   733   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   734     const M1& m1;
   735     const M2& m2;
   736   public:
   737     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   738     typedef typename Parent::Key Key;
   739     typedef typename Parent::Value Value;
   740 
   741     ///Constructor
   742     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   743     
   744     typename MapTraits<M1>::ConstReturnValue
   745     /// \e
   746     operator[](Key k) const {return m1[m2[k]];}
   747   };
   748   ///Returns a \c ComposeMap class
   749 
   750   ///This function just returns a \c ComposeMap class.
   751   ///
   752   ///\relates ComposeMap
   753   template <typename M1, typename M2> 
   754   inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
   755     return ComposeMap<M1, M2>(m1,m2);
   756   }
   757   
   758   ///Combines of two maps using an STL (binary) functor.
   759 
   760   ///Combines of two maps using an STL (binary) functor.
   761   ///
   762   ///
   763   ///This \c concepts::ReadMap "read only map" takes two maps and a
   764   ///binary functor and returns the composition of
   765   ///the two
   766   ///given maps unsing the functor. 
   767   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   768   ///and \c f is of \c F,
   769   ///then for
   770   ///\code
   771   ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
   772   ///\endcode
   773   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   774   ///
   775   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   776   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   777   ///input parameter of \c F and the return type of \c F must be convertible
   778   ///to \c V.
   779   ///\todo Check the requirements.
   780   template<typename M1, typename M2, typename F,
   781 	   typename V = typename F::result_type> 
   782   class CombineMap : public MapBase<typename M1::Key, V> {
   783     const M1& m1;
   784     const M2& m2;
   785     F f;
   786   public:
   787     typedef MapBase<typename M1::Key, V> Parent;
   788     typedef typename Parent::Key Key;
   789     typedef typename Parent::Value Value;
   790 
   791     ///Constructor
   792     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
   793       : m1(_m1), m2(_m2), f(_f) {};
   794     /// \e
   795     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   796   };
   797   
   798   ///Returns a \c CombineMap class
   799 
   800   ///This function just returns a \c CombineMap class.
   801   ///
   802   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   803   ///\code
   804   ///combineMap<double>(m1,m2,std::plus<double>())
   805   ///\endcode
   806   ///is equivalent with
   807   ///\code
   808   ///addMap(m1,m2)
   809   ///\endcode
   810   ///
   811   ///This function is specialized for adaptable binary function
   812   ///classes and c++ functions.
   813   ///
   814   ///\relates CombineMap
   815   template<typename M1, typename M2, typename F, typename V> 
   816   inline CombineMap<M1, M2, F, V> 
   817   combineMap(const M1& m1,const M2& m2, const F& f) {
   818     return CombineMap<M1, M2, F, V>(m1,m2,f);
   819   }
   820 
   821   template<typename M1, typename M2, typename F> 
   822   inline CombineMap<M1, M2, F, typename F::result_type> 
   823   combineMap(const M1& m1, const M2& m2, const F& f) {
   824     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   825   }
   826 
   827   template<typename M1, typename M2, typename K1, typename K2, typename V> 
   828   inline CombineMap<M1, M2, V (*)(K1, K2), V> 
   829   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   830     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   831   }
   832 
   833   ///Negative value of a map
   834 
   835   ///This \c concepts::ReadMap "read only map" returns the negative
   836   ///value of the
   837   ///value returned by the
   838   ///given map. Its \c Key and \c Value will be inherited from \c M.
   839   ///The unary \c - operator must be defined for \c Value, of course.
   840 
   841   template<typename M> 
   842   class NegMap : public MapBase<typename M::Key, typename M::Value> {
   843     const M& m;
   844   public:
   845     typedef MapBase<typename M::Key, typename M::Value> Parent;
   846     typedef typename Parent::Key Key;
   847     typedef typename Parent::Value Value;
   848 
   849     ///Constructor
   850     NegMap(const M &_m) : m(_m) {};
   851     /// \e
   852     Value operator[](Key k) const {return -m[k];}
   853   };
   854   
   855   ///Negative value of a map
   856 
   857   ///This \c concepts::ReadWriteMap "read-write map" returns the negative
   858   ///value of the value returned by the
   859   ///given map. Its \c Key and \c Value will be inherited from \c M.
   860   ///The unary \c - operator must be defined for \c Value, of course.
   861 
   862   template<typename M> 
   863   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
   864     M& m;
   865   public:
   866     typedef MapBase<typename M::Key, typename M::Value> Parent;
   867     typedef typename Parent::Key Key;
   868     typedef typename Parent::Value Value;
   869 
   870     ///Constructor
   871     NegWriteMap(M &_m) : m(_m) {};
   872     /// \e
   873     Value operator[](Key k) const {return -m[k];}
   874     /// \e
   875     void set(Key k, const Value& v) { m.set(k, -v); }
   876   };
   877 
   878   ///Returns a \c NegMap class
   879 
   880   ///This function just returns a \c NegMap class.
   881   ///\relates NegMap
   882   template <typename M> 
   883   inline NegMap<M> negMap(const M &m) {
   884     return NegMap<M>(m);
   885   }
   886 
   887   template <typename M> 
   888   inline NegWriteMap<M> negMap(M &m) {
   889     return NegWriteMap<M>(m);
   890   }
   891 
   892   ///Absolute value of a map
   893 
   894   ///This \c concepts::ReadMap "read only map" returns the absolute value
   895   ///of the
   896   ///value returned by the
   897   ///given map. Its \c Key and \c Value will be inherited
   898   ///from <tt>M</tt>. <tt>Value</tt>
   899   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   900   ///operator must be defined for it, of course.
   901   ///
   902   ///\bug We need a unified way to handle the situation below:
   903   ///\code
   904   ///  struct _UnConvertible {};
   905   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   906   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   907   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   908   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   909   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   910   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   911   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   912   ///\endcode
   913   
   914 
   915   template<typename M> 
   916   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
   917     const M& m;
   918   public:
   919     typedef MapBase<typename M::Key, typename M::Value> Parent;
   920     typedef typename Parent::Key Key;
   921     typedef typename Parent::Value Value;
   922 
   923     ///Constructor
   924     AbsMap(const M &_m) : m(_m) {};
   925     /// \e
   926     Value operator[](Key k) const {
   927       Value tmp = m[k]; 
   928       return tmp >= 0 ? tmp : -tmp;
   929     }
   930 
   931   };
   932   
   933   ///Returns a \c AbsMap class
   934 
   935   ///This function just returns a \c AbsMap class.
   936   ///\relates AbsMap
   937   template<typename M> 
   938   inline AbsMap<M> absMap(const M &m) {
   939     return AbsMap<M>(m);
   940   }
   941 
   942   ///Converts an STL style functor to a map
   943 
   944   ///This \c concepts::ReadMap "read only map" returns the value
   945   ///of a
   946   ///given map.
   947   ///
   948   ///Template parameters \c K and \c V will become its
   949   ///\c Key and \c Value. They must be given explicitely
   950   ///because a functor does not provide such typedefs.
   951   ///
   952   ///Parameter \c F is the type of the used functor.
   953   template<typename F, 
   954 	   typename K = typename F::argument_type, 
   955 	   typename V = typename F::result_type> 
   956   class FunctorMap : public MapBase<K, V> {
   957     F f;
   958   public:
   959     typedef MapBase<K, V> Parent;
   960     typedef typename Parent::Key Key;
   961     typedef typename Parent::Value Value;
   962 
   963     ///Constructor
   964     FunctorMap(const F &_f = F()) : f(_f) {}
   965     /// \e
   966     Value operator[](Key k) const { return f(k);}
   967   };
   968   
   969   ///Returns a \c FunctorMap class
   970 
   971   ///This function just returns a \c FunctorMap class.
   972   ///
   973   ///It is specialized for adaptable function classes and
   974   ///c++ functions.
   975   ///\relates FunctorMap
   976   template<typename K, typename V, typename F> inline 
   977   FunctorMap<F, K, V> functorMap(const F &f) {
   978     return FunctorMap<F, K, V>(f);
   979   }
   980 
   981   template <typename F> inline 
   982   FunctorMap<F, typename F::argument_type, typename F::result_type> 
   983   functorMap(const F &f) {
   984     return FunctorMap<F, typename F::argument_type, 
   985       typename F::result_type>(f);
   986   }
   987 
   988   template <typename K, typename V> inline 
   989   FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
   990     return FunctorMap<V (*)(K), K, V>(f);
   991   }
   992 
   993 
   994   ///Converts a map to an STL style (unary) functor
   995 
   996   ///This class Converts a map to an STL style (unary) functor.
   997   ///that is it provides an <tt>operator()</tt> to read its values.
   998   ///
   999   ///For the sake of convenience it also works as
  1000   ///a ususal \c concepts::ReadMap "readable map",
  1001   ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
  1002   template <typename M> 
  1003   class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
  1004     const M& m;
  1005   public:
  1006     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1007     typedef typename Parent::Key Key;
  1008     typedef typename Parent::Value Value;
  1009 
  1010     typedef typename M::Key argument_type;
  1011     typedef typename M::Value result_type;
  1012 
  1013     ///Constructor
  1014     MapFunctor(const M &_m) : m(_m) {};
  1015     ///\e
  1016     Value operator()(Key k) const {return m[k];}
  1017     ///\e
  1018     Value operator[](Key k) const {return m[k];}
  1019   };
  1020   
  1021   ///Returns a \c MapFunctor class
  1022 
  1023   ///This function just returns a \c MapFunctor class.
  1024   ///\relates MapFunctor
  1025   template<typename M> 
  1026   inline MapFunctor<M> mapFunctor(const M &m) {
  1027     return MapFunctor<M>(m);
  1028   }
  1029 
  1030   ///Applies all map setting operations to two maps
  1031 
  1032   ///This map has two \c concepts::ReadMap "readable map"
  1033   ///parameters and each read request will be passed just to the
  1034   ///first map. This class is the just readable map type of the ForkWriteMap.
  1035   ///
  1036   ///The \c Key and \c Value will be inherited from \c M1.
  1037   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
  1038   template<typename  M1, typename M2> 
  1039   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
  1040     const M1& m1;
  1041     const M2& m2;
  1042   public:
  1043     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
  1044     typedef typename Parent::Key Key;
  1045     typedef typename Parent::Value Value;
  1046 
  1047     ///Constructor
  1048     ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
  1049     /// \e
  1050     Value operator[](Key k) const {return m1[k];}
  1051   };
  1052 
  1053 
  1054   ///Applies all map setting operations to two maps
  1055 
  1056   ///This map has two \c concepts::WriteMap "writable map"
  1057   ///parameters and each write request will be passed to both of them.
  1058   ///If \c M1 is also \c concepts::ReadMap "readable",
  1059   ///then the read operations will return the
  1060   ///corresponding values of \c M1.
  1061   ///
  1062   ///The \c Key and \c Value will be inherited from \c M1.
  1063   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
  1064   template<typename  M1, typename M2> 
  1065   class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
  1066     M1& m1;
  1067     M2& m2;
  1068   public:
  1069     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
  1070     typedef typename Parent::Key Key;
  1071     typedef typename Parent::Value Value;
  1072 
  1073     ///Constructor
  1074     ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
  1075     ///\e
  1076     Value operator[](Key k) const {return m1[k];}
  1077     ///\e
  1078     void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
  1079   };
  1080   
  1081   ///Returns an \c ForkMap class
  1082 
  1083   ///This function just returns an \c ForkMap class.
  1084   ///
  1085   ///\relates ForkMap
  1086   template <typename M1, typename M2> 
  1087   inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
  1088     return ForkMap<M1, M2>(m1,m2);
  1089   }
  1090 
  1091   template <typename M1, typename M2> 
  1092   inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
  1093     return ForkWriteMap<M1, M2>(m1,m2);
  1094   }
  1095 
  1096 
  1097   
  1098   /* ************* BOOL MAPS ******************* */
  1099   
  1100   ///Logical 'not' of a map
  1101   
  1102   ///This bool \c concepts::ReadMap "read only map" returns the 
  1103   ///logical negation of
  1104   ///value returned by the
  1105   ///given map. Its \c Key and will be inherited from \c M,
  1106   ///its Value is <tt>bool</tt>.
  1107   template <typename M> 
  1108   class NotMap : public MapBase<typename M::Key, bool> {
  1109     const M& m;
  1110   public:
  1111     typedef MapBase<typename M::Key, bool> Parent;
  1112     typedef typename Parent::Key Key;
  1113     typedef typename Parent::Value Value;
  1114 
  1115     /// Constructor
  1116     NotMap(const M &_m) : m(_m) {};
  1117     ///\e
  1118     Value operator[](Key k) const {return !m[k];}
  1119   };
  1120 
  1121   ///Logical 'not' of a map with writing possibility
  1122   
  1123   ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
  1124   ///logical negation of value returned by the given map. When it is set,
  1125   ///the opposite value is set to the original map.
  1126   ///Its \c Key and will be inherited from \c M,
  1127   ///its Value is <tt>bool</tt>.
  1128   template <typename M> 
  1129   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1130     M& m;
  1131   public:
  1132     typedef MapBase<typename M::Key, bool> Parent;
  1133     typedef typename Parent::Key Key;
  1134     typedef typename Parent::Value Value;
  1135 
  1136     /// Constructor
  1137     NotWriteMap(M &_m) : m(_m) {};
  1138     ///\e
  1139     Value operator[](Key k) const {return !m[k];}
  1140     ///\e
  1141     void set(Key k, bool v) { m.set(k, !v); }
  1142   };
  1143   
  1144   ///Returns a \c NotMap class
  1145   
  1146   ///This function just returns a \c NotMap class.
  1147   ///\relates NotMap
  1148   template <typename M> 
  1149   inline NotMap<M> notMap(const M &m) {
  1150     return NotMap<M>(m);
  1151   }
  1152   
  1153   template <typename M> 
  1154   inline NotWriteMap<M> notMap(M &m) {
  1155     return NotWriteMap<M>(m);
  1156   }
  1157 
  1158   namespace _maps_bits {
  1159 
  1160     template <typename Value>
  1161     struct Identity {
  1162       typedef Value argument_type;
  1163       typedef Value result_type;
  1164       Value operator()(const Value& val) const {
  1165 	return val;
  1166       }
  1167     };
  1168 
  1169     template <typename _Iterator, typename Enable = void>
  1170     struct IteratorTraits {
  1171       typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1172     };
  1173 
  1174     template <typename _Iterator>
  1175     struct IteratorTraits<_Iterator,
  1176       typename exists<typename _Iterator::container_type>::type> 
  1177     {
  1178       typedef typename _Iterator::container_type::value_type Value;
  1179     };
  1180 
  1181   }
  1182   
  1183 
  1184   /// \brief Writable bool map for store each true assigned elements.
  1185   ///
  1186   /// Writable bool map to store each true assigned elements. It will
  1187   /// copies all the keys set to true to the given iterator.
  1188   ///
  1189   /// \note The container of the iterator should contain space 
  1190   /// for each element.
  1191   ///
  1192   /// The next example shows how can you write the nodes directly
  1193   /// to the standard output.
  1194   ///\code
  1195   /// typedef IdMap<UGraph, UEdge> UEdgeIdMap;
  1196   /// UEdgeIdMap uedgeId(ugraph);
  1197   ///
  1198   /// typedef MapFunctor<UEdgeIdMap> UEdgeIdFunctor;
  1199   /// UEdgeIdFunctor uedgeIdFunctor(uedgeId);
  1200   ///
  1201   /// StoreBoolMap<ostream_iterator<int>, UEdgeIdFunctor> 
  1202   ///   writerMap(ostream_iterator<int>(cout, " "), uedgeIdFunctor);
  1203   ///
  1204   /// prim(ugraph, cost, writerMap);
  1205   ///\endcode
  1206   template <typename _Iterator, 
  1207             typename _Functor =
  1208             _maps_bits::Identity<typename _maps_bits::
  1209                                  IteratorTraits<_Iterator>::Value> >
  1210   class StoreBoolMap {
  1211   public:
  1212     typedef _Iterator Iterator;
  1213 
  1214     typedef typename _Functor::argument_type Key;
  1215     typedef bool Value;
  1216 
  1217     typedef _Functor Functor;
  1218 
  1219     /// Constructor
  1220     StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
  1221       : _begin(it), _end(it), _functor(functor) {}
  1222 
  1223     /// Gives back the given iterator set for the first time.
  1224     Iterator begin() const {
  1225       return _begin;
  1226     }
  1227  
  1228     /// Gives back the iterator after the last set operation.
  1229     Iterator end() const {
  1230       return _end;
  1231     }
  1232 
  1233     /// Setter function of the map
  1234     void set(const Key& key, Value value) const {
  1235       if (value) {
  1236 	*_end++ = _functor(key);
  1237       }
  1238     }
  1239     
  1240   private:
  1241     Iterator _begin;
  1242     mutable Iterator _end;
  1243     Functor _functor;
  1244   };
  1245 
  1246   /// \brief Writable bool map for store each true assigned elements in 
  1247   /// a back insertable container.
  1248   ///
  1249   /// Writable bool map for store each true assigned elements in a back 
  1250   /// insertable container. It will push back all the keys set to true into
  1251   /// the container. It can be used to retrieve the items into a standard
  1252   /// container. The next example shows how can you store the undirected
  1253   /// edges in a vector with prim algorithm.
  1254   ///
  1255   ///\code
  1256   /// vector<UEdge> span_tree_uedges;
  1257   /// BackInserterBoolMap<vector<UEdge> > inserter_map(span_tree_uedges);
  1258   /// prim(ugraph, cost, inserter_map);
  1259   ///\endcode
  1260   template <typename Container,
  1261             typename Functor =
  1262             _maps_bits::Identity<typename Container::value_type> >
  1263   class BackInserterBoolMap {
  1264   public:
  1265     typedef typename Container::value_type Key;
  1266     typedef bool Value;
  1267 
  1268     /// Constructor
  1269     BackInserterBoolMap(Container& _container, 
  1270                         const Functor& _functor = Functor()) 
  1271       : container(_container), functor(_functor) {}
  1272 
  1273     /// Setter function of the map
  1274     void set(const Key& key, Value value) {
  1275       if (value) {
  1276 	container.push_back(functor(key));
  1277       }
  1278     }
  1279     
  1280   private:
  1281     Container& container;
  1282     Functor functor;
  1283   };
  1284 
  1285   /// \brief Writable bool map for store each true assigned elements in 
  1286   /// a front insertable container.
  1287   ///
  1288   /// Writable bool map for store each true assigned elements in a front 
  1289   /// insertable container. It will push front all the keys set to \c true into
  1290   /// the container. For example see the BackInserterBoolMap.
  1291   template <typename Container,
  1292             typename Functor =
  1293             _maps_bits::Identity<typename Container::value_type> >
  1294   class FrontInserterBoolMap {
  1295   public:
  1296     typedef typename Container::value_type Key;
  1297     typedef bool Value;
  1298 
  1299     /// Constructor
  1300     FrontInserterBoolMap(Container& _container,
  1301                          const Functor& _functor = Functor()) 
  1302       : container(_container), functor(_functor) {}
  1303 
  1304     /// Setter function of the map
  1305     void set(const Key& key, Value value) {
  1306       if (value) {
  1307 	container.push_front(key);
  1308       }
  1309     }
  1310     
  1311   private:
  1312     Container& container;    
  1313     Functor functor;
  1314   };
  1315 
  1316   /// \brief Writable bool map for store each true assigned elements in 
  1317   /// an insertable container.
  1318   ///
  1319   /// Writable bool map for store each true assigned elements in an 
  1320   /// insertable container. It will insert all the keys set to \c true into
  1321   /// the container. If you want to store the cut edges of the strongly
  1322   /// connected components in a set you can use the next code:
  1323   ///
  1324   ///\code
  1325   /// set<Edge> cut_edges;
  1326   /// InserterBoolMap<set<Edge> > inserter_map(cut_edges);
  1327   /// stronglyConnectedCutEdges(graph, cost, inserter_map);
  1328   ///\endcode
  1329   template <typename Container,
  1330             typename Functor =
  1331             _maps_bits::Identity<typename Container::value_type> >
  1332   class InserterBoolMap {
  1333   public:
  1334     typedef typename Container::value_type Key;
  1335     typedef bool Value;
  1336 
  1337     /// Constructor
  1338     InserterBoolMap(Container& _container, typename Container::iterator _it,
  1339                     const Functor& _functor = Functor()) 
  1340       : container(_container), it(_it), functor(_functor) {}
  1341 
  1342     /// Constructor
  1343     InserterBoolMap(Container& _container, const Functor& _functor = Functor())
  1344       : container(_container), it(_container.end()), functor(_functor) {}
  1345 
  1346     /// Setter function of the map
  1347     void set(const Key& key, Value value) {
  1348       if (value) {
  1349 	it = container.insert(it, key);
  1350         ++it;
  1351       }
  1352     }
  1353     
  1354   private:
  1355     Container& container;
  1356     typename Container::iterator it;
  1357     Functor functor;
  1358   };
  1359 
  1360   /// \brief Fill the true set elements with a given value.
  1361   ///
  1362   /// Writable bool map to fill the elements set to \c true with a given value.
  1363   /// The value can set 
  1364   /// the container.
  1365   ///
  1366   /// The next code finds the connected components of the undirected graph
  1367   /// and stores it in the \c comp map:
  1368   ///\code
  1369   /// typedef UGraph::NodeMap<int> ComponentMap;
  1370   /// ComponentMap comp(ugraph);
  1371   /// typedef FillBoolMap<UGraph::NodeMap<int> > ComponentFillerMap;
  1372   /// ComponentFillerMap filler(comp, 0);
  1373   ///
  1374   /// Dfs<UGraph>::DefProcessedMap<ComponentFillerMap>::Create dfs(ugraph);
  1375   /// dfs.processedMap(filler);
  1376   /// dfs.init();
  1377   /// for (NodeIt it(ugraph); it != INVALID; ++it) {
  1378   ///   if (!dfs.reached(it)) {
  1379   ///     dfs.addSource(it);
  1380   ///     dfs.start();
  1381   ///     ++filler.fillValue();
  1382   ///   }
  1383   /// }
  1384   ///\endcode
  1385   template <typename Map>
  1386   class FillBoolMap {
  1387   public:
  1388     typedef typename Map::Key Key;
  1389     typedef bool Value;
  1390 
  1391     /// Constructor
  1392     FillBoolMap(Map& _map, const typename Map::Value& _fill) 
  1393       : map(_map), fill(_fill) {}
  1394 
  1395     /// Constructor
  1396     FillBoolMap(Map& _map) 
  1397       : map(_map), fill() {}
  1398 
  1399     /// Gives back the current fill value
  1400     const typename Map::Value& fillValue() const {
  1401       return fill;
  1402     } 
  1403 
  1404     /// Gives back the current fill value
  1405     typename Map::Value& fillValue() {
  1406       return fill;
  1407     } 
  1408 
  1409     /// Sets the current fill value
  1410     void fillValue(const typename Map::Value& _fill) {
  1411       fill = _fill;
  1412     } 
  1413 
  1414     /// Setter function of the map
  1415     void set(const Key& key, Value value) {
  1416       if (value) {
  1417 	map.set(key, fill);
  1418       }
  1419     }
  1420     
  1421   private:
  1422     Map& map;
  1423     typename Map::Value fill;
  1424   };
  1425 
  1426 
  1427   /// \brief Writable bool map which stores for each true assigned elements  
  1428   /// the setting order number.
  1429   ///
  1430   /// Writable bool map which stores for each true assigned elements  
  1431   /// the setting order number. It make easy to calculate the leaving
  1432   /// order of the nodes in the \c Dfs algorithm.
  1433   ///
  1434   ///\code
  1435   /// typedef Graph::NodeMap<int> OrderMap;
  1436   /// OrderMap order(graph);
  1437   /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1438   /// OrderSetterMap setter(order);
  1439   /// Dfs<Graph>::DefProcessedMap<OrderSetterMap>::Create dfs(graph);
  1440   /// dfs.processedMap(setter);
  1441   /// dfs.init();
  1442   /// for (NodeIt it(graph); it != INVALID; ++it) {
  1443   ///   if (!dfs.reached(it)) {
  1444   ///     dfs.addSource(it);
  1445   ///     dfs.start();
  1446   ///   }
  1447   /// }
  1448   ///\endcode
  1449   ///
  1450   /// The discovering order can be stored a little harder because the
  1451   /// ReachedMap should be readable in the dfs algorithm but the setting
  1452   /// order map is not readable. Now we should use the fork map:
  1453   ///
  1454   ///\code
  1455   /// typedef Graph::NodeMap<int> OrderMap;
  1456   /// OrderMap order(graph);
  1457   /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1458   /// OrderSetterMap setter(order);
  1459   /// typedef Graph::NodeMap<bool> StoreMap;
  1460   /// StoreMap store(graph);
  1461   ///
  1462   /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
  1463   /// ReachedMap reached(store, setter);
  1464   ///
  1465   /// Dfs<Graph>::DefReachedMap<ReachedMap>::Create dfs(graph);
  1466   /// dfs.reachedMap(reached);
  1467   /// dfs.init();
  1468   /// for (NodeIt it(graph); it != INVALID; ++it) {
  1469   ///   if (!dfs.reached(it)) {
  1470   ///     dfs.addSource(it);
  1471   ///     dfs.start();
  1472   ///   }
  1473   /// }
  1474   ///\endcode
  1475   template <typename Map>
  1476   class SettingOrderBoolMap {
  1477   public:
  1478     typedef typename Map::Key Key;
  1479     typedef bool Value;
  1480 
  1481     /// Constructor
  1482     SettingOrderBoolMap(Map& _map) 
  1483       : map(_map), counter(0) {}
  1484 
  1485     /// Number of set operations.
  1486     int num() const {
  1487       return counter;
  1488     }
  1489 
  1490     /// Setter function of the map
  1491     void set(const Key& key, Value value) {
  1492       if (value) {
  1493 	map.set(key, counter++);
  1494       }
  1495     }
  1496     
  1497   private:
  1498     Map& map;
  1499     int counter;
  1500   };
  1501 
  1502   /// @}
  1503 }
  1504 
  1505 #endif // LEMON_MAPS_H