src/include/dijkstra.h
author deba
Mon, 29 Mar 2004 21:43:27 +0000
changeset 262 60de0f16a4a1
parent 257 7f832b4e5391
child 276 b38f4cfa76cf
permissions -rw-r--r--
(none)
     1 // -*- C++ -*-
     2 
     3 /* 
     4  *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
     5  *
     6  *Constructor: 
     7  *
     8  *Dijkstra(Graph G, LengthMap length)
     9  *
    10  *
    11  *Methods:
    12  *
    13  *void run(Node s)
    14  *
    15  *T dist(Node v) : After run(s) was run, it returns the distance from s to v. 
    16  *   Returns T() if v is not reachable from s.
    17  *
    18  *Edge pred(Node v) : After run(s) was run, it returns the last 
    19  *   edge of a shortest s-v path. It is INVALID for s and for 
    20  *   the nodes not reachable from s.
    21  *
    22  *bool reached(Node v) : After run(s) was run, it is true iff v is 
    23  *   reachable from s
    24  *
    25  */
    26 
    27 #ifndef HUGO_DIJKSTRA_H
    28 #define HUGO_DIJKSTRA_H
    29 
    30 ///\file
    31 ///\brief Dijkstra algorithm.
    32 
    33 #include <fib_heap.h>
    34 #include <bin_heap.h>
    35 #include <invalid.h>
    36 
    37 namespace hugo {
    38   
    39   //Alpar: Changed the order of the parameters
    40   
    41   ///%Dijkstra algorithm class.
    42 
    43   ///This class provides an efficient implementation of %Dijkstra algorithm.
    44   ///The edge lengths are passed to the algorithm using a
    45   ///\ref ReadMapSkeleton "readable map",
    46   ///so it is easy to change it to any kind of length.
    47   ///
    48   ///The type of the length is determined by the \c ValueType of the length map.
    49   ///
    50   ///It is also possible to change the underlying priority heap.
    51   ///
    52   ///\param Graph The graph type the algorithm runs on.
    53   ///\param LengthMap This read-only
    54   ///EdgeMap
    55   ///determines the
    56   ///lengths of the edges. It is read once for each edge, so the map
    57   ///may involve in relatively time consuming process to compute the edge
    58   ///length if it is necessary. The default map type is
    59   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    60   ///\param Heap The heap type used by the %Dijkstra
    61   ///algorithm. The default
    62   ///is using \ref BinHeap "binary heap".
    63   
    64 #ifdef DOXYGEN
    65   template <typename Graph,
    66 	    typename LengthMap,
    67 	    typename Heap>
    68 #else
    69   template <typename Graph,
    70 	    typename LengthMap=typename Graph::EdgeMap<int>,
    71 	    template <class,class,class> class Heap = BinHeap >
    72 // 	    typename Heap=BinHeap <typename Graph::Node,
    73 // 				   typename LengthMap::ValueType, 
    74 // 				   typename Graph::NodeMap<int> > >
    75 #endif
    76   class Dijkstra{
    77   public:
    78     typedef typename Graph::Node Node;
    79     typedef typename Graph::NodeIt NodeIt;
    80     typedef typename Graph::Edge Edge;
    81     typedef typename Graph::OutEdgeIt OutEdgeIt;
    82     
    83     typedef typename LengthMap::ValueType ValueType;
    84     typedef typename Graph::NodeMap<Edge> PredMap;
    85     typedef typename Graph::NodeMap<Node> PredNodeMap;
    86     typedef typename Graph::NodeMap<ValueType> DistMap;
    87 
    88   private:
    89     const Graph& G;
    90     const LengthMap& length;
    91     PredMap predecessor;
    92     //In place of reach:
    93     PredNodeMap pred_node;
    94     DistMap distance;
    95     //I don't like this:
    96     //     //FIXME:
    97     //     typename Graph::NodeMap<bool> reach;
    98     //     //typename Graph::NodeMap<int> reach;
    99     
   100   public :
   101     
   102     /*
   103       The distance of the nodes is 0.
   104     */
   105     Dijkstra(Graph& _G, LengthMap& _length) :
   106       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
   107     
   108     void run(Node s);
   109     
   110     ///The distance of a node from the source.
   111 
   112     ///Returns the distance of a node from the source.
   113     ///\pre \ref run() must be called before using this function.
   114     ///\warning If node \c v in unreachable from the source the return value
   115     ///of this funcion is undefined.
   116     ValueType dist(Node v) const { return distance[v]; }
   117     ///Returns the edges of the shortest path tree.
   118 
   119     ///For a node \c v it returns the last edge of the shortest path
   120     ///from the source to \c v or INVALID if \c v is unreachable
   121     ///from the source.
   122     ///\pre \ref run() must be called before using this function.
   123     Edge pred(Node v) const { return predecessor[v]; }
   124     ///Returns the nodes of the shortest paths.
   125 
   126     ///For a node \c v it returns the last but one node of the shortest path
   127     ///from the source to \c v or INVALID if \c v is unreachable
   128     ///from the source.
   129     ///\pre \ref run() must be called before using this function.
   130     Node predNode(Node v) const { return pred_node[v]; }
   131     
   132     ///Returns a reference to the NodeMap of distances.
   133 
   134     ///\pre \ref run() must be called before using this function.
   135     ///
   136     const DistMap &distMap() const { return distance;}
   137     ///Returns a reference to the shortest path tree map.
   138 
   139     ///Returns a reference to the NodeMap of the edges of the
   140     ///shortest path tree.
   141     ///\pre \ref run() must be called before using this function.
   142     const PredMap &predMap() const { return predecessor;}
   143     ///Returns a reference to the map of nodes of  shortest paths.
   144 
   145     ///Returns a reference to the NodeMap of the last but one nodes of the
   146     ///shortest paths.
   147     ///\pre \ref run() must be called before using this function.
   148     const PredNodeMap &predNodeMap() const { return pred_node;}
   149 
   150     //    bool reached(Node v) { return reach[v]; }
   151 
   152     ///Checks if a node is reachable from the source.
   153 
   154     ///Returns \c true if \c v is reachable from the source.
   155     ///\warning the source node is reported to be unreached!
   156     ///\todo Is this what we want?
   157     ///\pre \ref run() must be called before using this function.
   158     ///
   159     bool reached(Node v) { return G.valid(predecessor[v]); }
   160     
   161   };
   162   
   163 
   164   // **********************************************************************
   165   //  IMPLEMENTATIONS
   166   // **********************************************************************
   167 
   168   ///Runs %Dijkstra algorithm from node the source.
   169 
   170   ///This method runs the %Dijkstra algorithm from a source node \c s
   171   ///in order to
   172   ///compute the
   173   ///shortest path to each node. The algorithm computes
   174   ///- The shortest path tree.
   175   ///- The distance of each node from the source.
   176   template <typename Graph, typename LengthMap,
   177 	    template<class,class,class> class Heap >
   178   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   179     
   180     NodeIt u;
   181     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   182       predecessor.set(u,INVALID);
   183       pred_node.set(u,INVALID);
   184       // If a node is unreacheable, then why should be the dist=0?
   185       // distance.set(u,0);
   186       //      reach.set(u,false);
   187     }
   188     
   189     //We don't need it at all.
   190     //     //FIXME:
   191     //     typename Graph::NodeMap<bool> scanned(G,false);
   192     //     //typename Graph::NodeMap<int> scanned(G,false);
   193     typename Graph::NodeMap<int> heap_map(G,-1);
   194     
   195     //Heap heap(heap_map);
   196     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
   197     
   198     heap.push(s,0); 
   199     //    reach.set(s, true);
   200     
   201       while ( !heap.empty() ) {
   202 	
   203 	Node v=heap.top(); 
   204 	ValueType oldvalue=heap[v];
   205 	heap.pop();
   206 	distance.set(v, oldvalue);
   207 	
   208 	for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) {
   209 	  Node w=G.head(e); 
   210 	  
   211 	  switch(heap.state(w)) {
   212 	  case heap.PRE_HEAP:
   213 	    //	    reach.set(w,true);
   214 	    heap.push(w,oldvalue+length[e]); 
   215 	    predecessor.set(w,e);
   216 	    pred_node.set(w,v);
   217 	    break;
   218 	  case heap.IN_HEAP:
   219 	    if ( oldvalue+length[e] < heap[w] ) {
   220 	      heap.decrease(w, oldvalue+length[e]); 
   221 	      predecessor.set(w,e);
   222 	      pred_node.set(w,v);
   223 	    }
   224 	    break;
   225 	  case heap.POST_HEAP:
   226 	    break;
   227 	  }
   228 	}
   229       }
   230   }
   231   
   232 } //END OF NAMESPACE HUGO
   233 
   234 #endif
   235 
   236