src/work/athos/preflow_push.hh
author klao
Sun, 21 Mar 2004 17:09:16 +0000
changeset 226 616bc397c83a
parent 105 a3c73e9b9b2e
child 331 f5461f8bc59b
permissions -rw-r--r--
Reszutas konstruktorok
     1 #ifndef PREFLOW_PUSH_HH
     2 #define PREFLOW_PUSH_HH
     3 
     4 #include <algorithm>
     5 #include <list>
     6 #include <vector>
     7 //#include "pf_hiba.hh"
     8 //#include <marci_list_graph.hh>
     9 //#include <marci_graph_traits.hh>
    10 
    11 #include <reverse_bfs.hh>
    12 
    13 using namespace std;
    14 
    15 namespace hugo {
    16 
    17   template <typename graph_type, typename T>
    18   class preflow_push {
    19 
    20     //Hasznos typedef-ek
    21     typedef typename graph_type::NodeIt NodeIt;
    22     typedef typename graph_type::EdgeIt EdgeIt;
    23     typedef typename graph_type::EachNodeIt EachNodeIt;
    24     typedef typename graph_type::EachEdgeIt EachEdgeIt;
    25     typedef typename graph_type::OutEdgeIt OutEdgeIt;
    26     typedef typename graph_type::InEdgeIt InEdgeIt;
    27     typedef typename graph_type::SymEdgeIt SymEdgeIt;
    28 
    29 
    30 
    31     /*
    32     typedef graph_traits<graph_type>::node_iterator node_iterator;
    33     typedef graph_traits<graph_type>::EdgeIt EdgeIt;
    34     typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
    35     typedef graph_traits<graph_type>::each_EdgeIt each_EdgeIt;
    36     typedef graph_traits<graph_type>::out_EdgeIt out_EdgeIt;
    37     typedef graph_traits<graph_type>::InEdgeIt InEdgeIt;
    38     typedef graph_traits<graph_type>::sym_EdgeIt sym_EdgeIt;
    39     */
    40 
    41     //---------------------------------------------
    42     //Parameters of the algorithm
    43     //---------------------------------------------
    44     //Fully examine an active node until excess becomes 0
    45     enum node_examination_t {examine_full, examine_to_relabel};
    46     //No more implemented yet:, examine_only_one_edge};
    47     node_examination_t node_examination;
    48     //Which implementation to be used
    49     enum implementation_t {impl_fifo, impl_highest_label};
    50     //No more implemented yet:};
    51     implementation_t implementation;
    52     //---------------------------------------------
    53     //Parameters of the algorithm
    54     //---------------------------------------------
    55  
    56   private:
    57     //input
    58     graph_type& G;
    59     NodeIt s;
    60     NodeIt t;
    61     typename graph_type::EdgeMap<T> &capacity;
    62     //typename graph_type::EdgeMap<T>  &capacity;
    63     //output
    64     //typename graph_type::EdgeMap<T>  
    65     typename graph_type::EdgeMap<T> preflow;
    66     T maxflow_value;
    67   
    68     //auxiliary variables for computation
    69     int number_of_nodes;
    70     
    71     
    72     typename graph_type::NodeMap<int> level;
    73     typename graph_type::NodeMap<T> excess;
    74     //node_property_vector<graph_type, int> level;
    75     //node_property_vector<graph_type, T> excess;
    76     
    77     //Number of nodes on each level
    78     vector<int> num_of_nodes_on_level;
    79     
    80     //For the FIFO implementation
    81     list<NodeIt> fifo_nodes;
    82     //For 'highest label' implementation
    83     int highest_active;
    84     //int second_highest_active;
    85     vector< list<NodeIt> > active_nodes;
    86 
    87   public:
    88   
    89     //Constructing the object using the graph, source, sink and capacity vector
    90     preflow_push(
    91 		      graph_type& _G, 
    92 		      NodeIt _s, 
    93 		      NodeIt _t, 
    94 		      typename graph_type::EdgeMap<T> & _capacity)
    95       : G(_G), s(_s), t(_t), 
    96 	capacity(_capacity), 
    97 	preflow(_G),
    98 	//Counting the number of nodes
    99 	//number_of_nodes(count(G.first<EachNodeIt>())),
   100 	number_of_nodes(G.nodeNum()),
   101 
   102 	level(_G),
   103 	excess(_G)//,
   104         // Default constructor: active_nodes()
   105     { 
   106       //Simplest parameter settings
   107       node_examination = examine_full;//examine_to_relabel;//
   108       //Which implementation to be usedexamine_full
   109       implementation = impl_highest_label;//impl_fifo;
   110  
   111       //
   112       num_of_nodes_on_level.resize(2*number_of_nodes-1);
   113       num_of_nodes_on_level.clear();
   114 
   115       switch(implementation){
   116       case impl_highest_label :{
   117 	active_nodes.resize(2*number_of_nodes-1);
   118 	active_nodes.clear();
   119 	break;
   120       }
   121       default:
   122 	break;
   123       }
   124 
   125     }
   126 
   127     //Returns the value of a maximal flow 
   128     T run();
   129   
   130     typename graph_type::EdgeMap<T>  getmaxflow(){
   131       return preflow;
   132     }
   133 
   134 
   135   private:
   136     //For testing purposes only
   137     //Lists the node_properties
   138     void write_property_vector(typename graph_type::NodeMap<T> a,
   139 			       //node_property_vector<graph_type, T> a, 
   140 			       char* prop_name="property"){
   141       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   142 	cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
   143       }
   144       cout<<endl;
   145     }
   146 
   147     //Modifies the excess of the node and makes sufficient changes
   148     void modify_excess(const NodeIt& a ,T v){
   149 	T old_value=excess.get(a);
   150 	excess.set(a,old_value+v);
   151     }
   152   
   153     //This private procedure is supposed to modify the preflow on edge j
   154     //by value v (which can be positive or negative as well) 
   155     //and maintain the excess on the head and tail
   156     //Here we do not check whether this is possible or not
   157     void modify_preflow(EdgeIt j, const T& v){
   158 
   159       //Auxiliary variable
   160       T old_value;
   161 	
   162       //Modifiyng the edge
   163       old_value=preflow.get(j);
   164       preflow.set(j,old_value+v);
   165 
   166 
   167       //Modifiyng the head
   168       modify_excess(G.head(j),v);
   169 	
   170       //Modifiyng the tail
   171       modify_excess(G.tail(j),-v);
   172 
   173     }
   174 
   175     //Gives the active node to work with 
   176     //(depending on the implementation to be used)
   177     NodeIt get_active_node(){
   178       
   179 
   180       switch(implementation) {
   181       case impl_highest_label : {
   182 
   183 	//First need to find the highest label for which there"s an active node
   184 	while( highest_active>=0 && active_nodes[highest_active].empty() ){ 
   185 	  --highest_active;
   186 	}
   187 
   188 	if( highest_active>=0) {
   189 	  
   190 
   191 	  NodeIt a=active_nodes[highest_active].front();
   192 	  active_nodes[highest_active].pop_front();
   193 	  
   194 	  return a;
   195 	}
   196 	else {
   197 	  return NodeIt();
   198 	}
   199 	
   200 	break;
   201 	
   202       }
   203       case impl_fifo : {
   204 
   205 	if( ! fifo_nodes.empty() ) {
   206 	  NodeIt a=fifo_nodes.front();
   207 	  fifo_nodes.pop_front();
   208 	  return a;
   209 	}
   210 	else {
   211 	  return NodeIt();
   212 	}
   213 	break;
   214       }
   215       }
   216       //
   217       return NodeIt();
   218     }
   219 
   220     //Puts node 'a' among the active nodes
   221     void make_active(const NodeIt& a){
   222       //s and t never become active
   223       if (a!=s && a!= t){
   224 	switch(implementation){
   225 	case impl_highest_label :
   226 	  active_nodes[level.get(a)].push_back(a);
   227 	  break;
   228 	case impl_fifo :
   229 	  fifo_nodes.push_back(a);
   230 	  break;
   231 	}
   232 
   233       }
   234 
   235       //Update highest_active label
   236       if (highest_active<level.get(a)){
   237 	highest_active=level.get(a);
   238       }
   239 
   240     }
   241 
   242     //Changes the level of node a and make sufficent changes
   243     void change_level_to(NodeIt a, int new_value){
   244       int seged = level.get(a);
   245       level.set(a,new_value);
   246       --num_of_nodes_on_level[seged];
   247       ++num_of_nodes_on_level[new_value];
   248     }
   249 
   250     //Collection of things useful (or necessary) to do before running
   251 
   252     void preprocess(){
   253 
   254       //---------------------------------------
   255       //Initialize parameters
   256       //---------------------------------------
   257 
   258       //Setting starting preflow, level and excess values to zero
   259       //This can be important, if the algorithm is run more then once
   260       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   261         level.set(i,0);
   262         excess.set(i,0);
   263 	for(OutEdgeIt j=G.template first<OutEdgeIt>(i); j.valid(); ++j) 
   264 	  preflow.set(j, 0);
   265       }
   266       num_of_nodes_on_level[0]=number_of_nodes;
   267       highest_active=0;
   268       //---------------------------------------
   269       //Initialize parameters
   270       //---------------------------------------
   271 
   272       
   273       //------------------------------------
   274       //This is the only part that uses BFS
   275       //------------------------------------
   276       //Setting starting level values using reverse bfs
   277       reverse_bfs<graph_type> rev_bfs(G,t);
   278       rev_bfs.run();
   279       //write_property_vector(rev_bfs.dist,"rev_bfs");
   280       for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) {
   281         change_level_to(i,rev_bfs.dist(i));
   282 	//level.put(i,rev_bfs.dist.get(i));
   283       }
   284       //------------------------------------
   285       //This is the only part that uses BFS
   286       //------------------------------------
   287       
   288       
   289       //Starting level of s
   290       change_level_to(s,number_of_nodes);
   291       //level.put(s,number_of_nodes);
   292       
   293       
   294       //we push as much preflow from s as possible to start with
   295       for(OutEdgeIt j=G.template first<OutEdgeIt>(s); j.valid(); ++j){ 
   296 	modify_preflow(j,capacity.get(j) );
   297 	make_active(G.head(j));
   298 	int lev=level.get(G.head(j));
   299 	if(highest_active<lev){
   300 	  highest_active=lev;
   301 	}
   302       }
   303       //cout<<highest_active<<endl;
   304     } 
   305 
   306     
   307     //If the preflow is less than the capacity on the given edge
   308     //then it is an edge in the residual graph
   309     bool is_admissible_forward_edge(OutEdgeIt j, int& new_level){
   310 
   311       if (capacity.get(j)>preflow.get(j)){
   312 	if(level.get(G.tail(j))==level.get(G.head(j))+1){
   313 	  return true;
   314 	}
   315 	else{
   316 	  if (level.get(G.head(j)) < new_level)
   317 	    new_level=level.get(G.head(j));
   318 	}
   319       }
   320       return false;
   321     }
   322 
   323     //If the preflow is greater than 0 on the given edge
   324     //then the edge reversd is an edge in the residual graph
   325     bool is_admissible_backward_edge(InEdgeIt j, int& new_level){
   326       
   327       if (0<preflow.get(j)){
   328 	if(level.get(G.tail(j))==level.get(G.head(j))-1){
   329 	 
   330 	  return true;
   331 	}
   332 	else{
   333 	  if (level.get(G.tail(j)) < new_level)
   334 	    new_level=level.get(G.tail(j));
   335 	}
   336 	
   337       }
   338       return false;
   339     }
   340 
   341  
   342   };  //class preflow_push  
   343 
   344   template<typename graph_type, typename T>
   345     T preflow_push<graph_type, T>::run() {
   346     
   347     preprocess();
   348     //write_property_vector(level,"level");
   349     T e,v;
   350     NodeIt a;
   351     while (a=get_active_node(), a.valid()){
   352       
   353       //cout<<G.id(a)<<endl;
   354       //write_property_vector(excess,"excess");
   355       //write_property_vector(level,"level");
   356 
   357 
   358       bool go_to_next_node=false;
   359       e = excess.get(a);
   360       while (!go_to_next_node){
   361 	//Initial value for the new level for the active node we are dealing with
   362 	int new_level=2*number_of_nodes;
   363 	//write_property_vector(excess,"excess");
   364 	//write_property_vector(level,"level");
   365 	//cout<<G.id(a)<<endl;
   366 	//Out edges from node a
   367 	{
   368 	  OutEdgeIt j=G.template first<OutEdgeIt>(a);
   369 	  while (j.valid() && e){
   370 
   371 	    if (is_admissible_forward_edge(j,new_level)){
   372 	      v=min(e,capacity.get(j) - preflow.get(j));
   373 	      e -= v;
   374 	      //New node might become active
   375 	      if (excess.get(G.head(j))==0){
   376 		make_active(G.head(j));
   377 	      }
   378 	      modify_preflow(j,v);
   379 	    }
   380 	    ++j;
   381 	  }
   382 	}
   383 	//In edges to node a
   384 	{
   385 	  InEdgeIt j=G.template first<InEdgeIt>(a);
   386 	  while (j.valid() && e){
   387 	    if (is_admissible_backward_edge(j,new_level)){
   388 	      v=min(e,preflow.get(j));
   389 	      e -= v;
   390 	      //New node might become active
   391 	      if (excess.get(G.tail(j))==0){
   392 		make_active(G.tail(j));
   393 	      }
   394 	      modify_preflow(j,-v);
   395 	    }
   396 	    ++j;
   397 	  }
   398 	}
   399 
   400 	//if (G.id(a)==999)
   401 	//cout<<new_level<<" e: "<<e<<endl;
   402 	//cout<<G.id(a)<<" "<<new_level<<endl;
   403 
   404 	if (0==e){
   405 	  //Saturating push
   406 	  go_to_next_node=true;
   407 	}
   408 	else{//If there is still excess in node a
   409 	  
   410 	  //change_level_to(a,new_level+1);
   411 	  
   412 	  //Level remains empty
   413 	  if (num_of_nodes_on_level[level.get(a)]==1){
   414 	    change_level_to(a,number_of_nodes);
   415 	    //go_to_next_node=True;
   416 	  }
   417 	  else{
   418 	    change_level_to(a,new_level+1);
   419 	    //increase_level(a);
   420 	  }
   421 	  
   422     
   423 	  
   424 
   425 	  switch(node_examination){
   426 	  case examine_to_relabel:
   427 	    make_active(a);
   428 
   429 	    go_to_next_node = true;
   430 	    break;
   431 	  default:
   432 	    break;
   433 	  }
   434 	  
   435     
   436 	
   437 	}//if (0==e)
   438       }
   439     }
   440     maxflow_value = excess.get(t);
   441     return maxflow_value;
   442   }//run
   443 
   444 
   445 }//namespace hugo
   446 
   447 #endif //PREFLOW_PUSH_HH