Nehany folyamalgoritmus futasi ideje, azzal a kozponti kerdessel, hogy a sok dereferalas
hasznalata/kerulese
optimalizalassal/optimalizalas nelkul
kulonbozo gepeken Celeron 600/karp
milyen futasi idoket eredmenyez.
10 ///\brief A simple two dimensional vector and a bounding box implementation
12 /// The class \ref hugo::xy "xy" implements
13 ///a two dimensional vector with the usual
16 /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine
17 /// the rectangular bounding box a set of \ref hugo::xy "xy"'s.
21 2 dimensional vector (plainvector) implementation
31 ///Default constructor: both coordinates become 0
34 ///Constructing the instance from coordinates
35 xy(T a, T b) : x(a), y(a) { }
38 ///Gives back the square of the norm of the vector
43 ///Increments the left hand side by u
44 xy<T>& operator +=(const xy<T>& u){
50 ///Decrements the left hand side by u
51 xy<T>& operator -=(const xy<T>& u){
57 ///Multiplying the left hand side with a scalar
58 xy<T>& operator *=(const T &u){
64 ///Dividing the left hand side by a scalar
65 xy<T>& operator /=(const T &u){
71 ///Returns the scalar product of two vectors
72 T operator *(const xy<T>& u){
76 ///Returns the sum of two vectors
77 xy<T> operator+(const xy<T> &u) const {
82 ///Returns the difference of two vectors
83 xy<T> operator-(const xy<T> &u) const {
88 ///Returns a vector multiplied by a scalar
89 xy<T> operator*(const T &u) const {
94 ///Returns a vector divided by a scalar
95 xy<T> operator/(const T &u) const {
101 bool operator==(const xy<T> &u){
102 return (x==u.x) && (y==u.y);
105 ///Testing inequality
106 bool operator!=(xy u){
107 return (x!=u.x) || (y!=u.y);
112 ///Reading a plainvector from a stream
115 std::istream& operator>>(std::istream &is, xy<T> &z)
122 ///Outputting a plainvector to a stream
125 std::ostream& operator<<(std::ostream &os, xy<T> z)
127 os << "(" << z.x << ", " << z.y << ")";
133 Implementation of a bounding box of plainvectors.
138 xy<T> bottom_left, top_right;
142 ///Default constructor: an empty bounding box
143 BoundingBox() { _empty = true; }
145 ///Constructing the instance from one point
146 BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
148 ///Is there any point added
153 ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined)
154 xy<T> bottomLeft() const {
158 ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined)
159 xy<T> topRight() const {
163 ///Checks whether a point is inside a bounding box
164 bool inside(const xy<T>& u){
168 return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
169 (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
173 ///Increments a bounding box with a point
174 BoundingBox& operator +=(const xy<T>& u){
176 bottom_left=top_right=u;
180 if (bottom_left.x > u.x) bottom_left.x = u.x;
181 if (bottom_left.y > u.y) bottom_left.y = u.y;
182 if (top_right.x < u.x) top_right.x = u.x;
183 if (top_right.y < u.y) top_right.y = u.y;
188 ///Sums a bounding box and a point
189 BoundingBox operator +(const xy<T>& u){
190 BoundingBox b = *this;
194 ///Increments a bounding box with an other bounding box
195 BoundingBox& operator +=(const BoundingBox &u){
197 *this += u.bottomLeft();
198 *this += u.topRight();
203 ///Sums two bounding boxes
204 BoundingBox operator +(const BoundingBox& u){
205 BoundingBox b = *this;
209 };//class Boundingbox