src/work/jacint/fib_heap.h
author marci
Wed, 31 Mar 2004 17:57:15 +0000
changeset 272 6179d85566e4
parent 220 7deda4d6a07a
permissions -rw-r--r--
Nehany folyamalgoritmus futasi ideje, azzal a kozponti kerdessel, hogy a sok dereferalas
hasznalata/kerulese
optimalizalassal/optimalizalas nelkul
kulonbozo gepeken Celeron 600/karp
milyen futasi idoket eredmenyez.
     1 // -*- C++ -*-
     2 /*
     3  *template <typename Item, 
     4  *          typename Prio, 
     5  *          typename ItemIntMap, 
     6  *          typename Compare = std::less<Prio> >
     7  * 
     8  *constructors:
     9  *
    10  *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
    11  *
    12  *Member functions:
    13  *
    14  *int size() : returns the number of elements in the heap
    15  *
    16  *bool empty() : true iff size()=0
    17  *
    18  *void set(Item, Prio) : calls push(Item, Prio) if Item is not
    19  *     in the heap, and calls decrease/increase(Item, Prio) otherwise
    20  *
    21  *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
    22  *     mustn't be in the heap.
    23  *
    24  *Item top() : returns the Item with least Prio. 
    25  *     Must be called only if heap is nonempty.
    26  *
    27  *Prio prio() : returns the least Prio
    28  *     Must be called only if heap is nonempty.
    29  *
    30  *Prio get(Item) : returns Prio of Item
    31  *     Must be called only if Item is in heap.
    32  *
    33  *void pop() : deletes the Item with least Prio
    34  *
    35  *void erase(Item) : deletes Item from the heap if it was already there
    36  *
    37  *void decrease(Item, P) : decreases prio of Item to P. 
    38  *     Item must be in the heap with prio at least P.
    39  *
    40  *void increase(Item, P) : sets prio of Item to P. 
    41  *
    42  *state_enum state(Item) : returns PRE_HEAP if Item has not been in the 
    43  *     heap until now, IN_HEAP if it is in the heap at the moment, and 
    44  *     POST_HEAP otherwise. In the latter case it is possible that Item
    45  *     will get back to the heap again. 
    46  *
    47  *In Fibonacci heaps, increase and erase are not efficient, in case of
    48  *many calls to these operations, it is better to use bin_heap.
    49  */
    50 
    51 #ifndef FIB_HEAP_H
    52 #define FIB_HEAP_H
    53 
    54 #include <vector>
    55 #include <functional>
    56 #include <math.h>
    57 
    58 namespace hugo {
    59   
    60   template <typename Item, typename Prio, typename ItemIntMap, 
    61     typename Compare = std::less<Prio> >
    62  
    63   class FibHeap {
    64   
    65     typedef Prio PrioType;
    66     
    67     class store;
    68     
    69     std::vector<store> container;
    70     int minimum;
    71     ItemIntMap &iimap;
    72     Compare comp;
    73     int num_items;
    74 
    75     enum state_enum {
    76       IN_HEAP = 0,
    77       PRE_HEAP = -1,
    78       POST_HEAP = -2
    79     };
    80     
    81   public :
    82     
    83     FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} 
    84     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), 
    85       iimap(_iimap), comp(_comp), num_items() {}
    86     
    87     
    88     int size() const {
    89       return num_items; 
    90     }
    91 
    92 
    93     bool empty() const { return num_items==0; }
    94 
    95 
    96     void set (Item const it, PrioType const value) {
    97       int i=iimap[it];
    98       if ( i >= 0 && container[i].in ) {
    99 	if ( comp(value, container[i].prio) ) decrease(it, value); 
   100 	if ( comp(container[i].prio, value) ) increase(it, value); 
   101       } else push(it, value);
   102     }
   103     
   104 
   105     void push (Item const it, PrioType const value) {
   106       int i=iimap[it];      
   107       if ( i < 0 ) {
   108 	int s=container.size();
   109 	iimap.set( it, s );	
   110 	store st;
   111 	st.name=it;
   112 	container.push_back(st);
   113 	i=s;
   114       } else {
   115 	container[i].parent=container[i].child=-1;
   116 	container[i].degree=0;
   117 	container[i].in=true;
   118 	container[i].marked=false;
   119       }
   120 
   121       if ( num_items ) {
   122 	container[container[minimum].right_neighbor].left_neighbor=i;
   123 	container[i].right_neighbor=container[minimum].right_neighbor;
   124 	container[minimum].right_neighbor=i;
   125 	container[i].left_neighbor=minimum;
   126 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   127       } else {
   128 	container[i].right_neighbor=container[i].left_neighbor=i;
   129 	minimum=i;	
   130       }
   131       container[i].prio=value;
   132       ++num_items;
   133     }
   134     
   135 
   136     Item top() const {
   137       return container[minimum].name;
   138     }
   139     
   140     
   141     PrioType prio() const {
   142       return container[minimum].prio;
   143     }
   144     
   145 
   146     PrioType& operator[](const Item& it) {
   147       return container[iimap[it]].prio;
   148     }
   149 
   150     
   151     const PrioType& operator[](const Item& it) const {
   152       return container[iimap[it]].prio;
   153     }
   154 
   155 
   156     const PrioType get(const Item& it) const {
   157       return container[iimap[it]].prio;
   158     }
   159     
   160     void pop() {
   161       /*The first case is that there are only one root.*/
   162       if ( container[minimum].left_neighbor==minimum ) {
   163 	container[minimum].in=false;
   164 	if ( container[minimum].degree!=0 ) { 
   165 	  makeroot(container[minimum].child);
   166 	  minimum=container[minimum].child;
   167 	  balance();
   168 	}
   169       } else {
   170 	int right=container[minimum].right_neighbor;
   171 	unlace(minimum);
   172 	container[minimum].in=false;
   173 	if ( container[minimum].degree > 0 ) {
   174 	  int left=container[minimum].left_neighbor;
   175 	  int child=container[minimum].child;
   176 	  int last_child=container[child].left_neighbor;
   177 	
   178 	  makeroot(child);
   179 	  
   180 	  container[left].right_neighbor=child;
   181 	  container[child].left_neighbor=left;
   182 	  container[right].left_neighbor=last_child;
   183 	  container[last_child].right_neighbor=right;
   184 	}
   185 	minimum=right;
   186 	balance();
   187       } // the case where there are more roots
   188       --num_items;   
   189     }
   190 
   191     
   192     void erase (const Item& it) {
   193       int i=iimap[it];
   194       
   195       if ( i >= 0 && container[i].in ) { 	
   196 	if ( container[i].parent!=-1 ) {
   197 	  int p=container[i].parent;
   198 	  cut(i,p);	    
   199 	  cascade(p);
   200 	}
   201 	minimum=i;     //As if its prio would be -infinity
   202 	pop();
   203       }
   204     }
   205     
   206 
   207     void decrease (Item it, PrioType const value) {
   208       int i=iimap[it];
   209       container[i].prio=value;
   210       int p=container[i].parent;
   211       
   212       if ( p!=-1 && comp(value, container[p].prio) ) {
   213 	cut(i,p);	    
   214 	cascade(p);
   215       }      
   216       if ( comp(value, container[minimum].prio) ) minimum=i; 
   217     }
   218    
   219 
   220     void increase (Item it, PrioType const value) {
   221       erase(it);
   222       push(it, value);
   223     }
   224 
   225 
   226     state_enum state(const Item &it) const {
   227       int i=iimap[it];
   228       if( i>=0 ) {
   229 	if ( container[i].in ) i=IN_HEAP;
   230 	else i=POST_HEAP; 
   231       }
   232       return state_enum(i);
   233     }
   234 
   235 
   236   private:
   237     
   238     void balance() {      
   239 
   240     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
   241   
   242     std::vector<int> A(maxdeg,-1); 
   243     
   244     /*
   245      *Recall that now minimum does not point to the minimum prio element.
   246      *We set minimum to this during balance().
   247      */
   248     int anchor=container[minimum].left_neighbor; 
   249     int next=minimum; 
   250     bool end=false; 
   251     	
   252        do {
   253 	int active=next;
   254 	if ( anchor==active ) end=true;
   255 	int d=container[active].degree;
   256 	next=container[active].right_neighbor;
   257 
   258 	while (A[d]!=-1) {	  
   259 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   260 	    fuse(active,A[d]); 
   261 	  } else { 
   262 	    fuse(A[d],active);
   263 	    active=A[d];
   264 	  } 
   265 	  A[d]=-1;
   266 	  ++d;
   267 	}	
   268 	A[d]=active;
   269        } while ( !end );
   270 
   271 
   272        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   273        int s=minimum;
   274        int m=minimum;
   275        do {  
   276 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   277 	 s=container[s].right_neighbor;
   278        } while ( s != m );
   279     }
   280 
   281 
   282     void makeroot (int c) {
   283       int s=c;
   284       do {  
   285 	container[s].parent=-1;
   286 	s=container[s].right_neighbor;
   287       } while ( s != c );
   288     }
   289     
   290 
   291     void cut (int a, int b) {    
   292       /*
   293        *Replacing a from the children of b.
   294        */
   295       --container[b].degree;
   296       
   297       if ( container[b].degree !=0 ) {
   298 	int child=container[b].child;
   299 	if ( child==a ) 
   300 	  container[b].child=container[child].right_neighbor;
   301 	unlace(a);
   302       }
   303       
   304       
   305       /*Lacing a to the roots.*/
   306       int right=container[minimum].right_neighbor;
   307       container[minimum].right_neighbor=a;
   308       container[a].left_neighbor=minimum;
   309       container[a].right_neighbor=right;
   310       container[right].left_neighbor=a;
   311 
   312       container[a].parent=-1;
   313       container[a].marked=false;
   314     }
   315 
   316 
   317     void cascade (int a) 
   318     {
   319       if ( container[a].parent!=-1 ) {
   320 	int p=container[a].parent;
   321 	
   322 	if ( container[a].marked==false ) container[a].marked=true;
   323 	else {
   324 	  cut(a,p);
   325 	  cascade(p);
   326 	}
   327       }
   328     }
   329 
   330 
   331     void fuse (int a, int b) {
   332       unlace(b);
   333       
   334       /*Lacing b under a.*/
   335       container[b].parent=a;
   336 
   337       if (container[a].degree==0) {
   338 	container[b].left_neighbor=b;
   339 	container[b].right_neighbor=b;
   340 	container[a].child=b;	
   341       } else {
   342 	int child=container[a].child;
   343 	int last_child=container[child].left_neighbor;
   344 	container[child].left_neighbor=b;
   345 	container[b].right_neighbor=child;
   346 	container[last_child].right_neighbor=b;
   347 	container[b].left_neighbor=last_child;
   348       }
   349 
   350       ++container[a].degree;
   351       
   352       container[b].marked=false;
   353     }
   354 
   355 
   356     /*
   357      *It is invoked only if a has siblings.
   358      */
   359     void unlace (int a) {      
   360       int leftn=container[a].left_neighbor;
   361       int rightn=container[a].right_neighbor;
   362       container[leftn].right_neighbor=rightn;
   363       container[rightn].left_neighbor=leftn;
   364     }
   365 
   366 
   367     class store {
   368       friend class FibHeap;
   369       
   370       Item name;
   371       int parent;
   372       int left_neighbor;
   373       int right_neighbor;
   374       int child;
   375       int degree;  
   376       bool marked;
   377       bool in;
   378       PrioType prio;
   379 
   380       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   381     };
   382     
   383   };
   384   
   385 } //namespace hugo
   386 #endif