2 #ifndef HUGO_MINCOSTFLOWS_H
3 #define HUGO_MINCOSTFLOWS_H
7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost
11 #include <graph_wrapper.h>
14 #include <for_each_macros.h>
21 ///\brief Implementation of an algorithm for finding a flow of value \c k
22 ///(for small values of \c k) having minimal total cost between 2 nodes
25 /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
26 /// an algorithm for finding a flow of value \c k
27 ///(for small values of \c k) having minimal total cost
28 /// from a given source node to a given target node in an
29 /// edge-weighted directed graph having nonnegative integer capacities.
30 /// The range of the length (weight) function is nonnegative reals but
31 /// the range of capacity function is the set of nonnegative integers.
32 /// It is not a polinomial time algorithm for counting the minimum cost
33 /// maximal flow, since it counts the minimum cost flow for every value 0..M
34 /// where \c M is the value of the maximal flow.
36 ///\author Attila Bernath
37 template <typename Graph, typename LengthMap, typename CapacityMap>
40 typedef typename LengthMap::ValueType Length;
42 //Warning: this should be integer type
43 typedef typename CapacityMap::ValueType Capacity;
45 typedef typename Graph::Node Node;
46 typedef typename Graph::NodeIt NodeIt;
47 typedef typename Graph::Edge Edge;
48 typedef typename Graph::OutEdgeIt OutEdgeIt;
49 typedef typename Graph::template EdgeMap<int> EdgeIntMap;
51 // typedef ConstMap<Edge,int> ConstMap;
53 typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
54 typedef typename ResGraphType::Edge ResGraphEdge;
57 //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
58 typedef typename Graph::template NodeMap<Length> NodeMap;
59 const ResGraphType& G;
60 // const EdgeIntMap& rev;
64 typedef typename LengthMap::KeyType KeyType;
65 typedef typename LengthMap::ValueType ValueType;
67 ValueType operator[](typename ResGraphType::Edge e) const {
69 return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
71 return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
74 ModLengthMap(const ResGraphType& _G,
75 const LengthMap &o, const NodeMap &p) :
76 G(_G), /*rev(_rev),*/ ol(o), pot(p){};
83 const LengthMap& length;
84 const CapacityMap& capacity;
88 //The value is 1 iff the edge is reversed.
89 //If the algorithm has finished, the edges of the seeked paths are
90 //exactly those that are reversed
92 typename Graph::template NodeMap<Length> potential;
94 //Container to store found paths
95 std::vector< std::vector<Edge> > paths;
96 //typedef DirPath<Graph> DPath;
105 MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G),
106 length(_length), capacity(_cap), flow(_G), potential(_G){ }
109 ///Runs the algorithm.
111 ///Runs the algorithm.
112 ///Returns k if there are at least k edge-disjoint paths from s to t.
113 ///Otherwise it returns the number of found edge-disjoint paths from s to t.
114 int run(Node s, Node t, int k) {
116 //Resetting variables from previous runs
119 FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
123 FOR_EACH_LOC(typename Graph::NodeIt, n, G){
124 //cout << potential[n]<<endl;
130 //We need a residual graph
131 ResGraphType res_graph(G, capacity, flow);
133 //Initialize the copy of the Dijkstra potential to zero
135 //typename ResGraphType::template NodeMap<Length> potential(res_graph);
138 ModLengthMap mod_length(res_graph, length, potential);
140 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
145 if (!dijkstra.reached(t)){
146 //There are no k paths from s to t
151 //We have to copy the potential
152 typename ResGraphType::NodeIt n;
153 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
154 potential[n] += dijkstra.distMap()[n];
159 //Augmenting on the sortest path
163 e = dijkstra.pred(n);
164 n = dijkstra.predNode(n);
165 res_graph.augment(e,1);
166 //Let's update the total length
167 if (res_graph.forward(e))
168 total_length += length[e];
170 total_length -= length[e];
183 ///This function gives back the total length of the found paths.
184 ///Assumes that \c run() has been run and nothing changed since then.
185 Length totalLength(){
190 ///\todo To be implemented later
192 ///This function gives back the \c j-th path in argument p.
193 ///Assumes that \c run() has been run and nothing changed since then.
194 /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
195 template<typename DirPath>
196 void getPath(DirPath& p, int j){
198 typename DirPath::Builder B(p);
199 for(typename std::vector<Edge>::iterator i=paths[j].begin();
200 i!=paths[j].end(); ++i ){
209 }; //class MinCostFlows
215 #endif //HUGO_MINCOSTFLOW_H