src/work/athos/mincostflows.h
author marci
Thu, 06 May 2004 14:25:21 +0000
changeset 548 61898ac9e9dc
parent 530 d9c06ac0b3a3
child 551 d167149bde95
permissions -rw-r--r--
(none)
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOWS_H
     3 #define HUGO_MINCOSTFLOWS_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
     8 
     9 #include <iostream>
    10 #include <dijkstra.h>
    11 #include <graph_wrapper.h>
    12 #include <maps.h>
    13 #include <vector.h>
    14 #include <for_each_macros.h>
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup galgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
    23   /// 
    24   ///
    25   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    26   /// an algorithm for finding a flow of value \c k 
    27   ///(for small values of \c k) having minimal total cost  
    28   /// from a given source node to a given target node in an
    29   /// edge-weighted directed graph having nonnegative integer capacities.
    30   /// The range of the length (weight) function is nonnegative reals but 
    31   /// the range of capacity function is the set of nonnegative integers. 
    32   /// It is not a polinomial time algorithm for counting the minimum cost
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    34   /// where \c M is the value of the maximal flow.
    35   ///
    36   ///\author Attila Bernath
    37   template <typename Graph, typename LengthMap, typename CapacityMap>
    38   class MinCostFlows {
    39 
    40     typedef typename LengthMap::ValueType Length;
    41 
    42     //Warning: this should be integer type
    43     typedef typename CapacityMap::ValueType Capacity;
    44     
    45     typedef typename Graph::Node Node;
    46     typedef typename Graph::NodeIt NodeIt;
    47     typedef typename Graph::Edge Edge;
    48     typedef typename Graph::OutEdgeIt OutEdgeIt;
    49     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    50 
    51     //    typedef ConstMap<Edge,int> ConstMap;
    52 
    53     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    54     typedef typename ResGraphType::Edge ResGraphEdge;
    55 
    56     class ModLengthMap {   
    57       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    58       typedef typename Graph::template NodeMap<Length> NodeMap;
    59       const ResGraphType& G;
    60       //      const EdgeIntMap& rev;
    61       const LengthMap &ol;
    62       const NodeMap &pot;
    63     public :
    64       typedef typename LengthMap::KeyType KeyType;
    65       typedef typename LengthMap::ValueType ValueType;
    66 	
    67       ValueType operator[](typename ResGraphType::Edge e) const {     
    68 	if (G.forward(e))
    69 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    70 	else
    71 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    72       }     
    73 	
    74       ModLengthMap(const ResGraphType& _G,
    75 		   const LengthMap &o,  const NodeMap &p) : 
    76 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    77     };//ModLengthMap
    78 
    79 
    80     
    81     //Input
    82     const Graph& G;
    83     const LengthMap& length;
    84     const CapacityMap& capacity;
    85 
    86     //auxiliary variables
    87 
    88     //The value is 1 iff the edge is reversed. 
    89     //If the algorithm has finished, the edges of the seeked paths are 
    90     //exactly those that are reversed 
    91     EdgeIntMap flow; 
    92     typename Graph::template NodeMap<Length> potential;
    93     
    94     //Container to store found paths
    95     std::vector< std::vector<Edge> > paths;
    96     //typedef DirPath<Graph> DPath;
    97     //DPath paths;
    98 
    99 
   100     Length total_length;
   101 
   102   public :
   103 
   104 
   105     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   106       length(_length), capacity(_cap), flow(_G), potential(_G){ }
   107 
   108     
   109     ///Runs the algorithm.
   110 
   111     ///Runs the algorithm.
   112     ///Returns k if there are at least k edge-disjoint paths from s to t.
   113     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   114     int run(Node s, Node t, int k) {
   115 
   116       //Resetting variables from previous runs
   117       total_length = 0;
   118       
   119       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   120 	flow.set(e,0);
   121       }
   122       
   123       FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   124 	//cout << potential[n]<<endl;
   125 	potential.set(n,0);
   126       }
   127       
   128 
   129       
   130       //We need a residual graph
   131       ResGraphType res_graph(G, capacity, flow);
   132 
   133       //Initialize the copy of the Dijkstra potential to zero
   134       
   135       //typename ResGraphType::template NodeMap<Length> potential(res_graph);
   136 
   137 
   138       ModLengthMap mod_length(res_graph, length, potential);
   139 
   140       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   141 
   142       int i;
   143       for (i=0; i<k; ++i){
   144 	dijkstra.run(s);
   145 	if (!dijkstra.reached(t)){
   146 	  //There are no k paths from s to t
   147 	  break;
   148 	};
   149 	
   150 	{
   151 	  //We have to copy the potential
   152 	  typename ResGraphType::NodeIt n;
   153 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   154 	      potential[n] += dijkstra.distMap()[n];
   155 	  }
   156 	}
   157 
   158 
   159 	//Augmenting on the sortest path
   160 	Node n=t;
   161 	ResGraphEdge e;
   162 	while (n!=s){
   163 	  e = dijkstra.pred(n);
   164 	  n = dijkstra.predNode(n);
   165 	  res_graph.augment(e,1);
   166 	  //Let's update the total length
   167 	  if (res_graph.forward(e))
   168 	    total_length += length[e];
   169 	  else 
   170 	    total_length -= length[e];	    
   171 	}
   172 
   173 	  
   174       }
   175       
   176 
   177       return i;
   178     }
   179 
   180 
   181 
   182 
   183     ///This function gives back the total length of the found paths.
   184     ///Assumes that \c run() has been run and nothing changed since then.
   185     Length totalLength(){
   186       return total_length;
   187     }
   188 
   189     /*
   190       ///\todo To be implemented later
   191 
   192     ///This function gives back the \c j-th path in argument p.
   193     ///Assumes that \c run() has been run and nothing changed since then.
   194     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   195     template<typename DirPath>
   196     void getPath(DirPath& p, int j){
   197       p.clear();
   198       typename DirPath::Builder B(p);
   199       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   200 	  i!=paths[j].end(); ++i ){
   201 	B.pushBack(*i);
   202       }
   203 
   204       B.commit();
   205     }
   206 
   207     */
   208 
   209   }; //class MinCostFlows
   210 
   211   ///@}
   212 
   213 } //namespace hugo
   214 
   215 #endif //HUGO_MINCOSTFLOW_H