3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CAPACITY_SCALING_H
20 #define LEMON_CAPACITY_SCALING_H
22 /// \ingroup min_cost_flow
25 /// \brief Capacity scaling algorithm for finding a minimum cost flow.
28 #include <lemon/bin_heap.h>
32 /// \addtogroup min_cost_flow
35 /// \brief Implementation of the capacity scaling algorithm for
36 /// finding a minimum cost flow.
38 /// \ref CapacityScaling implements the capacity scaling version
39 /// of the successive shortest path algorithm for finding a minimum
42 /// \tparam Graph The directed graph type the algorithm runs on.
43 /// \tparam LowerMap The type of the lower bound map.
44 /// \tparam CapacityMap The type of the capacity (upper bound) map.
45 /// \tparam CostMap The type of the cost (length) map.
46 /// \tparam SupplyMap The type of the supply map.
49 /// - Edge capacities and costs should be \e non-negative \e integers.
50 /// - Supply values should be \e signed \e integers.
51 /// - The value types of the maps should be convertible to each other.
52 /// - \c CostMap::Value must be signed type.
54 /// \author Peter Kovacs
55 template < typename Graph,
56 typename LowerMap = typename Graph::template EdgeMap<int>,
57 typename CapacityMap = typename Graph::template EdgeMap<int>,
58 typename CostMap = typename Graph::template EdgeMap<int>,
59 typename SupplyMap = typename Graph::template NodeMap<int> >
62 GRAPH_TYPEDEFS(typename Graph);
64 typedef typename CapacityMap::Value Capacity;
65 typedef typename CostMap::Value Cost;
66 typedef typename SupplyMap::Value Supply;
67 typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
68 typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
69 typedef typename Graph::template NodeMap<Edge> PredMap;
73 /// The type of the flow map.
74 typedef typename Graph::template EdgeMap<Capacity> FlowMap;
75 /// The type of the potential map.
76 typedef typename Graph::template NodeMap<Cost> PotentialMap;
80 /// \brief Special implementation of the \ref Dijkstra algorithm
81 /// for finding shortest paths in the residual network.
83 /// \ref ResidualDijkstra is a special implementation of the
84 /// \ref Dijkstra algorithm for finding shortest paths in the
85 /// residual network of the graph with respect to the reduced edge
86 /// costs and modifying the node potentials according to the
87 /// distance of the nodes.
88 class ResidualDijkstra
90 typedef typename Graph::template NodeMap<int> HeapCrossRef;
91 typedef BinHeap<Cost, HeapCrossRef> Heap;
95 // The directed graph the algorithm runs on
100 const CapacityEdgeMap &_res_cap;
101 const CostMap &_cost;
102 const SupplyNodeMap &_excess;
103 PotentialMap &_potential;
109 // The processed (i.e. permanently labeled) nodes
110 std::vector<Node> _proc_nodes;
115 ResidualDijkstra( const Graph &graph,
117 const CapacityEdgeMap &res_cap,
119 const SupplyMap &excess,
120 PotentialMap &potential,
122 _graph(graph), _flow(flow), _res_cap(res_cap), _cost(cost),
123 _excess(excess), _potential(potential), _dist(graph),
127 /// Run the algorithm from the given source node.
128 Node run(Node s, Capacity delta = 1) {
129 HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
130 Heap heap(heap_cross_ref);
136 while (!heap.empty() && _excess[heap.top()] > -delta) {
137 Node u = heap.top(), v;
138 Cost d = heap.prio() + _potential[u], nd;
139 _dist[u] = heap.prio();
141 _proc_nodes.push_back(u);
143 // Traversing outgoing edges
144 for (OutEdgeIt e(_graph, u); e != INVALID; ++e) {
145 if (_res_cap[e] >= delta) {
146 v = _graph.target(e);
147 switch(heap.state(v)) {
149 heap.push(v, d + _cost[e] - _potential[v]);
153 nd = d + _cost[e] - _potential[v];
155 heap.decrease(v, nd);
159 case Heap::POST_HEAP:
165 // Traversing incoming edges
166 for (InEdgeIt e(_graph, u); e != INVALID; ++e) {
167 if (_flow[e] >= delta) {
168 v = _graph.source(e);
169 switch(heap.state(v)) {
171 heap.push(v, d - _cost[e] - _potential[v]);
175 nd = d - _cost[e] - _potential[v];
177 heap.decrease(v, nd);
181 case Heap::POST_HEAP:
187 if (heap.empty()) return INVALID;
189 // Updating potentials of processed nodes
191 Cost t_dist = heap.prio();
192 for (int i = 0; i < int(_proc_nodes.size()); ++i)
193 _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
198 }; //class ResidualDijkstra
202 // The directed graph the algorithm runs on
204 // The original lower bound map
205 const LowerMap *_lower;
206 // The modified capacity map
207 CapacityEdgeMap _capacity;
208 // The original cost map
209 const CostMap &_cost;
210 // The modified supply map
211 SupplyNodeMap _supply;
214 // Edge map of the current flow
217 // Node map of the current potentials
218 PotentialMap *_potential;
219 bool _local_potential;
221 // The residual capacity map
222 CapacityEdgeMap _res_cap;
224 SupplyNodeMap _excess;
225 // The excess nodes (i.e. nodes with positive excess)
226 std::vector<Node> _excess_nodes;
227 // The deficit nodes (i.e. nodes with negative excess)
228 std::vector<Node> _deficit_nodes;
230 // The delta parameter used for capacity scaling
232 // The maximum number of phases
237 // Implementation of the Dijkstra algorithm for finding augmenting
238 // shortest paths in the residual network
239 ResidualDijkstra *_dijkstra;
243 /// \brief General constructor (with lower bounds).
245 /// General constructor (with lower bounds).
247 /// \param graph The directed graph the algorithm runs on.
248 /// \param lower The lower bounds of the edges.
249 /// \param capacity The capacities (upper bounds) of the edges.
250 /// \param cost The cost (length) values of the edges.
251 /// \param supply The supply values of the nodes (signed).
252 CapacityScaling( const Graph &graph,
253 const LowerMap &lower,
254 const CapacityMap &capacity,
256 const SupplyMap &supply ) :
257 _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost),
258 _supply(supply), _flow(NULL), _local_flow(false),
259 _potential(NULL), _local_potential(false),
260 _res_cap(capacity), _excess(supply), _pred(graph), _dijkstra(NULL)
262 // Check the sum of supply values
264 for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
265 _valid_supply = sum == 0;
267 // Remove non-zero lower bounds
268 typename LowerMap::Value lcap;
269 for (EdgeIt e(_graph); e != INVALID; ++e) {
270 if ((lcap = lower[e]) != 0) {
271 _capacity[e] -= lcap;
273 _supply[_graph.source(e)] -= lcap;
274 _supply[_graph.target(e)] += lcap;
275 _excess[_graph.source(e)] -= lcap;
276 _excess[_graph.target(e)] += lcap;
281 /// \brief General constructor (without lower bounds).
283 /// General constructor (without lower bounds).
285 /// \param graph The directed graph the algorithm runs on.
286 /// \param capacity The capacities (upper bounds) of the edges.
287 /// \param cost The cost (length) values of the edges.
288 /// \param supply The supply values of the nodes (signed).
289 CapacityScaling( const Graph &graph,
290 const CapacityMap &capacity,
292 const SupplyMap &supply ) :
293 _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
294 _supply(supply), _flow(NULL), _local_flow(false),
295 _potential(NULL), _local_potential(false),
296 _res_cap(capacity), _excess(supply), _pred(graph), _dijkstra(NULL)
298 // Check the sum of supply values
300 for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
301 _valid_supply = sum == 0;
304 /// \brief Simple constructor (with lower bounds).
306 /// Simple constructor (with lower bounds).
308 /// \param graph The directed graph the algorithm runs on.
309 /// \param lower The lower bounds of the edges.
310 /// \param capacity The capacities (upper bounds) of the edges.
311 /// \param cost The cost (length) values of the edges.
312 /// \param s The source node.
313 /// \param t The target node.
314 /// \param flow_value The required amount of flow from node \c s
315 /// to node \c t (i.e. the supply of \c s and the demand of \c t).
316 CapacityScaling( const Graph &graph,
317 const LowerMap &lower,
318 const CapacityMap &capacity,
321 Supply flow_value ) :
322 _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost),
323 _supply(graph, 0), _flow(NULL), _local_flow(false),
324 _potential(NULL), _local_potential(false),
325 _res_cap(capacity), _excess(graph, 0), _pred(graph), _dijkstra(NULL)
327 // Remove non-zero lower bounds
328 _supply[s] = _excess[s] = flow_value;
329 _supply[t] = _excess[t] = -flow_value;
330 typename LowerMap::Value lcap;
331 for (EdgeIt e(_graph); e != INVALID; ++e) {
332 if ((lcap = lower[e]) != 0) {
333 _capacity[e] -= lcap;
335 _supply[_graph.source(e)] -= lcap;
336 _supply[_graph.target(e)] += lcap;
337 _excess[_graph.source(e)] -= lcap;
338 _excess[_graph.target(e)] += lcap;
341 _valid_supply = true;
344 /// \brief Simple constructor (without lower bounds).
346 /// Simple constructor (without lower bounds).
348 /// \param graph The directed graph the algorithm runs on.
349 /// \param capacity The capacities (upper bounds) of the edges.
350 /// \param cost The cost (length) values of the edges.
351 /// \param s The source node.
352 /// \param t The target node.
353 /// \param flow_value The required amount of flow from node \c s
354 /// to node \c t (i.e. the supply of \c s and the demand of \c t).
355 CapacityScaling( const Graph &graph,
356 const CapacityMap &capacity,
359 Supply flow_value ) :
360 _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
361 _supply(graph, 0), _flow(NULL), _local_flow(false),
362 _potential(NULL), _local_potential(false),
363 _res_cap(capacity), _excess(graph, 0), _pred(graph), _dijkstra(NULL)
365 _supply[s] = _excess[s] = flow_value;
366 _supply[t] = _excess[t] = -flow_value;
367 _valid_supply = true;
372 if (_local_flow) delete _flow;
373 if (_local_potential) delete _potential;
377 /// \brief Set the flow map.
379 /// Set the flow map.
381 /// \return \c (*this)
382 CapacityScaling& flowMap(FlowMap &map) {
391 /// \brief Set the potential map.
393 /// Set the potential map.
395 /// \return \c (*this)
396 CapacityScaling& potentialMap(PotentialMap &map) {
397 if (_local_potential) {
399 _local_potential = false;
405 /// \name Execution control
409 /// \brief Run the algorithm.
411 /// This function runs the algorithm.
413 /// \param scaling Enable or disable capacity scaling.
414 /// If the maximum edge capacity and/or the amount of total supply
415 /// is rather small, the algorithm could be slightly faster without
418 /// \return \c true if a feasible flow can be found.
419 bool run(bool scaling = true) {
420 return init(scaling) && start();
425 /// \name Query Functions
426 /// The results of the algorithm can be obtained using these
428 /// \ref lemon::CapacityScaling::run() "run()" must be called before
433 /// \brief Return a const reference to the edge map storing the
436 /// Return a const reference to the edge map storing the found flow.
438 /// \pre \ref run() must be called before using this function.
439 const FlowMap& flowMap() const {
443 /// \brief Return a const reference to the node map storing the
444 /// found potentials (the dual solution).
446 /// Return a const reference to the node map storing the found
447 /// potentials (the dual solution).
449 /// \pre \ref run() must be called before using this function.
450 const PotentialMap& potentialMap() const {
454 /// \brief Return the flow on the given edge.
456 /// Return the flow on the given edge.
458 /// \pre \ref run() must be called before using this function.
459 Capacity flow(const Edge& edge) const {
460 return (*_flow)[edge];
463 /// \brief Return the potential of the given node.
465 /// Return the potential of the given node.
467 /// \pre \ref run() must be called before using this function.
468 Cost potential(const Node& node) const {
469 return (*_potential)[node];
472 /// \brief Return the total cost of the found flow.
474 /// Return the total cost of the found flow. The complexity of the
475 /// function is \f$ O(e) \f$.
477 /// \pre \ref run() must be called before using this function.
478 Cost totalCost() const {
480 for (EdgeIt e(_graph); e != INVALID; ++e)
481 c += (*_flow)[e] * _cost[e];
489 /// Initialize the algorithm.
490 bool init(bool scaling) {
491 if (!_valid_supply) return false;
495 _flow = new FlowMap(_graph);
499 _potential = new PotentialMap(_graph);
500 _local_potential = true;
502 for (EdgeIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
503 for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
505 _dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost,
506 _excess, *_potential, _pred );
508 // Initializing delta value
511 Supply max_sup = 0, max_dem = 0;
512 for (NodeIt n(_graph); n != INVALID; ++n) {
513 if ( _supply[n] > max_sup) max_sup = _supply[n];
514 if (-_supply[n] > max_dem) max_dem = -_supply[n];
516 Capacity max_cap = 0;
517 for (EdgeIt e(_graph); e != INVALID; ++e) {
518 if (_capacity[e] > max_cap) max_cap = _capacity[e];
520 max_sup = std::min(std::min(max_sup, max_dem), max_cap);
522 for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2)
534 return startWithScaling();
536 return startWithoutScaling();
539 /// Execute the capacity scaling algorithm.
540 bool startWithScaling() {
541 // Processing capacity scaling phases
546 // Saturating all edges not satisfying the optimality condition
547 for (EdgeIt e(_graph); e != INVALID; ++e) {
548 Node u = _graph.source(e), v = _graph.target(e);
549 Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v];
550 if (c < 0 && _res_cap[e] >= _delta) {
551 _excess[u] -= _res_cap[e];
552 _excess[v] += _res_cap[e];
553 (*_flow)[e] = _capacity[e];
556 else if (c > 0 && (*_flow)[e] >= _delta) {
557 _excess[u] += (*_flow)[e];
558 _excess[v] -= (*_flow)[e];
560 _res_cap[e] = _capacity[e];
564 // Finding excess nodes and deficit nodes
565 _excess_nodes.clear();
566 _deficit_nodes.clear();
567 for (NodeIt n(_graph); n != INVALID; ++n) {
568 if (_excess[n] >= _delta) _excess_nodes.push_back(n);
569 if (_excess[n] <= -_delta) _deficit_nodes.push_back(n);
571 int next_node = 0, next_def_node = 0;
573 // Finding augmenting shortest paths
574 while (next_node < int(_excess_nodes.size())) {
575 // Checking deficit nodes
577 bool delta_deficit = false;
578 for ( ; next_def_node < int(_deficit_nodes.size());
580 if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
581 delta_deficit = true;
585 if (!delta_deficit) break;
589 s = _excess_nodes[next_node];
590 if ((t = _dijkstra->run(s, _delta)) == INVALID) {
598 // Augmenting along a shortest path from s to t.
599 Capacity d = std::min(_excess[s], -_excess[t]);
603 while ((e = _pred[u]) != INVALID) {
605 if (u == _graph.target(e)) {
607 u = _graph.source(e);
610 u = _graph.target(e);
616 while ((e = _pred[u]) != INVALID) {
617 if (u == _graph.target(e)) {
620 u = _graph.source(e);
624 u = _graph.target(e);
630 if (_excess[s] < _delta) ++next_node;
633 if (_delta == 1) break;
634 if (++phase_cnt > _phase_num / 4) factor = 2;
635 _delta = _delta <= factor ? 1 : _delta / factor;
638 // Handling non-zero lower bounds
640 for (EdgeIt e(_graph); e != INVALID; ++e)
641 (*_flow)[e] += (*_lower)[e];
646 /// Execute the successive shortest path algorithm.
647 bool startWithoutScaling() {
648 // Finding excess nodes
649 for (NodeIt n(_graph); n != INVALID; ++n)
650 if (_excess[n] > 0) _excess_nodes.push_back(n);
651 if (_excess_nodes.size() == 0) return true;
654 // Finding shortest paths
656 while ( _excess[_excess_nodes[next_node]] > 0 ||
657 ++next_node < int(_excess_nodes.size()) )
660 s = _excess_nodes[next_node];
661 if ((t = _dijkstra->run(s)) == INVALID) return false;
663 // Augmenting along a shortest path from s to t
664 Capacity d = std::min(_excess[s], -_excess[t]);
668 while ((e = _pred[u]) != INVALID) {
670 if (u == _graph.target(e)) {
672 u = _graph.source(e);
675 u = _graph.target(e);
681 while ((e = _pred[u]) != INVALID) {
682 if (u == _graph.target(e)) {
685 u = _graph.source(e);
689 u = _graph.target(e);
696 // Handling non-zero lower bounds
698 for (EdgeIt e(_graph); e != INVALID; ++e)
699 (*_flow)[e] += (*_lower)[e];
704 }; //class CapacityScaling
710 #endif //LEMON_CAPACITY_SCALING_H