lemon/cost_scaling.h
author kpeter
Thu, 04 Jun 2009 01:19:06 +0000
changeset 2638 61bf01404ede
parent 2625 c51b320bc51c
permissions -rw-r--r--
Various improvements for NS pivot rules
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <deque>
    27 #include <lemon/graph_adaptor.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/math.h>
    31 
    32 #include <lemon/circulation.h>
    33 #include <lemon/bellman_ford.h>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup min_cost_flow
    38   /// @{
    39 
    40   /// \brief Implementation of the cost scaling algorithm for finding a
    41   /// minimum cost flow.
    42   ///
    43   /// \ref CostScaling implements the cost scaling algorithm performing
    44   /// augment/push and relabel operations for finding a minimum cost
    45   /// flow.
    46   ///
    47   /// \tparam Graph The directed graph type the algorithm runs on.
    48   /// \tparam LowerMap The type of the lower bound map.
    49   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    50   /// \tparam CostMap The type of the cost (length) map.
    51   /// \tparam SupplyMap The type of the supply map.
    52   ///
    53   /// \warning
    54   /// - Edge capacities and costs should be \e non-negative \e integers.
    55   /// - Supply values should be \e signed \e integers.
    56   /// - The value types of the maps should be convertible to each other.
    57   /// - \c CostMap::Value must be signed type.
    58   ///
    59   /// \note Edge costs are multiplied with the number of nodes during
    60   /// the algorithm so overflow problems may arise more easily than with
    61   /// other minimum cost flow algorithms.
    62   /// If it is available, <tt>long long int</tt> type is used instead of
    63   /// <tt>long int</tt> in the inside computations.
    64   ///
    65   /// \author Peter Kovacs
    66   template < typename Graph,
    67              typename LowerMap = typename Graph::template EdgeMap<int>,
    68              typename CapacityMap = typename Graph::template EdgeMap<int>,
    69              typename CostMap = typename Graph::template EdgeMap<int>,
    70              typename SupplyMap = typename Graph::template NodeMap<int> >
    71   class CostScaling
    72   {
    73     GRAPH_TYPEDEFS(typename Graph);
    74 
    75     typedef typename CapacityMap::Value Capacity;
    76     typedef typename CostMap::Value Cost;
    77     typedef typename SupplyMap::Value Supply;
    78     typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
    79     typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
    80 
    81     typedef ResGraphAdaptor< const Graph, Capacity,
    82                              CapacityEdgeMap, CapacityEdgeMap > ResGraph;
    83     typedef typename ResGraph::Edge ResEdge;
    84 
    85 #if defined __GNUC__ && !defined __STRICT_ANSI__
    86     typedef long long int LCost;
    87 #else
    88     typedef long int LCost;
    89 #endif
    90     typedef typename Graph::template EdgeMap<LCost> LargeCostMap;
    91 
    92   public:
    93 
    94     /// The type of the flow map.
    95     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    96     /// The type of the potential map.
    97     typedef typename Graph::template NodeMap<LCost> PotentialMap;
    98 
    99   private:
   100 
   101     /// \brief Map adaptor class for handling residual edge costs.
   102     ///
   103     /// Map adaptor class for handling residual edge costs.
   104     template <typename Map>
   105     class ResidualCostMap : public MapBase<ResEdge, typename Map::Value>
   106     {
   107     private:
   108 
   109       const Map &_cost_map;
   110 
   111     public:
   112 
   113       ///\e
   114       ResidualCostMap(const Map &cost_map) :
   115         _cost_map(cost_map) {}
   116 
   117       ///\e
   118       inline typename Map::Value operator[](const ResEdge &e) const {
   119         return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   120       }
   121 
   122     }; //class ResidualCostMap
   123 
   124     /// \brief Map adaptor class for handling reduced edge costs.
   125     ///
   126     /// Map adaptor class for handling reduced edge costs.
   127     class ReducedCostMap : public MapBase<Edge, LCost>
   128     {
   129     private:
   130 
   131       const Graph &_gr;
   132       const LargeCostMap &_cost_map;
   133       const PotentialMap &_pot_map;
   134 
   135     public:
   136 
   137       ///\e
   138       ReducedCostMap( const Graph &gr,
   139                       const LargeCostMap &cost_map,
   140                       const PotentialMap &pot_map ) :
   141         _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
   142 
   143       ///\e
   144       inline LCost operator[](const Edge &e) const {
   145         return _cost_map[e] + _pot_map[_gr.source(e)]
   146                             - _pot_map[_gr.target(e)];
   147       }
   148 
   149     }; //class ReducedCostMap
   150 
   151   private:
   152 
   153     // The directed graph the algorithm runs on
   154     const Graph &_graph;
   155     // The original lower bound map
   156     const LowerMap *_lower;
   157     // The modified capacity map
   158     CapacityEdgeMap _capacity;
   159     // The original cost map
   160     const CostMap &_orig_cost;
   161     // The scaled cost map
   162     LargeCostMap _cost;
   163     // The modified supply map
   164     SupplyNodeMap _supply;
   165     bool _valid_supply;
   166 
   167     // Edge map of the current flow
   168     FlowMap *_flow;
   169     bool _local_flow;
   170     // Node map of the current potentials
   171     PotentialMap *_potential;
   172     bool _local_potential;
   173 
   174     // The residual cost map
   175     ResidualCostMap<LargeCostMap> _res_cost;
   176     // The residual graph
   177     ResGraph *_res_graph;
   178     // The reduced cost map
   179     ReducedCostMap *_red_cost;
   180     // The excess map
   181     SupplyNodeMap _excess;
   182     // The epsilon parameter used for cost scaling
   183     LCost _epsilon;
   184     // The scaling factor
   185     int _alpha;
   186 
   187   public:
   188 
   189     /// \brief General constructor (with lower bounds).
   190     ///
   191     /// General constructor (with lower bounds).
   192     ///
   193     /// \param graph The directed graph the algorithm runs on.
   194     /// \param lower The lower bounds of the edges.
   195     /// \param capacity The capacities (upper bounds) of the edges.
   196     /// \param cost The cost (length) values of the edges.
   197     /// \param supply The supply values of the nodes (signed).
   198     CostScaling( const Graph &graph,
   199                  const LowerMap &lower,
   200                  const CapacityMap &capacity,
   201                  const CostMap &cost,
   202                  const SupplyMap &supply ) :
   203       _graph(graph), _lower(&lower), _capacity(capacity), _orig_cost(cost),
   204       _cost(graph), _supply(supply), _flow(NULL), _local_flow(false),
   205       _potential(NULL), _local_potential(false), _res_cost(_cost),
   206       _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
   207     {
   208       // Check the sum of supply values
   209       Supply sum = 0;
   210       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   211       _valid_supply = sum == 0;
   212 
   213       // Remove non-zero lower bounds
   214       for (EdgeIt e(_graph); e != INVALID; ++e) {
   215         if (lower[e] != 0) {
   216           _capacity[e] -= lower[e];
   217           _supply[_graph.source(e)] -= lower[e];
   218           _supply[_graph.target(e)] += lower[e];
   219         }
   220       }
   221     }
   222 
   223     /// \brief General constructor (without lower bounds).
   224     ///
   225     /// General constructor (without lower bounds).
   226     ///
   227     /// \param graph The directed graph the algorithm runs on.
   228     /// \param capacity The capacities (upper bounds) of the edges.
   229     /// \param cost The cost (length) values of the edges.
   230     /// \param supply The supply values of the nodes (signed).
   231     CostScaling( const Graph &graph,
   232                  const CapacityMap &capacity,
   233                  const CostMap &cost,
   234                  const SupplyMap &supply ) :
   235       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   236       _cost(graph), _supply(supply), _flow(NULL), _local_flow(false),
   237       _potential(NULL), _local_potential(false), _res_cost(_cost),
   238       _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
   239     {
   240       // Check the sum of supply values
   241       Supply sum = 0;
   242       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   243       _valid_supply = sum == 0;
   244     }
   245 
   246     /// \brief Simple constructor (with lower bounds).
   247     ///
   248     /// Simple constructor (with lower bounds).
   249     ///
   250     /// \param graph The directed graph the algorithm runs on.
   251     /// \param lower The lower bounds of the edges.
   252     /// \param capacity The capacities (upper bounds) of the edges.
   253     /// \param cost The cost (length) values of the edges.
   254     /// \param s The source node.
   255     /// \param t The target node.
   256     /// \param flow_value The required amount of flow from node \c s
   257     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   258     CostScaling( const Graph &graph,
   259                  const LowerMap &lower,
   260                  const CapacityMap &capacity,
   261                  const CostMap &cost,
   262                  Node s, Node t,
   263                  Supply flow_value ) :
   264       _graph(graph), _lower(&lower), _capacity(capacity), _orig_cost(cost),
   265       _cost(graph), _supply(graph, 0), _flow(NULL), _local_flow(false),
   266       _potential(NULL), _local_potential(false), _res_cost(_cost),
   267       _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
   268     {
   269       // Remove non-zero lower bounds
   270       _supply[s] =  flow_value;
   271       _supply[t] = -flow_value;
   272       for (EdgeIt e(_graph); e != INVALID; ++e) {
   273         if (lower[e] != 0) {
   274           _capacity[e] -= lower[e];
   275           _supply[_graph.source(e)] -= lower[e];
   276           _supply[_graph.target(e)] += lower[e];
   277         }
   278       }
   279       _valid_supply = true;
   280     }
   281 
   282     /// \brief Simple constructor (without lower bounds).
   283     ///
   284     /// Simple constructor (without lower bounds).
   285     ///
   286     /// \param graph The directed graph the algorithm runs on.
   287     /// \param capacity The capacities (upper bounds) of the edges.
   288     /// \param cost The cost (length) values of the edges.
   289     /// \param s The source node.
   290     /// \param t The target node.
   291     /// \param flow_value The required amount of flow from node \c s
   292     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   293     CostScaling( const Graph &graph,
   294                  const CapacityMap &capacity,
   295                  const CostMap &cost,
   296                  Node s, Node t,
   297                  Supply flow_value ) :
   298       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   299       _cost(graph), _supply(graph, 0), _flow(NULL), _local_flow(false),
   300       _potential(NULL), _local_potential(false), _res_cost(_cost),
   301       _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
   302     {
   303       _supply[s] =  flow_value;
   304       _supply[t] = -flow_value;
   305       _valid_supply = true;
   306     }
   307 
   308     /// Destructor.
   309     ~CostScaling() {
   310       if (_local_flow) delete _flow;
   311       if (_local_potential) delete _potential;
   312       delete _res_graph;
   313       delete _red_cost;
   314     }
   315 
   316     /// \brief Set the flow map.
   317     ///
   318     /// Set the flow map.
   319     ///
   320     /// \return \c (*this)
   321     CostScaling& flowMap(FlowMap &map) {
   322       if (_local_flow) {
   323         delete _flow;
   324         _local_flow = false;
   325       }
   326       _flow = &map;
   327       return *this;
   328     }
   329 
   330     /// \brief Set the potential map.
   331     ///
   332     /// Set the potential map.
   333     ///
   334     /// \return \c (*this)
   335     CostScaling& potentialMap(PotentialMap &map) {
   336       if (_local_potential) {
   337         delete _potential;
   338         _local_potential = false;
   339       }
   340       _potential = &map;
   341       return *this;
   342     }
   343 
   344     /// \name Execution control
   345 
   346     /// @{
   347 
   348     /// \brief Run the algorithm.
   349     ///
   350     /// Run the algorithm.
   351     ///
   352     /// \param partial_augment By default the algorithm performs
   353     /// partial augment and relabel operations in the cost scaling
   354     /// phases. Set this parameter to \c false for using local push and
   355     /// relabel operations instead.
   356     ///
   357     /// \return \c true if a feasible flow can be found.
   358     bool run(bool partial_augment = true) {
   359       if (partial_augment) {
   360         return init() && startPartialAugment();
   361       } else {
   362         return init() && startPushRelabel();
   363       }
   364     }
   365 
   366     /// @}
   367 
   368     /// \name Query Functions
   369     /// The result of the algorithm can be obtained using these
   370     /// functions.\n
   371     /// \ref lemon::CostScaling::run() "run()" must be called before
   372     /// using them.
   373 
   374     /// @{
   375 
   376     /// \brief Return a const reference to the edge map storing the
   377     /// found flow.
   378     ///
   379     /// Return a const reference to the edge map storing the found flow.
   380     ///
   381     /// \pre \ref run() must be called before using this function.
   382     const FlowMap& flowMap() const {
   383       return *_flow;
   384     }
   385 
   386     /// \brief Return a const reference to the node map storing the
   387     /// found potentials (the dual solution).
   388     ///
   389     /// Return a const reference to the node map storing the found
   390     /// potentials (the dual solution).
   391     ///
   392     /// \pre \ref run() must be called before using this function.
   393     const PotentialMap& potentialMap() const {
   394       return *_potential;
   395     }
   396 
   397     /// \brief Return the flow on the given edge.
   398     ///
   399     /// Return the flow on the given edge.
   400     ///
   401     /// \pre \ref run() must be called before using this function.
   402     Capacity flow(const Edge& edge) const {
   403       return (*_flow)[edge];
   404     }
   405 
   406     /// \brief Return the potential of the given node.
   407     ///
   408     /// Return the potential of the given node.
   409     ///
   410     /// \pre \ref run() must be called before using this function.
   411     Cost potential(const Node& node) const {
   412       return (*_potential)[node];
   413     }
   414 
   415     /// \brief Return the total cost of the found flow.
   416     ///
   417     /// Return the total cost of the found flow. The complexity of the
   418     /// function is \f$ O(e) \f$.
   419     ///
   420     /// \pre \ref run() must be called before using this function.
   421     Cost totalCost() const {
   422       Cost c = 0;
   423       for (EdgeIt e(_graph); e != INVALID; ++e)
   424         c += (*_flow)[e] * _orig_cost[e];
   425       return c;
   426     }
   427 
   428     /// @}
   429 
   430   private:
   431 
   432     /// Initialize the algorithm.
   433     bool init() {
   434       if (!_valid_supply) return false;
   435       // The scaling factor
   436       _alpha = 8;
   437 
   438       // Initialize flow and potential maps
   439       if (!_flow) {
   440         _flow = new FlowMap(_graph);
   441         _local_flow = true;
   442       }
   443       if (!_potential) {
   444         _potential = new PotentialMap(_graph);
   445         _local_potential = true;
   446       }
   447 
   448       _red_cost = new ReducedCostMap(_graph, _cost, *_potential);
   449       _res_graph = new ResGraph(_graph, _capacity, *_flow);
   450 
   451       // Initialize the scaled cost map and the epsilon parameter
   452       Cost max_cost = 0;
   453       int node_num = countNodes(_graph);
   454       for (EdgeIt e(_graph); e != INVALID; ++e) {
   455         _cost[e] = LCost(_orig_cost[e]) * node_num * _alpha;
   456         if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e];
   457       }
   458       _epsilon = max_cost * node_num;
   459 
   460       // Find a feasible flow using Circulation
   461       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
   462                    SupplyMap >
   463         circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
   464                      _supply );
   465       return circulation.flowMap(*_flow).run();
   466     }
   467 
   468     /// Execute the algorithm performing partial augmentation and
   469     /// relabel operations.
   470     bool startPartialAugment() {
   471       // Paramters for heuristics
   472       const int BF_HEURISTIC_EPSILON_BOUND = 1000;
   473       const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   474       // Maximum augment path length
   475       const int MAX_PATH_LENGTH = 4;
   476 
   477       // Variables
   478       typename Graph::template NodeMap<Edge> pred_edge(_graph);
   479       typename Graph::template NodeMap<bool> forward(_graph);
   480       typename Graph::template NodeMap<OutEdgeIt> next_out(_graph);
   481       typename Graph::template NodeMap<InEdgeIt> next_in(_graph);
   482       typename Graph::template NodeMap<bool> next_dir(_graph);
   483       std::deque<Node> active_nodes;
   484       std::vector<Node> path_nodes;
   485 
   486       int node_num = countNodes(_graph);
   487       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
   488                                         1 : _epsilon / _alpha )
   489       {
   490         // "Early Termination" heuristic: use Bellman-Ford algorithm
   491         // to check if the current flow is optimal
   492         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   493           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   494           ShiftCostMap shift_cost(_res_cost, 1);
   495           BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   496           bf.init(0);
   497           bool done = false;
   498           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   499           for (int i = 0; i < K && !done; ++i)
   500             done = bf.processNextWeakRound();
   501           if (done) break;
   502         }
   503 
   504         // Saturate edges not satisfying the optimality condition
   505         Capacity delta;
   506         for (EdgeIt e(_graph); e != INVALID; ++e) {
   507           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   508             delta = _capacity[e] - (*_flow)[e];
   509             _excess[_graph.source(e)] -= delta;
   510             _excess[_graph.target(e)] += delta;
   511             (*_flow)[e] = _capacity[e];
   512           }
   513           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   514             _excess[_graph.target(e)] -= (*_flow)[e];
   515             _excess[_graph.source(e)] += (*_flow)[e];
   516             (*_flow)[e] = 0;
   517           }
   518         }
   519 
   520         // Find active nodes (i.e. nodes with positive excess)
   521         for (NodeIt n(_graph); n != INVALID; ++n) {
   522           if (_excess[n] > 0) active_nodes.push_back(n);
   523         }
   524 
   525         // Initialize the next edge maps
   526         for (NodeIt n(_graph); n != INVALID; ++n) {
   527           next_out[n] = OutEdgeIt(_graph, n);
   528           next_in[n] = InEdgeIt(_graph, n);
   529           next_dir[n] = true;
   530         }
   531 
   532         // Perform partial augment and relabel operations
   533         while (active_nodes.size() > 0) {
   534           // Select an active node (FIFO selection)
   535           if (_excess[active_nodes[0]] <= 0) {
   536             active_nodes.pop_front();
   537             continue;
   538           }
   539           Node start = active_nodes[0];
   540           path_nodes.clear();
   541           path_nodes.push_back(start);
   542 
   543           // Find an augmenting path from the start node
   544           Node u, tip = start;
   545           LCost min_red_cost;
   546           while ( _excess[tip] >= 0 &&
   547                   int(path_nodes.size()) <= MAX_PATH_LENGTH )
   548           {
   549             if (next_dir[tip]) {
   550               for (OutEdgeIt e = next_out[tip]; e != INVALID; ++e) {
   551                 if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   552                   u = _graph.target(e);
   553                   pred_edge[u] = e;
   554                   forward[u] = true;
   555                   next_out[tip] = e;
   556                   tip = u;
   557                   path_nodes.push_back(tip);
   558                   goto next_step;
   559                 }
   560               }
   561               next_dir[tip] = false;
   562             }
   563             for (InEdgeIt e = next_in[tip]; e != INVALID; ++e) {
   564               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   565                 u = _graph.source(e);
   566                 pred_edge[u] = e;
   567                 forward[u] = false;
   568                 next_in[tip] = e;
   569                 tip = u;
   570                 path_nodes.push_back(tip);
   571                 goto next_step;
   572               }
   573             }
   574 
   575             // Relabel tip node
   576             min_red_cost = std::numeric_limits<LCost>::max() / 2;
   577             for (OutEdgeIt oe(_graph, tip); oe != INVALID; ++oe) {
   578               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   579                    (*_red_cost)[oe] < min_red_cost )
   580                 min_red_cost = (*_red_cost)[oe];
   581             }
   582             for (InEdgeIt ie(_graph, tip); ie != INVALID; ++ie) {
   583               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   584                 min_red_cost = -(*_red_cost)[ie];
   585             }
   586             (*_potential)[tip] -= min_red_cost + _epsilon;
   587 
   588             // Reset the next edge maps
   589             next_out[tip] = OutEdgeIt(_graph, tip);
   590             next_in[tip] = InEdgeIt(_graph, tip);
   591             next_dir[tip] = true;
   592 
   593             // Step back
   594             if (tip != start) {
   595               path_nodes.pop_back();
   596               tip = path_nodes[path_nodes.size()-1];
   597             }
   598 
   599           next_step:
   600             continue;
   601           }
   602 
   603           // Augment along the found path (as much flow as possible)
   604           Capacity delta;
   605           for (int i = 1; i < int(path_nodes.size()); ++i) {
   606             u = path_nodes[i];
   607             delta = forward[u] ?
   608               _capacity[pred_edge[u]] - (*_flow)[pred_edge[u]] :
   609               (*_flow)[pred_edge[u]];
   610             delta = std::min(delta, _excess[path_nodes[i-1]]);
   611             (*_flow)[pred_edge[u]] += forward[u] ? delta : -delta;
   612             _excess[path_nodes[i-1]] -= delta;
   613             _excess[u] += delta;
   614             if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u);
   615           }
   616         }
   617       }
   618 
   619       // Compute node potentials for the original costs
   620       ResidualCostMap<CostMap> res_cost(_orig_cost);
   621       BellmanFord< ResGraph, ResidualCostMap<CostMap> >
   622         bf(*_res_graph, res_cost);
   623       bf.init(0); bf.start();
   624       for (NodeIt n(_graph); n != INVALID; ++n)
   625         (*_potential)[n] = bf.dist(n);
   626 
   627       // Handle non-zero lower bounds
   628       if (_lower) {
   629         for (EdgeIt e(_graph); e != INVALID; ++e)
   630           (*_flow)[e] += (*_lower)[e];
   631       }
   632       return true;
   633     }
   634 
   635     /// Execute the algorithm performing push and relabel operations.
   636     bool startPushRelabel() {
   637       // Paramters for heuristics
   638       const int BF_HEURISTIC_EPSILON_BOUND = 1000;
   639       const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   640 
   641       typename Graph::template NodeMap<bool> hyper(_graph, false);
   642       typename Graph::template NodeMap<Edge> pred_edge(_graph);
   643       typename Graph::template NodeMap<bool> forward(_graph);
   644       typename Graph::template NodeMap<OutEdgeIt> next_out(_graph);
   645       typename Graph::template NodeMap<InEdgeIt> next_in(_graph);
   646       typename Graph::template NodeMap<bool> next_dir(_graph);
   647       std::deque<Node> active_nodes;
   648 
   649       int node_num = countNodes(_graph);
   650       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
   651                                         1 : _epsilon / _alpha )
   652       {
   653         // "Early Termination" heuristic: use Bellman-Ford algorithm
   654         // to check if the current flow is optimal
   655         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   656           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   657           ShiftCostMap shift_cost(_res_cost, 1);
   658           BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   659           bf.init(0);
   660           bool done = false;
   661           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   662           for (int i = 0; i < K && !done; ++i)
   663             done = bf.processNextWeakRound();
   664           if (done) break;
   665         }
   666 
   667         // Saturate edges not satisfying the optimality condition
   668         Capacity delta;
   669         for (EdgeIt e(_graph); e != INVALID; ++e) {
   670           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   671             delta = _capacity[e] - (*_flow)[e];
   672             _excess[_graph.source(e)] -= delta;
   673             _excess[_graph.target(e)] += delta;
   674             (*_flow)[e] = _capacity[e];
   675           }
   676           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   677             _excess[_graph.target(e)] -= (*_flow)[e];
   678             _excess[_graph.source(e)] += (*_flow)[e];
   679             (*_flow)[e] = 0;
   680           }
   681         }
   682 
   683         // Find active nodes (i.e. nodes with positive excess)
   684         for (NodeIt n(_graph); n != INVALID; ++n) {
   685           if (_excess[n] > 0) active_nodes.push_back(n);
   686         }
   687 
   688         // Initialize the next edge maps
   689         for (NodeIt n(_graph); n != INVALID; ++n) {
   690           next_out[n] = OutEdgeIt(_graph, n);
   691           next_in[n] = InEdgeIt(_graph, n);
   692           next_dir[n] = true;
   693         }
   694 
   695         // Perform push and relabel operations
   696         while (active_nodes.size() > 0) {
   697           // Select an active node (FIFO selection)
   698           Node n = active_nodes[0], t;
   699           bool relabel_enabled = true;
   700 
   701           // Perform push operations if there are admissible edges
   702           if (_excess[n] > 0 && next_dir[n]) {
   703             OutEdgeIt e = next_out[n];
   704             for ( ; e != INVALID; ++e) {
   705               if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   706                 delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]);
   707                 t = _graph.target(e);
   708 
   709                 // Push-look-ahead heuristic
   710                 Capacity ahead = -_excess[t];
   711                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   712                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   713                     ahead += _capacity[oe] - (*_flow)[oe];
   714                 }
   715                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   716                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   717                     ahead += (*_flow)[ie];
   718                 }
   719                 if (ahead < 0) ahead = 0;
   720 
   721                 // Push flow along the edge
   722                 if (ahead < delta) {
   723                   (*_flow)[e] += ahead;
   724                   _excess[n] -= ahead;
   725                   _excess[t] += ahead;
   726                   active_nodes.push_front(t);
   727                   hyper[t] = true;
   728                   relabel_enabled = false;
   729                   break;
   730                 } else {
   731                   (*_flow)[e] += delta;
   732                   _excess[n] -= delta;
   733                   _excess[t] += delta;
   734                   if (_excess[t] > 0 && _excess[t] <= delta)
   735                     active_nodes.push_back(t);
   736                 }
   737 
   738                 if (_excess[n] == 0) break;
   739               }
   740             }
   741             if (e != INVALID) {
   742               next_out[n] = e;
   743             } else {
   744               next_dir[n] = false;
   745             }
   746           }
   747 
   748           if (_excess[n] > 0 && !next_dir[n]) {
   749             InEdgeIt e = next_in[n];
   750             for ( ; e != INVALID; ++e) {
   751               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   752                 delta = std::min((*_flow)[e], _excess[n]);
   753                 t = _graph.source(e);
   754 
   755                 // Push-look-ahead heuristic
   756                 Capacity ahead = -_excess[t];
   757                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   758                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   759                     ahead += _capacity[oe] - (*_flow)[oe];
   760                 }
   761                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   762                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   763                     ahead += (*_flow)[ie];
   764                 }
   765                 if (ahead < 0) ahead = 0;
   766 
   767                 // Push flow along the edge
   768                 if (ahead < delta) {
   769                   (*_flow)[e] -= ahead;
   770                   _excess[n] -= ahead;
   771                   _excess[t] += ahead;
   772                   active_nodes.push_front(t);
   773                   hyper[t] = true;
   774                   relabel_enabled = false;
   775                   break;
   776                 } else {
   777                   (*_flow)[e] -= delta;
   778                   _excess[n] -= delta;
   779                   _excess[t] += delta;
   780                   if (_excess[t] > 0 && _excess[t] <= delta)
   781                     active_nodes.push_back(t);
   782                 }
   783 
   784                 if (_excess[n] == 0) break;
   785               }
   786             }
   787             next_in[n] = e;
   788           }
   789 
   790           // Relabel the node if it is still active (or hyper)
   791           if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
   792             LCost min_red_cost = std::numeric_limits<LCost>::max() / 2;
   793             for (OutEdgeIt oe(_graph, n); oe != INVALID; ++oe) {
   794               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   795                    (*_red_cost)[oe] < min_red_cost )
   796                 min_red_cost = (*_red_cost)[oe];
   797             }
   798             for (InEdgeIt ie(_graph, n); ie != INVALID; ++ie) {
   799               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   800                 min_red_cost = -(*_red_cost)[ie];
   801             }
   802             (*_potential)[n] -= min_red_cost + _epsilon;
   803             hyper[n] = false;
   804 
   805             // Reset the next edge maps
   806             next_out[n] = OutEdgeIt(_graph, n);
   807             next_in[n] = InEdgeIt(_graph, n);
   808             next_dir[n] = true;
   809           }
   810 
   811           // Remove nodes that are not active nor hyper
   812           while ( active_nodes.size() > 0 &&
   813                   _excess[active_nodes[0]] <= 0 &&
   814                   !hyper[active_nodes[0]] ) {
   815             active_nodes.pop_front();
   816           }
   817         }
   818       }
   819 
   820       // Compute node potentials for the original costs
   821       ResidualCostMap<CostMap> res_cost(_orig_cost);
   822       BellmanFord< ResGraph, ResidualCostMap<CostMap> >
   823         bf(*_res_graph, res_cost);
   824       bf.init(0); bf.start();
   825       for (NodeIt n(_graph); n != INVALID; ++n)
   826         (*_potential)[n] = bf.dist(n);
   827 
   828       // Handle non-zero lower bounds
   829       if (_lower) {
   830         for (EdgeIt e(_graph); e != INVALID; ++e)
   831           (*_flow)[e] += (*_lower)[e];
   832       }
   833       return true;
   834     }
   835 
   836   }; //class CostScaling
   837 
   838   ///@}
   839 
   840 } //namespace lemon
   841 
   842 #endif //LEMON_COST_SCALING_H