lemon/elevator.h
author kpeter
Thu, 04 Jun 2009 01:19:06 +0000
changeset 2638 61bf01404ede
parent 2553 bfced05fa852
permissions -rw-r--r--
Various improvements for NS pivot rules
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_ELEVATOR_H
    20 #define LEMON_ELEVATOR_H
    21 
    22 ///\ingroup auxdat
    23 ///\file
    24 ///\brief Elevator class
    25 ///
    26 ///Elevator class implements an efficient data structure
    27 ///for labeling items in push-relabel type algorithms.
    28 ///
    29 
    30 namespace lemon {
    31 
    32   ///Class for handling "labels" in push-relabel type algorithms.
    33   
    34   ///A class for handling "labels" in push-relabel type algorithms.
    35   ///
    36   ///\ingroup auxdat
    37   ///Using this class you can assign "labels" (nonnegative integer numbers)
    38   ///to the edges or nodes of a graph, manipulate and query them through
    39   ///operations typically arising in "push-relabel" type algorithms.
    40   ///
    41   ///Each item is either \em active or not, and you can also choose a
    42   ///highest level active item.
    43   ///
    44   ///\sa LinkedElevator
    45   ///
    46   ///\param Graph the underlying graph type
    47   ///\param Item Type of the items the data is assigned to (Graph::Node,
    48   ///Graph::Edge, Graph::UEdge)
    49   template<class Graph, class Item>
    50   class Elevator 
    51   {
    52   public:
    53 
    54     typedef Item Key;
    55     typedef int Value;
    56 
    57   private:
    58 
    59     typedef typename std::vector<Item>::iterator Vit;
    60     typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
    61     typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
    62 
    63     const Graph &_g;
    64     int _max_level;
    65     int _item_num;
    66     VitMap _where;
    67     IntMap _level;
    68     std::vector<Item> _items;
    69     std::vector<Vit> _first;
    70     std::vector<Vit> _last_active;
    71 
    72     int _highest_active;
    73 
    74     void copy(Item i, Vit p)
    75     {
    76       _where[*p=i]=p;
    77     }
    78     void copy(Vit s, Vit p)
    79     {
    80       if(s!=p) 
    81 	{
    82 	  Item i=*s;
    83 	  *p=i;
    84 	  _where[i]=p;
    85 	}
    86     }
    87     void swap(Vit i, Vit j)
    88     {
    89       Item ti=*i;
    90       Vit ct = _where[ti];
    91       _where[ti]=_where[*i=*j];
    92       _where[*j]=ct;
    93       *j=ti;
    94     }
    95     
    96   public:
    97         
    98     ///Constructor with given maximum level.
    99 
   100     ///Constructor with given maximum level.
   101     ///
   102     ///\param g The underlying graph
   103     ///\param max_level Set the range of the possible labels to
   104     ///[0...\c max_level]
   105     Elevator(const Graph &g,int max_level) :
   106       _g(g),
   107       _max_level(max_level),
   108       _item_num(_max_level),
   109       _where(g),
   110       _level(g,0),
   111       _items(_max_level),
   112       _first(_max_level+2),
   113       _last_active(_max_level+2),
   114       _highest_active(-1) {}
   115     ///Constructor.
   116 
   117     ///Constructor.
   118     ///
   119     ///\param g The underlying graph
   120     ///The range of the possible labels is [0...\c max_level],
   121     ///where \c max_level is equal to the number of labeled items in the graph.
   122     Elevator(const Graph &g) :
   123       _g(g),
   124       _max_level(countItems<Graph, Item>(g)),
   125       _item_num(_max_level),
   126       _where(g),
   127       _level(g,0),
   128       _items(_max_level),
   129       _first(_max_level+2),
   130       _last_active(_max_level+2),
   131       _highest_active(-1)
   132     {
   133     }
   134     
   135     ///Activate item \c i.
   136 
   137     ///Activate item \c i.
   138     ///\pre Item \c i shouldn't be active before.
   139     void activate(Item i)
   140     {
   141       const int l=_level[i];
   142       swap(_where[i],++_last_active[l]);
   143       if(l>_highest_active) _highest_active=l;
   144     }
   145   
   146     ///Deactivate item \c i.
   147 
   148     ///Deactivate item \c i.
   149     ///\pre Item \c i must be active before.
   150     void deactivate(Item i)  
   151     {
   152       swap(_where[i],_last_active[_level[i]]--);
   153       while(_highest_active>=0 &&
   154 	    _last_active[_highest_active]<_first[_highest_active])
   155 	_highest_active--;
   156     }
   157 
   158     ///Query whether item \c i is active
   159     bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
   160     
   161     ///Return the level of item \c i.
   162     int operator[](Item i) const { return _level[i]; }
   163 
   164     ///Return the number of items on level \c l.
   165     int onLevel(int l) const
   166     {
   167       return _first[l+1]-_first[l];
   168     }
   169     ///Return true if the level is empty.
   170     bool emptyLevel(int l) const
   171     {
   172       return _first[l+1]-_first[l]==0;
   173     }
   174     ///Return the number of items above level \c l.
   175     int aboveLevel(int l) const
   176     {
   177       return _first[_max_level+1]-_first[l+1];
   178     }
   179     ///Return the number of active items on level \c l.
   180     int activesOnLevel(int l) const
   181     {
   182       return _last_active[l]-_first[l]+1;
   183     }
   184     ///Return true if there is not active item on level \c l.
   185     bool activeFree(int l) const
   186     {
   187       return _last_active[l]<_first[l];
   188     }
   189     ///Return the maximum allowed level.
   190     int maxLevel() const 
   191     {
   192       return _max_level;
   193     }    
   194 
   195     ///\name Highest Active Item
   196     ///Functions for working with the highest level
   197     ///active item.
   198 
   199     ///@{
   200 
   201     ///Return a highest level active item.
   202   
   203     ///Return a highest level active item.
   204     ///
   205     ///\return the highest level active item or INVALID if there is no active
   206     ///item.
   207     Item highestActive() const 
   208     {
   209       return _highest_active>=0?*_last_active[_highest_active]:INVALID;
   210     }
   211 
   212     ///Return a highest active level.
   213 
   214     ///Return a highest active level.
   215     ///
   216     ///\return the level of the highest active item or -1 if there is no active
   217     ///item.
   218     int highestActiveLevel() const 
   219     {
   220       return _highest_active;
   221     }
   222 
   223     ///Lift the highest active item by one.
   224 
   225     ///Lift the item returned by highestActive() by one.
   226     ///
   227     void liftHighestActive() 
   228     {
   229       ++_level[*_last_active[_highest_active]];
   230       swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
   231       --_first[++_highest_active];
   232     }
   233 
   234     ///Lift the highest active item.
   235 
   236     ///Lift the item returned by highestActive() to level \c new_level.
   237     ///
   238     ///\warning \c new_level must be strictly higher
   239     ///than the current level.
   240     ///
   241     void liftHighestActive(int new_level) 
   242     {
   243       const Item li = *_last_active[_highest_active];
   244       
   245       copy(--_first[_highest_active+1],_last_active[_highest_active]--);
   246       for(int l=_highest_active+1;l<new_level;l++)
   247 	{
   248 	  copy(--_first[l+1],_first[l]);
   249 	  --_last_active[l];
   250 	}
   251       copy(li,_first[new_level]);
   252       _level[li]=new_level;
   253       _highest_active=new_level;
   254     }
   255 
   256     ///Lift the highest active item.
   257 
   258     ///Lift the item returned by highestActive() to the top level and
   259     ///deactivates it.
   260     ///
   261     ///\warning \c new_level must be strictly higher
   262     ///than the current level.
   263     ///
   264     void liftHighestActiveToTop() 
   265     {
   266       const Item li = *_last_active[_highest_active];
   267       
   268       copy(--_first[_highest_active+1],_last_active[_highest_active]--);
   269       for(int l=_highest_active+1;l<_max_level;l++)
   270 	{
   271 	  copy(--_first[l+1],_first[l]);
   272 	  --_last_active[l];
   273 	}
   274       copy(li,_first[_max_level]);
   275       --_last_active[_max_level];
   276       _level[li]=_max_level;
   277 
   278       while(_highest_active>=0 &&
   279 	    _last_active[_highest_active]<_first[_highest_active])
   280 	_highest_active--;
   281     }
   282     
   283     ///@}
   284     
   285     ///\name Active Item on Certain Level 
   286     ///Functions for working with the active items.
   287 
   288     ///@{
   289 
   290     ///Returns an active item on level \c l.
   291     
   292     ///Returns an active item on level \c l.
   293     ///
   294     ///Returns an active item on level \c l or \ref INVALID if there is no such
   295     ///an item. (\c l must be from the range [0...\c max_level].
   296     Item activeOn(int l) const
   297     { 
   298       return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
   299     }
   300 
   301     ///Lifts the active item returned by \c activeOn() member function.
   302     
   303     ///Lifts the active item returned by \c activeOn() member function
   304     ///by one.
   305     Item liftActiveOn(int level)
   306     { 
   307       ++_level[*_last_active[level]];
   308       swap(_last_active[level]--, --_first[level+1]);
   309       if (level+1>_highest_active) ++_highest_active;
   310     }
   311 
   312     ///Lifts the active item returned by \c activeOn() member function.
   313     
   314     ///Lifts the active item returned by \c activeOn() member function
   315     ///to the given level.
   316     void liftActiveOn(int level, int new_level)
   317     { 
   318       const Item ai = *_last_active[level];
   319       
   320       copy(--_first[level+1], _last_active[level]--);
   321       for(int l=level+1;l<new_level;l++)
   322 	{
   323 	  copy(_last_active[l],_first[l]);
   324 	  copy(--_first[l+1], _last_active[l]--);
   325 	}
   326       copy(ai,_first[new_level]);
   327       _level[ai]=new_level;
   328       if (new_level>_highest_active) _highest_active=new_level;
   329     }
   330 
   331     ///Lifts the active item returned by \c activeOn() member function.
   332     
   333     ///Lifts the active item returned by \c activeOn() member function
   334     ///to the top level.
   335     void liftActiveToTop(int level)
   336     {
   337       const Item ai = *_last_active[level];
   338       
   339       copy(--_first[level+1],_last_active[level]--);
   340       for(int l=level+1;l<_max_level;l++)
   341 	{
   342 	  copy(_last_active[l],_first[l]);
   343 	  copy(--_first[l+1], _last_active[l]--);
   344 	}
   345       copy(ai,_first[_max_level]);
   346       --_last_active[_max_level];
   347       _level[ai]=_max_level;
   348 
   349       if (_highest_active==level) {
   350 	while(_highest_active>=0 && 
   351 	      _last_active[_highest_active]<_first[_highest_active]) 
   352 	  _highest_active--;
   353       }
   354     }
   355 
   356     ///@}
   357     
   358     ///Lift an active item to a higher level.
   359 
   360     ///Lift an active item to a higher level.
   361     ///\param i The item to be lifted. It must be active.
   362     ///\param new_level The new level of \c i. It must be strictly higher
   363     ///than the current level.
   364     ///
   365     void lift(Item i, int new_level) 
   366     {
   367       const int lo = _level[i];
   368       const Vit w = _where[i];
   369 
   370       copy(_last_active[lo],w);
   371       copy(--_first[lo+1],_last_active[lo]--);
   372       for(int l=lo+1;l<new_level;l++)
   373 	{
   374 	  copy(_last_active[l],_first[l]);
   375 	  copy(--_first[l+1],_last_active[l]--);
   376 	}
   377       copy(i,_first[new_level]);
   378       _level[i]=new_level;
   379       if(new_level>_highest_active) _highest_active=new_level;
   380     }
   381 
   382     ///Mark the node as it did not reach the max level
   383     
   384     ///Mark the node as it did not reach the max level. It sets the
   385     ///level to the under the max level value. The node will be never
   386     ///more activated because the push operation from the maximum
   387     ///level is forbidden in the push-relabel algorithms. The node
   388     ///should be lifted previously to the top level.
   389     void markToBottom(Item i) {
   390       _level[i] = _max_level - 1;
   391     }
   392     
   393     ///Lift all nodes on and above a level to the top (and deactivate them).
   394 
   395     ///This function lifts all nodes on and above level \c l to \c
   396     ///maxLevel(), and also deactivates them.
   397     void liftToTop(int l) 
   398     {
   399       const Vit f=_first[l];
   400       const Vit tl=_first[_max_level];
   401       for(Vit i=f;i!=tl;++i)
   402 	_level[*i]=_max_level;
   403       for(int i=l;i<=_max_level;i++)
   404 	{
   405 	  _first[i]=f;
   406 	  _last_active[i]=f-1;
   407 	}
   408       for(_highest_active=l-1;
   409 	  _highest_active>=0 &&
   410 	    _last_active[_highest_active]<_first[_highest_active];
   411 	  _highest_active--) ;
   412     }
   413     
   414   private:
   415     int _init_lev;
   416     Vit _init_num;
   417 
   418   public:
   419 
   420     ///\name Initialization
   421     ///Using this function you can initialize the levels of the item.
   422     ///\n
   423     ///This initializatios is started with calling \c initStart().
   424     ///Then the
   425     ///items should be listed levels by levels statring with the lowest one
   426     ///(with level 0). This is done by using \c initAddItem()
   427     ///and \c initNewLevel(). Finally \c initFinish() must be called.
   428     ///The items not listed will be put on the highest level.
   429     ///@{
   430 
   431     ///Start the initialization process.
   432 
   433     void initStart() 
   434     {
   435       _init_lev=0;
   436       _init_num=_items.begin();
   437       _first[0]=_items.begin();
   438       _last_active[0]=_items.begin()-1;
   439       Vit n=_items.begin();
   440       for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
   441 	{
   442 	  *n=i;
   443 	  _where[i]=n;
   444 	  _level[i]=_max_level;
   445 	  ++n;
   446 	}
   447     }
   448 
   449     ///Add an item to the current level.
   450 
   451     void initAddItem(Item i)
   452     { 
   453      swap(_where[i],_init_num);
   454       _level[i]=_init_lev;
   455       ++_init_num;
   456     }
   457 
   458     ///Start a new level.
   459 
   460     ///Start a new level.
   461     ///It shouldn't be used before the items on level 0 are listed.
   462     void initNewLevel() 
   463     {
   464       _init_lev++;
   465       _first[_init_lev]=_init_num;
   466       _last_active[_init_lev]=_init_num-1;
   467     }
   468 
   469     ///Finalize the initialization process.
   470 
   471     void initFinish()
   472     {
   473       for(_init_lev++;_init_lev<=_max_level;_init_lev++)
   474 	{
   475 	  _first[_init_lev]=_init_num;
   476 	  _last_active[_init_lev]=_init_num-1;
   477 	}
   478       _first[_max_level+1]=_items.begin()+_item_num;
   479       _last_active[_max_level+1]=_items.begin()+_item_num-1;
   480       _highest_active = -1;
   481     }
   482 
   483     ///@}
   484 
   485   };
   486 
   487   ///Class for handling "labels" in push-relabel type algorithms.
   488   
   489   ///A class for handling "labels" in push-relabel type algorithms.
   490   ///
   491   ///\ingroup auxdat
   492   ///Using this class you can assign "labels" (nonnegative integer numbers)
   493   ///to the edges or nodes of a graph, manipulate and query them through
   494   ///operations typically arising in "push-relabel" type algorithms.
   495   ///
   496   ///Each item is either \em active or not, and you can also choose a
   497   ///highest level active item.
   498   ///
   499   ///\sa Elevator
   500   ///
   501   ///\param Graph the underlying graph type
   502   ///\param Item Type of the items the data is assigned to (Graph::Node,
   503   ///Graph::Edge, Graph::UEdge)
   504   template <class Graph, class Item>
   505   class LinkedElevator {
   506   public:
   507 
   508     typedef Item Key;
   509     typedef int Value;
   510 
   511   private:
   512 
   513     typedef typename ItemSetTraits<Graph,Item>::
   514     template Map<Item>::Type ItemMap;
   515     typedef typename ItemSetTraits<Graph,Item>::
   516     template Map<int>::Type IntMap;
   517     typedef typename ItemSetTraits<Graph,Item>::
   518     template Map<bool>::Type BoolMap;
   519 
   520     const Graph &_graph;
   521     int _max_level;
   522     int _item_num;
   523     std::vector<Item> _first, _last;
   524     ItemMap _prev, _next;    
   525     int _highest_active;
   526     IntMap _level;
   527     BoolMap _active;
   528     
   529   public:
   530     ///Constructor with given maximum level.
   531 
   532     ///Constructor with given maximum level.
   533     ///
   534     ///\param g The underlying graph
   535     ///\param max_level Set the range of the possible labels to
   536     ///[0...\c max_level]
   537     LinkedElevator(const Graph& graph, int max_level) 
   538       : _graph(graph), _max_level(max_level), _item_num(_max_level), 
   539 	_first(_max_level + 1), _last(_max_level + 1),
   540 	_prev(graph), _next(graph),      
   541 	_highest_active(-1), _level(graph), _active(graph) {}
   542 
   543     ///Constructor.
   544 
   545     ///Constructor.
   546     ///
   547     ///\param g The underlying graph
   548     ///The range of the possible labels is [0...\c max_level],
   549     ///where \c max_level is equal to the number of labeled items in the graph.
   550     LinkedElevator(const Graph& graph) 
   551       : _graph(graph), _max_level(countItems<Graph, Item>(graph)), 
   552 	_item_num(_max_level), 
   553 	_first(_max_level + 1), _last(_max_level + 1),
   554 	_prev(graph, INVALID), _next(graph, INVALID),      
   555 	_highest_active(-1), _level(graph), _active(graph) {}
   556   
   557 
   558     ///Activate item \c i.
   559 
   560     ///Activate item \c i.
   561     ///\pre Item \c i shouldn't be active before.
   562     void activate(Item i) {
   563       _active.set(i, true);
   564 
   565       int level = _level[i];
   566       if (level > _highest_active) {
   567 	_highest_active = level;
   568       }
   569 
   570       if (_prev[i] == INVALID || _active[_prev[i]]) return;	    
   571       //unlace
   572       _next.set(_prev[i], _next[i]);
   573       if (_next[i] != INVALID) {
   574 	_prev.set(_next[i], _prev[i]);
   575       } else {
   576 	_last[level] = _prev[i];
   577       }
   578       //lace
   579       _next.set(i, _first[level]);
   580       _prev.set(_first[level], i);
   581       _prev.set(i, INVALID);
   582       _first[level] = i;
   583 
   584     }
   585   
   586     ///Deactivate item \c i.
   587 
   588     ///Deactivate item \c i.
   589     ///\pre Item \c i must be active before.
   590     void deactivate(Item i) {
   591       _active.set(i, false);
   592       int level = _level[i];
   593 
   594       if (_next[i] == INVALID || !_active[_next[i]])
   595 	goto find_highest_level;
   596 
   597       //unlace
   598       _prev.set(_next[i], _prev[i]);
   599       if (_prev[i] != INVALID) {
   600 	_next.set(_prev[i], _next[i]);
   601       } else {
   602 	_first[_level[i]] = _next[i];
   603       }
   604       //lace
   605       _prev.set(i, _last[level]);
   606       _next.set(_last[level], i);
   607       _next.set(i, INVALID);
   608       _last[level] = i;
   609       
   610     find_highest_level:
   611       if (level == _highest_active) {
   612 	while (_highest_active >= 0 && activeFree(_highest_active)) 
   613 	  --_highest_active;
   614       }
   615     }
   616 
   617     ///Query whether item \c i is active
   618     bool active(Item i) const { return _active[i]; }
   619     
   620     ///Return the level of item \c i.
   621     int operator[](Item i) const { return _level[i]; }
   622     
   623     ///Return the number of items on level \c l.
   624     int onLevel(int l) const {
   625       int num = 0;
   626       Item n = _first[l];
   627       while (n != INVALID) {
   628 	++num;
   629 	n = _next[n];
   630       }
   631       return num;
   632     }
   633 
   634     ///Return true if the level is empty.
   635     bool emptyLevel(int l) const {
   636       return _first[l] == INVALID;
   637     }
   638 
   639     ///Return the number of items above level \c l.
   640     int aboveLevel(int l) const {
   641       int num = 0;
   642       for (int level = l + 1; level < _max_level; ++level)
   643 	num += onLevel(level);
   644       return num;
   645     }
   646 
   647     ///Return the number of active items on level \c l.
   648     int activesOnLevel(int l) const {
   649       int num = 0;
   650       Item n = _first[l];
   651       while (n != INVALID && _active[n]) {
   652 	++num;
   653 	n = _next[n];
   654       }
   655       return num;
   656     }
   657 
   658     ///Return true if there is not active item on level \c l.
   659     bool activeFree(int l) const {
   660       return _first[l] == INVALID || !_active[_first[l]];
   661     }
   662 
   663     ///Return the maximum allowed level.
   664     int maxLevel() const {
   665       return _max_level;
   666     }    
   667 
   668     ///\name Highest Active Item
   669     ///Functions for working with the highest level
   670     ///active item.
   671 
   672     ///@{
   673 
   674     ///Return a highest level active item.
   675   
   676     ///Return a highest level active item.
   677     ///
   678     ///\return the highest level active item or INVALID if there is no
   679     ///active item.
   680     Item highestActive() const {
   681       return _highest_active >= 0 ? _first[_highest_active] : INVALID;
   682     }
   683 
   684     ///Return a highest active level.
   685 
   686     ///Return a highest active level.
   687     ///
   688     ///\return the level of the highest active item or -1 if there is
   689     ///no active item.
   690     int highestActiveLevel() const {
   691       return _highest_active;
   692     }
   693 
   694     ///Lift the highest active item by one.
   695 
   696     ///Lift the item returned by highestActive() by one.
   697     ///
   698     void liftHighestActive() {
   699       Item i = _first[_highest_active];
   700       if (_next[i] != INVALID) {
   701 	_prev.set(_next[i], INVALID);
   702 	_first[_highest_active] = _next[i]; 
   703       } else {
   704 	_first[_highest_active] = INVALID;
   705 	_last[_highest_active] = INVALID;
   706       }
   707       _level.set(i, ++_highest_active);
   708       if (_first[_highest_active] == INVALID) {
   709 	_first[_highest_active] = i;
   710 	_last[_highest_active] = i;
   711 	_prev.set(i, INVALID);
   712 	_next.set(i, INVALID);
   713       } else {
   714 	_prev.set(_first[_highest_active], i);
   715 	_next.set(i, _first[_highest_active]);
   716 	_first[_highest_active] = i;
   717       }
   718     }
   719 
   720     ///Lift the highest active item.
   721 
   722     ///Lift the item returned by highestActive() to level \c new_level.
   723     ///
   724     ///\warning \c new_level must be strictly higher
   725     ///than the current level.
   726     ///
   727     void liftHighestActive(int new_level) {
   728       Item i = _first[_highest_active];
   729       if (_next[i] != INVALID) {
   730 	_prev.set(_next[i], INVALID);
   731 	_first[_highest_active] = _next[i]; 
   732       } else {
   733 	_first[_highest_active] = INVALID;
   734 	_last[_highest_active] = INVALID;
   735       }
   736       _level.set(i, _highest_active = new_level);
   737       if (_first[_highest_active] == INVALID) {
   738 	_first[_highest_active] = _last[_highest_active] = i;
   739 	_prev.set(i, INVALID);
   740 	_next.set(i, INVALID);
   741       } else {
   742 	_prev.set(_first[_highest_active], i);
   743 	_next.set(i, _first[_highest_active]);
   744 	_first[_highest_active] = i;
   745       }
   746     }
   747 
   748     ///Lift the highest active to top.
   749 
   750     ///Lift the item returned by highestActive() to the top level and
   751     ///deactivates the node.
   752     ///
   753     void liftHighestActiveToTop() {
   754       Item i = _first[_highest_active];
   755       _level.set(i, _max_level);
   756       if (_next[i] != INVALID) {
   757 	_prev.set(_next[i], INVALID);
   758 	_first[_highest_active] = _next[i]; 
   759       } else {
   760 	_first[_highest_active] = INVALID;
   761 	_last[_highest_active] = INVALID;
   762       }
   763       while (_highest_active >= 0 && activeFree(_highest_active)) 
   764 	--_highest_active;
   765     }
   766     
   767     ///@}
   768 
   769     ///\name Active Item on Certain Level 
   770     ///Functions for working with the active items.
   771 
   772     ///@{
   773 
   774     ///Returns an active item on level \c l.
   775     
   776     ///Returns an active item on level \c l.
   777     ///
   778     ///Returns an active item on level \c l or \ref INVALID if there is no such
   779     ///an item. (\c l must be from the range [0...\c max_level].
   780     Item activeOn(int l) const
   781     { 
   782       return _active[_first[l]] ? _first[l] : INVALID;
   783     }
   784 
   785     ///Lifts the active item returned by \c activeOn() member function.
   786     
   787     ///Lifts the active item returned by \c activeOn() member function
   788     ///by one.
   789     Item liftActiveOn(int l)
   790     { 
   791       Item i = _first[l];
   792       if (_next[i] != INVALID) {
   793 	_prev.set(_next[i], INVALID);
   794 	_first[l] = _next[i]; 
   795       } else {
   796 	_first[l] = INVALID;
   797 	_last[l] = INVALID;
   798       }
   799       _level.set(i, ++l);
   800       if (_first[l] == INVALID) {
   801 	_first[l] = _last[l] = i;
   802 	_prev.set(i, INVALID);
   803 	_next.set(i, INVALID);
   804       } else {
   805 	_prev.set(_first[l], i);
   806 	_next.set(i, _first[l]);
   807 	_first[l] = i;
   808       }
   809       if (_highest_active < l) {
   810 	_highest_active = l;
   811       }
   812     }
   813 
   814     /// \brief Lifts the active item returned by \c activeOn() member function.
   815     ///    
   816     /// Lifts the active item returned by \c activeOn() member function
   817     /// to the given level.
   818     void liftActiveOn(int l, int new_level)
   819     { 
   820       Item i = _first[l];
   821       if (_next[i] != INVALID) {
   822 	_prev.set(_next[i], INVALID);
   823 	_first[l] = _next[i]; 
   824       } else {
   825 	_first[l] = INVALID;
   826 	_last[l] = INVALID;
   827       }
   828       _level.set(i, l = new_level);
   829       if (_first[l] == INVALID) {
   830 	_first[l] = _last[l] = i;
   831 	_prev.set(i, INVALID);
   832 	_next.set(i, INVALID);
   833       } else {
   834 	_prev.set(_first[l], i);
   835 	_next.set(i, _first[l]);
   836 	_first[l] = i;
   837       }
   838       if (_highest_active < l) {
   839 	_highest_active = l;
   840       }
   841     }
   842 
   843     ///Lifts the active item returned by \c activeOn() member function.
   844     
   845     ///Lifts the active item returned by \c activeOn() member function
   846     ///to the top level.
   847     void liftActiveToTop(int l)
   848     { 
   849       Item i = _first[l];
   850       if (_next[i] != INVALID) {
   851 	_prev.set(_next[i], INVALID);
   852 	_first[l] = _next[i]; 
   853       } else {
   854 	_first[l] = INVALID;
   855 	_last[l] = INVALID;
   856       }
   857       _level.set(i, _max_level);
   858       if (l == _highest_active) {
   859 	while (_highest_active >= 0 && activeFree(_highest_active)) 
   860 	  --_highest_active;
   861       }
   862     }
   863 
   864     ///@}
   865     
   866     /// \brief Lift an active item to a higher level.
   867     ///
   868     /// Lift an active item to a higher level.
   869     /// \param i The item to be lifted. It must be active.
   870     /// \param new_level The new level of \c i. It must be strictly higher
   871     /// than the current level.
   872     ///
   873     void lift(Item i, int new_level) {
   874       if (_next[i] != INVALID) {
   875 	_prev.set(_next[i], _prev[i]);
   876       } else {
   877 	_last[new_level] = _prev[i];
   878       }
   879       if (_prev[i] != INVALID) {
   880 	_next.set(_prev[i], _next[i]);
   881       } else {
   882 	_first[new_level] = _next[i];
   883       }
   884       _level.set(i, new_level);
   885       if (_first[new_level] == INVALID) {
   886 	_first[new_level] = _last[new_level] = i;
   887 	_prev.set(i, INVALID);
   888 	_next.set(i, INVALID);
   889       } else {
   890 	_prev.set(_first[new_level], i);
   891 	_next.set(i, _first[new_level]);
   892 	_first[new_level] = i;
   893       }
   894       if (_highest_active < new_level) {
   895 	_highest_active = new_level;
   896       }
   897     }
   898     
   899     ///Mark the node as it did not reach the max level
   900     
   901     ///Mark the node as it did not reach the max level. It sets the
   902     ///level to the under the max level value. The node will be never
   903     ///more activated because the push operation from the maximum
   904     ///level is forbidden in the push-relabel algorithms. The node
   905     ///should be lifted previously to the top level.
   906     void markToBottom(Item i) {
   907       _level.set(i, _max_level - 1);
   908     }
   909 
   910     ///Lift all nodes on and above a level to the top (and deactivate them).
   911 
   912     ///This function lifts all nodes on and above level \c l to \c
   913     ///maxLevel(), and also deactivates them. 
   914     void liftToTop(int l)  {
   915       for (int i = l + 1; _first[i] != INVALID; ++i) {
   916 	Item n = _first[i];
   917 	while (n != INVALID) {
   918 	  _level.set(n, _max_level);
   919 	  n = _next[n];
   920 	}
   921 	_first[i] = INVALID;
   922 	_last[i] = INVALID;
   923       }
   924       if (_highest_active > l - 1) {
   925 	_highest_active = l - 1;
   926 	while (_highest_active >= 0 && activeFree(_highest_active)) 
   927 	  --_highest_active;
   928       }
   929     }
   930     
   931   private:
   932 
   933     int _init_level;
   934 
   935   public:
   936 
   937     ///\name Initialization
   938     ///Using this function you can initialize the levels of the item.
   939     ///\n
   940     ///This initializatios is started with calling \c initStart().
   941     ///Then the
   942     ///items should be listed levels by levels statring with the lowest one
   943     ///(with level 0). This is done by using \c initAddItem()
   944     ///and \c initNewLevel(). Finally \c initFinish() must be called.
   945     ///The items not listed will be put on the highest level.
   946     ///@{
   947 
   948     ///Start the initialization process.
   949 
   950     void initStart() {
   951       
   952       for (int i = 0; i <= _max_level; ++i) {
   953 	_first[i] = _last[i] = INVALID;
   954       }
   955       _init_level = 0;
   956       for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); 
   957 	  i != INVALID; ++i) {
   958 	_level.set(i, _max_level);
   959 	_active.set(i, false);
   960       }
   961     }
   962 
   963     ///Add an item to the current level.
   964 
   965     void initAddItem(Item i) {
   966       _level.set(i, _init_level);
   967       if (_last[_init_level] == INVALID) {
   968 	_first[_init_level] = i;
   969 	_last[_init_level] = i;
   970 	_prev.set(i, INVALID);
   971 	_next.set(i, INVALID);
   972       } else {
   973 	_prev.set(i, _last[_init_level]);
   974 	_next.set(i, INVALID);
   975 	_next.set(_last[_init_level], i);
   976 	_last[_init_level] = i;
   977       }
   978     }
   979 
   980     ///Start a new level.
   981 
   982     ///Start a new level.
   983     ///It shouldn't be used before the items on level 0 are listed.
   984     void initNewLevel() {
   985       ++_init_level;
   986     }
   987 
   988     ///Finalize the initialization process.
   989 
   990     void initFinish() {
   991       _highest_active = -1;
   992     }
   993 
   994     ///@}
   995 
   996   };
   997 
   998 
   999 } //END OF NAMESPACE LEMON
  1000 
  1001 #endif
  1002