src/work/jacint/preflowproba.h
author marci
Fri, 23 Apr 2004 08:08:41 +0000
changeset 380 6399494e30b1
parent 374 0fc9cd9b854a
permissions -rw-r--r--
.
     1 // -*- C++ -*-
     2 
     3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
     4 //constzero jo igy?
     5 
     6 //majd marci megmondja betegyem-e bfs-t meg resgraphot
     7 
     8 /*
     9 Heuristics: 
    10  2 phase
    11  gap
    12  list 'level_list' on the nodes on level i implemented by hand
    13  stack 'active' on the active nodes on level i implemented by hand
    14  runs heuristic 'highest label' for H1*n relabels
    15  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    16  
    17 Parameters H0 and H1 are initialized to 20 and 10.
    18 
    19 Constructors:
    20 
    21 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    22      FlowMap is not constant zero, and should be true if it is
    23 
    24 Members:
    25 
    26 void run()
    27 
    28 T flowValue() : returns the value of a maximum flow
    29 
    30 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    31      minimum min cut. M should be a map of bools initialized to false.
    32 
    33 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    34      maximum min cut. M should be a map of bools initialized to false.
    35 
    36 void minCut(CutMap& M) : sets M to the characteristic vector of 
    37      a min cut. M should be a map of bools initialized to false.
    38 
    39 FIXME reset
    40 
    41 */
    42 
    43 #ifndef HUGO_PREFLOW_PROBA_H
    44 #define HUGO_PREFLOW_PROBA_H
    45 
    46 #define H0 20
    47 #define H1 1
    48 
    49 #include <vector>
    50 #include <queue>
    51 #include<graph_wrapper.h>
    52 
    53 namespace hugo {
    54 
    55   template <typename Graph, typename T, 
    56 	    typename CapMap=typename Graph::EdgeMap<T>, 
    57             typename FlowMap=typename Graph::EdgeMap<T> >
    58   class PreflowProba {
    59     
    60     typedef typename Graph::Node Node;
    61     typedef typename Graph::Edge Edge;
    62     typedef typename Graph::NodeIt NodeIt;
    63     typedef typename Graph::OutEdgeIt OutEdgeIt;
    64     typedef typename Graph::InEdgeIt InEdgeIt;
    65     
    66     const Graph& G;
    67     Node s;
    68     Node t;
    69     const CapMap& capacity;  
    70     FlowMap& flow;
    71     T value;
    72     bool constzero;
    73     bool res;
    74 
    75     typedef ResGraphWrapper<const Graph, T, CapMap, FlowMap> ResGW;
    76     typedef typename ResGW::OutEdgeIt ResOutEdgeIt;
    77     typedef typename ResGW::InEdgeIt ResInEdgeIt;
    78     typedef typename ResGW::Edge ResEdge;
    79  
    80   public:
    81     PreflowProba(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
    82 	    FlowMap& _flow, bool _constzero, bool _res ) :
    83       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), res(_res) {}
    84     
    85     
    86     void run() {
    87 
    88       ResGW res_graph(G, capacity, flow);
    89 
    90       value=0;                //for the subsequent runs
    91 
    92       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    93       int n=G.nodeNum(); 
    94       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
    95       int heur1=(int)(H1*n);  //time while running 'highest label'
    96       int heur=heur1;         //starting time interval (#of relabels)
    97       bool what_heur=1;       
    98       /*
    99 	what_heur is 0 in case 'bound decrease' 
   100 	and 1 in case 'highest label'
   101       */
   102       bool end=false;     
   103       /*
   104 	Needed for 'bound decrease', 'true'
   105 	means no active nodes are above bound b.
   106       */
   107       int relabel=0;
   108       int k=n-2;  //bound on the highest level under n containing a node
   109       int b=k;    //bound on the highest level under n of an active node
   110       
   111       typename Graph::NodeMap<int> level(G,n);      
   112       typename Graph::NodeMap<T> excess(G); 
   113 
   114       std::vector<Node> active(n-1,INVALID);
   115       typename Graph::NodeMap<Node> next(G,INVALID);
   116       //Stack of the active nodes in level i < n.
   117       //We use it in both phases.
   118 
   119       typename Graph::NodeMap<Node> left(G,INVALID);
   120       typename Graph::NodeMap<Node> right(G,INVALID);
   121       std::vector<Node> level_list(n,INVALID);
   122       /*
   123 	List of the nodes in level i<n.
   124       */
   125 
   126 
   127       if ( constzero ) {
   128      
   129 	/*Reverse_bfs from t, to find the starting level.*/
   130 	level.set(t,0);
   131 	std::queue<Node> bfs_queue;
   132 	bfs_queue.push(t);
   133 	
   134 	while (!bfs_queue.empty()) {
   135 	  
   136 	  Node v=bfs_queue.front();	
   137 	  bfs_queue.pop();
   138 	  int l=level[v]+1;
   139 	  
   140 	  InEdgeIt e;
   141 	  for(G.first(e,v); G.valid(e); G.next(e)) {
   142 	    Node w=G.tail(e);
   143 	    if ( level[w] == n && w != s ) {
   144 	      bfs_queue.push(w);
   145 	      Node first=level_list[l];
   146 	      if ( G.valid(first) ) left.set(first,w);
   147 	      right.set(w,first);
   148 	      level_list[l]=w;
   149 	      level.set(w, l);
   150 	    }
   151 	  }
   152 	}
   153 
   154 	//the starting flow
   155 	OutEdgeIt e;
   156 	for(G.first(e,s); G.valid(e); G.next(e)) 
   157 	{
   158 	  T c=capacity[e];
   159 	  if ( c == 0 ) continue;
   160 	  Node w=G.head(e);
   161 	  if ( level[w] < n ) {	  
   162 	    if ( excess[w] == 0 && w!=t ) {
   163 	      next.set(w,active[level[w]]);
   164 	      active[level[w]]=w;
   165 	    }
   166 	    flow.set(e, c); 
   167 	    excess.set(w, excess[w]+c);
   168 	  }
   169 	}
   170       }
   171       else 
   172       {
   173 	
   174 	/*
   175 	  Reverse_bfs from t in the residual graph, 
   176 	  to find the starting level.
   177 	*/
   178 	level.set(t,0);
   179 	std::queue<Node> bfs_queue;
   180 	bfs_queue.push(t);
   181 	
   182 	while (!bfs_queue.empty()) {
   183 	  
   184 	  Node v=bfs_queue.front();	
   185 	  bfs_queue.pop();
   186 	  int l=level[v]+1;
   187 	  
   188 	  InEdgeIt e;
   189 	  for(G.first(e,v); G.valid(e); G.next(e)) {
   190 	    if ( capacity[e] == flow[e] ) continue;
   191 	    Node w=G.tail(e);
   192 	    if ( level[w] == n && w != s ) {
   193 	      bfs_queue.push(w);
   194 	      Node first=level_list[l];
   195 	      if ( G.valid(first) ) left.set(first,w);
   196 	      right.set(w,first);
   197 	      level_list[l]=w;
   198 	      level.set(w, l);
   199 	    }
   200 	  }
   201 	    
   202 	  OutEdgeIt f;
   203 	  for(G.first(f,v); G.valid(f); G.next(f)) {
   204 	    if ( 0 == flow[f] ) continue;
   205 	    Node w=G.head(f);
   206 	    if ( level[w] == n && w != s ) {
   207 	      bfs_queue.push(w);
   208 	      Node first=level_list[l];
   209 	      if ( G.valid(first) ) left.set(first,w);
   210 	      right.set(w,first);
   211 	      level_list[l]=w;
   212 	      level.set(w, l);
   213 	    }
   214 	    }
   215 	}
   216       
   217 	
   218 	/*
   219 	  Counting the excess
   220 	*/
   221 	NodeIt v;
   222 	for(G.first(v); G.valid(v); G.next(v)) {
   223 	  T exc=0;
   224 
   225 	  InEdgeIt e;
   226 	  for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
   227 	  OutEdgeIt f;
   228 	  for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e];
   229 
   230 	  excess.set(v,exc);	  
   231 
   232 	  //putting the active nodes into the stack
   233 	  int lev=level[v];
   234 	  if ( exc > 0 && lev < n ) {
   235 	    next.set(v,active[lev]);
   236 	    active[lev]=v;
   237 	  }
   238 	}
   239 
   240 
   241 	//the starting flow
   242 	OutEdgeIt e;
   243 	for(G.first(e,s); G.valid(e); G.next(e)) 
   244 	{
   245 	  T rem=capacity[e]-flow[e];
   246 	  if ( rem == 0 ) continue;
   247 	  Node w=G.head(e);
   248 	  if ( level[w] < n ) {	  
   249 	    if ( excess[w] == 0 && w!=t ) {
   250 	      next.set(w,active[level[w]]);
   251 	      active[level[w]]=w;
   252 	    }
   253 	    flow.set(e, capacity[e]); 
   254 	    excess.set(w, excess[w]+rem);
   255 	  }
   256 	}
   257 	
   258 	InEdgeIt f;
   259 	for(G.first(f,s); G.valid(f); G.next(f)) 
   260 	{
   261 	  if ( flow[f] == 0 ) continue;
   262 	  Node w=G.head(f);
   263 	  if ( level[w] < n ) {	  
   264 	    if ( excess[w] == 0 && w!=t ) {
   265 	      next.set(w,active[level[w]]);
   266 	      active[level[w]]=w;
   267 	    }
   268 	    excess.set(w, excess[w]+flow[f]);
   269 	    flow.set(f, 0); 
   270 	  }
   271 	}
   272       }
   273 
   274 
   275 
   276 
   277       /* 
   278 	 End of preprocessing 
   279       */
   280 
   281 
   282 
   283       /*
   284 	Push/relabel on the highest level active nodes.
   285       */	
   286       while ( true ) {
   287 	
   288 	if ( b == 0 ) {
   289 	  if ( phase ) break;
   290 	  
   291 	  if ( !what_heur && !end && k > 0 ) {
   292 	    b=k;
   293 	    end=true;
   294 	  } else {
   295 	    phase=1;
   296 	    level.set(s,0);
   297 	    std::queue<Node> bfs_queue;
   298 	    bfs_queue.push(s);
   299 	    
   300 	    while (!bfs_queue.empty()) {
   301 	      
   302 	      Node v=bfs_queue.front();	
   303 	      bfs_queue.pop();
   304 	      int l=level[v]+1;
   305 	      
   306 	      if (res){	
   307 		ResInEdgeIt e;
   308 		for(res_graph.first(e,v); res_graph.valid(e); 
   309 		    res_graph.next(e)) {
   310 		  Node u=res_graph.tail(e);
   311 		  if ( level[u] >= n ) { 
   312 		    bfs_queue.push(u);
   313 		    level.set(u, l);
   314 		    if ( excess[u] > 0 ) {
   315 		      next.set(u,active[l]);
   316 		      active[l]=u;
   317 		    }
   318 		  }
   319 		}
   320 	      } else {
   321 	        InEdgeIt e;
   322 		for(G.first(e,v); G.valid(e); G.next(e)) {
   323 		  if ( capacity[e] == flow[e] ) continue;
   324 		  Node u=G.tail(e);
   325 		  if ( level[u] >= n ) { 
   326 		    bfs_queue.push(u);
   327 		    level.set(u, l);
   328 		    if ( excess[u] > 0 ) {
   329 		      next.set(u,active[l]);
   330 		      active[l]=u;
   331 		    }
   332 		  }
   333 		}
   334 		
   335 		OutEdgeIt f;
   336 		for(G.first(f,v); G.valid(f); G.next(f)) {
   337 		  if ( 0 == flow[f] ) continue;
   338 		  Node u=G.head(f);
   339 		  if ( level[u] >= n ) { 
   340 		    bfs_queue.push(u);
   341 		    level.set(u, l);
   342 		    if ( excess[u] > 0 ) {
   343 		      next.set(u,active[l]);
   344 		      active[l]=u;
   345 		    }
   346 		  }
   347 		}
   348 	      }
   349 	    }
   350 	    b=n-2;
   351 	    }
   352 	    
   353 	}
   354 	  
   355 	  
   356 	if ( !G.valid(active[b]) ) --b; 
   357 	else {
   358 	  end=false;  
   359 
   360 	  Node w=active[b];
   361 	  active[b]=next[w];
   362 	  int lev=level[w];
   363 	  T exc=excess[w];
   364 	  int newlevel=n;       //bound on the next level of w
   365 	  
   366 	  OutEdgeIt e;
   367 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   368 	    
   369 	    if ( flow[e] == capacity[e] ) continue; 
   370 	    Node v=G.head(e);            
   371 	    //e=wv	    
   372 	    
   373 	    if( lev > level[v] ) {      
   374 	      /*Push is allowed now*/
   375 	      
   376 	      if ( excess[v]==0 && v!=t && v!=s ) {
   377 		int lev_v=level[v];
   378 		next.set(v,active[lev_v]);
   379 		active[lev_v]=v;
   380 	      }
   381 	      
   382 	      T cap=capacity[e];
   383 	      T flo=flow[e];
   384 	      T remcap=cap-flo;
   385 	      
   386 	      if ( remcap >= exc ) {       
   387 		/*A nonsaturating push.*/
   388 		
   389 		flow.set(e, flo+exc);
   390 		excess.set(v, excess[v]+exc);
   391 		exc=0;
   392 		break; 
   393 		
   394 	      } else { 
   395 		/*A saturating push.*/
   396 		
   397 		flow.set(e, cap);
   398 		excess.set(v, excess[v]+remcap);
   399 		exc-=remcap;
   400 	      }
   401 	    } else if ( newlevel > level[v] ){
   402 	      newlevel = level[v];
   403 	    }	    
   404 	    
   405 	  } //for out edges wv 
   406 	
   407 	
   408 	if ( exc > 0 ) {	
   409 	  InEdgeIt e;
   410 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   411 	    
   412 	    if( flow[e] == 0 ) continue; 
   413 	    Node v=G.tail(e);  
   414 	    //e=vw
   415 	    
   416 	    if( lev > level[v] ) {  
   417 	      /*Push is allowed now*/
   418 	      
   419 	      if ( excess[v]==0 && v!=t && v!=s ) {
   420 		int lev_v=level[v];
   421 		next.set(v,active[lev_v]);
   422 		active[lev_v]=v;
   423 	      }
   424 	      
   425 	      T flo=flow[e];
   426 	      
   427 	      if ( flo >= exc ) { 
   428 		/*A nonsaturating push.*/
   429 		
   430 		flow.set(e, flo-exc);
   431 		excess.set(v, excess[v]+exc);
   432 		exc=0;
   433 		break; 
   434 	      } else {                                               
   435 		/*A saturating push.*/
   436 		
   437 		excess.set(v, excess[v]+flo);
   438 		exc-=flo;
   439 		flow.set(e,0);
   440 	      }  
   441 	    } else if ( newlevel > level[v] ) {
   442 	      newlevel = level[v];
   443 	    }	    
   444 	  } //for in edges vw
   445 	  
   446 	} // if w still has excess after the out edge for cycle
   447 	
   448 	excess.set(w, exc);
   449 	 
   450 	/*
   451 	  Relabel
   452 	*/
   453 	
   454 
   455 	if ( exc > 0 ) {
   456 	  //now 'lev' is the old level of w
   457 	
   458 	  if ( phase ) {
   459 	    level.set(w,++newlevel);
   460 	    next.set(w,active[newlevel]);
   461 	    active[newlevel]=w;
   462 	    b=newlevel;
   463 	  } else {
   464 	    //unlacing starts
   465 	    Node right_n=right[w];
   466 	    Node left_n=left[w];
   467 
   468 	    if ( G.valid(right_n) ) {
   469 	      if ( G.valid(left_n) ) {
   470 		right.set(left_n, right_n);
   471 		left.set(right_n, left_n);
   472 	      } else {
   473 		level_list[lev]=right_n;   
   474 		left.set(right_n, INVALID);
   475 	      } 
   476 	    } else {
   477 	      if ( G.valid(left_n) ) {
   478 		right.set(left_n, INVALID);
   479 	      } else { 
   480 		level_list[lev]=INVALID;   
   481 	      } 
   482 	    } 
   483 	    //unlacing ends
   484 		
   485 	    if ( !G.valid(level_list[lev]) ) {
   486 	      
   487 	       //gapping starts
   488 	      for (int i=lev; i!=k ; ) {
   489 		Node v=level_list[++i];
   490 		while ( G.valid(v) ) {
   491 		  level.set(v,n);
   492 		  v=right[v];
   493 		}
   494 		level_list[i]=INVALID;
   495 		if ( !what_heur ) active[i]=INVALID;
   496 	      }	     
   497 
   498 	      level.set(w,n);
   499 	      b=lev-1;
   500 	      k=b;
   501 	      //gapping ends
   502 	    
   503 	    } else {
   504 	      
   505 	      if ( newlevel == n ) level.set(w,n); 
   506 	      else {
   507 		level.set(w,++newlevel);
   508 		next.set(w,active[newlevel]);
   509 		active[newlevel]=w;
   510 		if ( what_heur ) b=newlevel;
   511 		if ( k < newlevel ) ++k;      //now k=newlevel
   512 		Node first=level_list[newlevel];
   513 		if ( G.valid(first) ) left.set(first,w);
   514 		right.set(w,first);
   515 		left.set(w,INVALID);
   516 		level_list[newlevel]=w;
   517 	      }
   518 	    }
   519 
   520 
   521 	    ++relabel; 
   522 	    if ( relabel >= heur ) {
   523 	      relabel=0;
   524 	      if ( what_heur ) {
   525 		what_heur=0;
   526 		heur=heur0;
   527 		end=false;
   528 	      } else {
   529 		what_heur=1;
   530 		heur=heur1;
   531 		b=k; 
   532 	      }
   533 	    }
   534 	  } //phase 0
   535 	  
   536 	  
   537 	} // if ( exc > 0 )
   538 	  
   539 	
   540 	}  // if stack[b] is nonempty
   541 	
   542       } // while(true)
   543 
   544 
   545       value = excess[t];
   546       /*Max flow value.*/
   547      
   548     } //void run()
   549 
   550 
   551 
   552 
   553 
   554     /*
   555       Returns the maximum value of a flow.
   556      */
   557 
   558     T flowValue() {
   559       return value;
   560     }
   561 
   562 
   563     FlowMap Flow() {
   564       return flow;
   565       }
   566 
   567 
   568     
   569     void Flow(FlowMap& _flow ) {
   570       NodeIt v;
   571       for(G.first(v) ; G.valid(v); G.next(v))
   572 	_flow.set(v,flow[v]);
   573     }
   574 
   575 
   576 
   577     /*
   578       Returns the minimum min cut, by a bfs from s in the residual graph.
   579     */
   580    
   581     template<typename _CutMap>
   582     void minMinCut(_CutMap& M) {
   583     
   584       std::queue<Node> queue;
   585       
   586       M.set(s,true);      
   587       queue.push(s);
   588 
   589       while (!queue.empty()) {
   590         Node w=queue.front();
   591 	queue.pop();
   592 
   593 	OutEdgeIt e;
   594 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   595 	  Node v=G.head(e);
   596 	  if (!M[v] && flow[e] < capacity[e] ) {
   597 	    queue.push(v);
   598 	    M.set(v, true);
   599 	  }
   600 	} 
   601 
   602 	InEdgeIt f;
   603 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   604 	  Node v=G.tail(f);
   605 	  if (!M[v] && flow[f] > 0 ) {
   606 	    queue.push(v);
   607 	    M.set(v, true);
   608 	  }
   609 	} 
   610       }
   611     }
   612 
   613 
   614   
   615     /*
   616       Returns the maximum min cut, by a reverse bfs 
   617       from t in the residual graph.
   618     */
   619     
   620     template<typename _CutMap>
   621     void maxMinCut(_CutMap& M) {
   622     
   623       std::queue<Node> queue;
   624       
   625       M.set(t,true);        
   626       queue.push(t);
   627 
   628       while (!queue.empty()) {
   629         Node w=queue.front();
   630 	queue.pop();
   631 
   632 
   633 	InEdgeIt e;
   634 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   635 	  Node v=G.tail(e);
   636 	  if (!M[v] && flow[e] < capacity[e] ) {
   637 	    queue.push(v);
   638 	    M.set(v, true);
   639 	  }
   640 	}
   641 	
   642 	OutEdgeIt f;
   643 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   644 	  Node v=G.head(f);
   645 	  if (!M[v] && flow[f] > 0 ) {
   646 	    queue.push(v);
   647 	    M.set(v, true);
   648 	  }
   649 	}
   650       }
   651 
   652       NodeIt v;
   653       for(G.first(v) ; G.valid(v); G.next(v)) {
   654 	M.set(v, !M[v]);
   655       }
   656 
   657     }
   658 
   659 
   660 
   661     template<typename CutMap>
   662     void minCut(CutMap& M) {
   663       minMinCut(M);
   664     }
   665 
   666     
   667     void reset_target (Node _t) {t=_t;}
   668     void reset_source (Node _s) {s=_s;}
   669    
   670     template<typename _CapMap>   
   671     void reset_cap (_CapMap _cap) {capacity=_cap;}
   672 
   673     template<typename _FlowMap>   
   674     void reset_cap (_FlowMap _flow, bool _constzero) {
   675       flow=_flow;
   676       constzero=_constzero;
   677     }
   678 
   679 
   680 
   681   };
   682 
   683 } //namespace hugo
   684 
   685 #endif //PREFLOW_PROBA_H
   686 
   687 
   688 
   689