lemon/kruskal.h
author alpar
Thu, 01 Sep 2005 20:35:30 +0000
changeset 1674 648aa2f33dc8
parent 1603 5ad84fbadf2b
child 1679 e825655c24a4
permissions -rw-r--r--
Warning added on the usage of InDegMap/OutDegMap
     1 /* -*- C++ -*-
     2  * lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_KRUSKAL_H
    18 #define LEMON_KRUSKAL_H
    19 
    20 #include <algorithm>
    21 #include <lemon/unionfind.h>
    22 #include<lemon/utility.h>
    23 
    24 /**
    25 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    26 @ingroup galgs
    27 \brief This group containes the algorithms for finding a minimum cost spanning
    28 tree in a graph
    29 
    30 This group containes the algorithms for finding a minimum cost spanning
    31 tree in a graph
    32 */
    33 
    34 ///\ingroup spantree
    35 ///\file
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    37 ///
    38 ///Kruskal's algorithm to compute a minimum cost tree.
    39 ///
    40 ///\todo The file still needs some clean-up.
    41 
    42 namespace lemon {
    43 
    44   /// \addtogroup spantree
    45   /// @{
    46 
    47   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    48 
    49   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    50   /// Due to hard C++ hacking, it accepts various input and output types.
    51   ///
    52   /// \param g The graph the algorithm runs on.
    53   /// It can be either \ref concept::StaticGraph "directed" or 
    54   /// \ref concept::UndirGraph "undirected".
    55   /// If the graph is directed, the algorithm consider it to be 
    56   /// undirected by disregarding the direction of the edges.
    57   ///
    58   /// \param in This object is used to describe the edge costs. It can be one
    59   /// of the following choices.
    60   /// - An STL compatible 'Forward Container'
    61   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    62   /// where \c X is the type of the costs. The pairs indicates the edges along
    63   /// with the assigned cost. <em>They must be in a
    64   /// cost-ascending order.</em>
    65   /// - Any readable Edge map. The values of the map indicate the edge costs.
    66   ///
    67   /// \retval out Here we also have a choise.
    68   /// - Is can be a writable \c bool edge map. 
    69   /// After running the algorithm
    70   /// this will contain the found minimum cost spanning tree: the value of an
    71   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    72   /// be set to \c false. The value of each edge will be set exactly once.
    73   /// - It can also be an iteraror of an STL Container with
    74   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    75   /// The algorithm copies the elements of the found tree into this sequence.
    76   /// For example, if we know that the spanning tree of the graph \c g has
    77   /// say 53 edges, then
    78   /// we can put its edges into a STL vector \c tree with a code like this.
    79   /// \code
    80   /// std::vector<Edge> tree(53);
    81   /// kruskal(g,cost,tree.begin());
    82   /// \endcode
    83   /// Or if we don't know in advance the size of the tree, we can write this.
    84   /// \code
    85   /// std::vector<Edge> tree;
    86   /// kruskal(g,cost,std::back_inserter(tree));
    87   /// \endcode
    88   ///
    89   /// \return The cost of the found tree.
    90   ///
    91   /// \warning If kruskal is run on an
    92   /// \ref lemon::concept::UndirGraph "undirected graph", be sure that the
    93   /// map storing the tree is also undirected
    94   /// (e.g. UndirListGraph::UndirEdgeMap<bool>, otherwise the values of the
    95   /// half of the edges will not be set.
    96   ///
    97   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    98   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    99   /// people would expect. So, one should be careful not to add both of the
   100   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
   101   /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
   102 
   103 #ifdef DOXYGEN
   104   template <class GR, class IN, class OUT>
   105   typename IN::value_type::second_type
   106   kruskal(GR const& g, IN const& in, 
   107 	  OUT& out)
   108 #else
   109   template <class GR, class IN, class OUT>
   110   typename IN::value_type::second_type
   111   kruskal(GR const& g, IN const& in, 
   112 	  OUT& out,
   113 // 	  typename IN::value_type::first_type = typename GR::Edge()
   114 // 	  ,typename OUT::Key = OUT::Key()
   115 // 	  //,typename OUT::Key = typename GR::Edge()
   116 	  const typename IN::value_type::first_type * = 
   117 	  (const typename IN::value_type::first_type *)(0),
   118 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   119 	  )
   120 #endif
   121   {
   122     typedef typename IN::value_type::second_type EdgeCost;
   123     typedef typename GR::template NodeMap<int> NodeIntMap;
   124     typedef typename GR::Node Node;
   125 
   126     NodeIntMap comp(g, -1);
   127     UnionFind<Node,NodeIntMap> uf(comp); 
   128       
   129     EdgeCost tot_cost = 0;
   130     for (typename IN::const_iterator p = in.begin(); 
   131 	 p!=in.end(); ++p ) {
   132       if ( uf.join(g.target((*p).first),
   133 		   g.source((*p).first)) ) {
   134 	out.set((*p).first, true);
   135 	tot_cost += (*p).second;
   136       }
   137       else {
   138 	out.set((*p).first, false);
   139       }
   140     }
   141     return tot_cost;
   142   }
   143 
   144  
   145   /// @}
   146 
   147   
   148   /* A work-around for running Kruskal with const-reference bool maps... */
   149 
   150   /// Helper class for calling kruskal with "constant" output map.
   151 
   152   /// Helper class for calling kruskal with output maps constructed
   153   /// on-the-fly.
   154   ///
   155   /// A typical examle is the following call:
   156   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   157   /// Here, the third argument is a temporary object (which wraps around an
   158   /// iterator with a writable bool map interface), and thus by rules of C++
   159   /// is a \c const object. To enable call like this exist this class and
   160   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   161   /// third argument.
   162   template<class Map>
   163   class NonConstMapWr {
   164     const Map &m;
   165   public:
   166     typedef typename Map::Key Key;
   167     typedef typename Map::Value Value;
   168 
   169     NonConstMapWr(const Map &_m) : m(_m) {}
   170 
   171     template<class Key>
   172     void set(Key const& k, Value const &v) const { m.set(k,v); }
   173   };
   174 
   175   template <class GR, class IN, class OUT>
   176   inline
   177   typename IN::value_type::second_type
   178   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   179 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   180 // 	  typename OUT::Key = GR::Edge()
   181 	  const typename IN::value_type::first_type * = 
   182 	  (const typename IN::value_type::first_type *)(0),
   183 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   184 	  )
   185   {
   186     NonConstMapWr<OUT> map_wr(out_map);
   187     return kruskal(g, edges, map_wr);
   188   }  
   189 
   190   /* ** ** Input-objects ** ** */
   191 
   192   /// Kruskal's input source.
   193  
   194   /// Kruskal's input source.
   195   ///
   196   /// In most cases you possibly want to use the \ref kruskal() instead.
   197   ///
   198   /// \sa makeKruskalMapInput()
   199   ///
   200   ///\param GR The type of the graph the algorithm runs on.
   201   ///\param Map An edge map containing the cost of the edges.
   202   ///\par
   203   ///The cost type can be any type satisfying
   204   ///the STL 'LessThan comparable'
   205   ///concept if it also has an operator+() implemented. (It is necessary for
   206   ///computing the total cost of the tree).
   207   ///
   208   template<class GR, class Map>
   209   class KruskalMapInput
   210     : public std::vector< std::pair<typename GR::Edge,
   211 				    typename Map::Value> > {
   212     
   213   public:
   214     typedef std::vector< std::pair<typename GR::Edge,
   215 				   typename Map::Value> > Parent;
   216     typedef typename Parent::value_type value_type;
   217 
   218   private:
   219     class comparePair {
   220     public:
   221       bool operator()(const value_type& a,
   222 		      const value_type& b) {
   223 	return a.second < b.second;
   224       }
   225     };
   226 
   227     template<class _GR>
   228     typename enable_if<typename _GR::UndirTag,void>::type
   229     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   230     {
   231       for(typename GR::UndirEdgeIt e(g);e!=INVALID;++e) 
   232 	push_back(value_type(typename GR::Edge(e,true), m[e]));
   233     }
   234 
   235     template<class _GR>
   236     typename disable_if<typename _GR::UndirTag,void>::type
   237     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   238     {
   239       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   240 	push_back(value_type(e, m[e]));
   241     }
   242     
   243     
   244   public:
   245 
   246     void sort() {
   247       std::sort(this->begin(), this->end(), comparePair());
   248     }
   249 
   250     KruskalMapInput(GR const& g, Map const& m) {
   251       fillWithEdges(g,m); 
   252       sort();
   253     }
   254   };
   255 
   256   /// Creates a KruskalMapInput object for \ref kruskal()
   257 
   258   /// It makes easier to use 
   259   /// \ref KruskalMapInput by making it unnecessary 
   260   /// to explicitly give the type of the parameters.
   261   ///
   262   /// In most cases you possibly
   263   /// want to use \ref kruskal() instead.
   264   ///
   265   ///\param g The type of the graph the algorithm runs on.
   266   ///\param m An edge map containing the cost of the edges.
   267   ///\par
   268   ///The cost type can be any type satisfying the
   269   ///STL 'LessThan Comparable'
   270   ///concept if it also has an operator+() implemented. (It is necessary for
   271   ///computing the total cost of the tree).
   272   ///
   273   ///\return An appropriate input source for \ref kruskal().
   274   ///
   275   template<class GR, class Map>
   276   inline
   277   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   278   {
   279     return KruskalMapInput<GR,Map>(g,m);
   280   }
   281   
   282   
   283 
   284   /* ** ** Output-objects: simple writable bool maps ** ** */
   285   
   286 
   287 
   288   /// A writable bool-map that makes a sequence of "true" keys
   289 
   290   /// A writable bool-map that creates a sequence out of keys that receives
   291   /// the value "true".
   292   ///
   293   /// \sa makeKruskalSequenceOutput()
   294   ///
   295   /// Very often, when looking for a min cost spanning tree, we want as
   296   /// output a container containing the edges of the found tree. For this
   297   /// purpose exist this class that wraps around an STL iterator with a
   298   /// writable bool map interface. When a key gets value "true" this key
   299   /// is added to sequence pointed by the iterator.
   300   ///
   301   /// A typical usage:
   302   /// \code
   303   /// std::vector<Graph::Edge> v;
   304   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   305   /// \endcode
   306   /// 
   307   /// For the most common case, when the input is given by a simple edge
   308   /// map and the output is a sequence of the tree edges, a special
   309   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   310   ///
   311   /// \warning Not a regular property map, as it doesn't know its Key
   312 
   313   template<class Iterator>
   314   class KruskalSequenceOutput {
   315     mutable Iterator it;
   316 
   317   public:
   318     typedef typename Iterator::value_type Key;
   319     typedef bool Value;
   320 
   321     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   322 
   323     template<typename Key>
   324     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   325   };
   326 
   327   template<class Iterator>
   328   inline
   329   KruskalSequenceOutput<Iterator>
   330   makeKruskalSequenceOutput(Iterator it) {
   331     return KruskalSequenceOutput<Iterator>(it);
   332   }
   333 
   334 
   335 
   336   /* ** ** Wrapper funtions ** ** */
   337 
   338 //   \brief Wrapper function to kruskal().
   339 //   Input is from an edge map, output is a plain bool map.
   340 //  
   341 //   Wrapper function to kruskal().
   342 //   Input is from an edge map, output is a plain bool map.
   343 //  
   344 //   \param g The type of the graph the algorithm runs on.
   345 //   \param in An edge map containing the cost of the edges.
   346 //   \par
   347 //   The cost type can be any type satisfying the
   348 //   STL 'LessThan Comparable'
   349 //   concept if it also has an operator+() implemented. (It is necessary for
   350 //   computing the total cost of the tree).
   351 //  
   352 //   \retval out This must be a writable \c bool edge map.
   353 //   After running the algorithm
   354 //   this will contain the found minimum cost spanning tree: the value of an
   355 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   356 //   be set to \c false. The value of each edge will be set exactly once.
   357 //  
   358 //   \return The cost of the found tree.
   359 
   360   template <class GR, class IN, class RET>
   361   inline
   362   typename IN::Value
   363   kruskal(GR const& g,
   364 	  IN const& in,
   365 	  RET &out,
   366 	  //	  typename IN::Key = typename GR::Edge(),
   367 	  //typename IN::Key = typename IN::Key (),
   368 	  //	  typename RET::Key = typename GR::Edge()
   369 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   370 	  const typename RET::Key * = (const typename RET::Key *)(0)
   371 	  )
   372   {
   373     return kruskal(g,
   374 		   KruskalMapInput<GR,IN>(g,in),
   375 		   out);
   376   }
   377 
   378 //   \brief Wrapper function to kruskal().
   379 //   Input is from an edge map, output is an STL Sequence.
   380 //  
   381 //   Wrapper function to kruskal().
   382 //   Input is from an edge map, output is an STL Sequence.
   383 //  
   384 //   \param g The type of the graph the algorithm runs on.
   385 //   \param in An edge map containing the cost of the edges.
   386 //   \par
   387 //   The cost type can be any type satisfying the
   388 //   STL 'LessThan Comparable'
   389 //   concept if it also has an operator+() implemented. (It is necessary for
   390 //   computing the total cost of the tree).
   391 //  
   392 //   \retval out This must be an iteraror of an STL Container with
   393 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   394 //   The algorithm copies the elements of the found tree into this sequence.
   395 //   For example, if we know that the spanning tree of the graph \c g has
   396 //   say 53 edges, then
   397 //   we can put its edges into a STL vector \c tree with a code like this.
   398 //   \code
   399 //   std::vector<Edge> tree(53);
   400 //   kruskal(g,cost,tree.begin());
   401 //   \endcode
   402 //   Or if we don't know in advance the size of the tree, we can write this.
   403 //   \code
   404 //   std::vector<Edge> tree;
   405 //   kruskal(g,cost,std::back_inserter(tree));
   406 //   \endcode
   407 //  
   408 //   \return The cost of the found tree.
   409 //  
   410 //   \bug its name does not follow the coding style.
   411 
   412   template <class GR, class IN, class RET>
   413   inline
   414   typename IN::Value
   415   kruskal(const GR& g,
   416 	  const IN& in,
   417 	  RET out,
   418 	  //,typename RET::value_type = typename GR::Edge()
   419 	  //,typename RET::value_type = typename RET::value_type()
   420 	  const typename RET::value_type * = 
   421 	  (const typename RET::value_type *)(0)
   422 	  )
   423   {
   424     KruskalSequenceOutput<RET> _out(out);
   425     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   426   }
   427  
   428   /// @}
   429 
   430 } //namespace lemon
   431 
   432 #endif //LEMON_KRUSKAL_H