src/hugo/kruskal.h
author alpar
Tue, 07 Sep 2004 10:35:31 +0000
changeset 813 65144c52969c
parent 810 e9fbc747ca47
child 824 157115b5814a
permissions -rw-r--r--
- maxEdgeId() and maxNodeId() now works as their names suggest.
- maxEdgeId(), maxNodeId(), nodeNum() and edgeNum() are documented.
     1 // -*- c++ -*- //
     2 #ifndef HUGO_KRUSKAL_H
     3 #define HUGO_KRUSKAL_H
     4 
     5 #include <algorithm>
     6 #include <hugo/unionfind.h>
     7 
     8 /**
     9 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    10 @ingroup galgs
    11 \brief This group containes the algorithms for finding a minimum cost spanning
    12 tree in a graph
    13 
    14 This group containes the algorithms for finding a minimum cost spanning
    15 tree in a graph
    16 */
    17 
    18 ///\ingroup spantree
    19 ///\file
    20 ///\brief Kruskal's algorithm to compute a minimum cost tree
    21 ///
    22 ///Kruskal's algorithm to compute a minimum cost tree.
    23 
    24 namespace hugo {
    25 
    26   /// \addtogroup spantree
    27   /// @{
    28 
    29   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    30 
    31   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    32   /// \param G The graph the algorithm runs on. The algorithm considers the
    33   /// graph to be undirected, the direction of the edges are not used.
    34   ///
    35   /// \param in This object is used to describe the edge costs. It must
    36   /// be an STL compatible 'Forward Container'
    37   /// with <tt>std::pair<Graph::Edge,X></tt> as its <tt>value_type</tt>,
    38   /// where X is the type of the costs. It must contain every edge in
    39   /// cost-ascending order.
    40   ///\par
    41   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    42   /// which converts a
    43   /// simple edge map to an input of this form. Alternatively, you can use
    44   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    45   /// the edge costs are given by an edge map.
    46   ///
    47   /// \retval out This must be a writable \c bool edge map.
    48   /// After running the algorithm
    49   /// this will contain the found minimum cost spanning tree: the value of an
    50   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    51   /// be set to \c false. The value of each edge will be set exactly once.
    52   ///
    53   /// \return The cost of the found tree.
    54 
    55   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
    56   typename InputEdgeOrder::value_type::second_type
    57   kruskal(Graph const& G, InputEdgeOrder const& in, 
    58 		 OutBoolMap& out)
    59   {
    60     typedef typename InputEdgeOrder::value_type::second_type EdgeCost;
    61     typedef typename Graph::template NodeMap<int> NodeIntMap;
    62     typedef typename Graph::Node Node;
    63 
    64     NodeIntMap comp(G, -1);
    65     UnionFind<Node,NodeIntMap> uf(comp); 
    66       
    67     EdgeCost tot_cost = 0;
    68     for (typename InputEdgeOrder::const_iterator p = in.begin(); 
    69 	 p!=in.end(); ++p ) {
    70       if ( uf.join(G.head((*p).first),
    71 		   G.tail((*p).first)) ) {
    72 	out.set((*p).first, true);
    73 	tot_cost += (*p).second;
    74       }
    75       else {
    76 	out.set((*p).first, false);
    77       }
    78     }
    79     return tot_cost;
    80   }
    81 
    82   /* A work-around for running Kruskal with const-reference bool maps... */
    83 
    84   ///\bug What is this? Or why doesn't it work?
    85   ///
    86   template<typename Map>
    87   class NonConstMapWr {
    88     const Map &m;
    89   public:
    90     typedef typename Map::ValueType ValueType;
    91 
    92     NonConstMapWr(const Map &_m) : m(_m) {}
    93 
    94     template<typename KeyType>
    95     void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
    96   };
    97 
    98   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
    99   inline
   100   typename InputEdgeOrder::ValueType
   101   kruskal(Graph const& G, InputEdgeOrder const& edges, 
   102 	  OutBoolMap const& out_map)
   103   {
   104     NonConstMapWr<OutBoolMap> map_wr(out_map);
   105     return kruskal(G, edges, map_wr);
   106   }  
   107 
   108   /* ** ** Input-objects ** ** */
   109 
   110   /// Kruskal input source.
   111 
   112   /// Kruskal input source.
   113   ///
   114   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   115   ///
   116   /// \sa makeKruskalMapInput()
   117   ///
   118   ///\param Graph The type of the graph the algorithm runs on.
   119   ///\param Map An edge map containing the cost of the edges.
   120   ///\par
   121   ///The cost type can be any type satisfying
   122   ///the STL 'LessThan comparable'
   123   ///concept if it also has an operator+() implemented. (It is necessary for
   124   ///computing the total cost of the tree).
   125   ///
   126   template<typename Graph, typename Map>
   127   class KruskalMapInput
   128     : public std::vector< std::pair<typename Graph::Edge,
   129 				    typename Map::ValueType> > {
   130     
   131   public:
   132     typedef std::vector< std::pair<typename Graph::Edge,
   133 				   typename Map::ValueType> > Parent;
   134     typedef typename Parent::value_type value_type;
   135 
   136   private:
   137     class comparePair {
   138     public:
   139       bool operator()(const value_type& a,
   140 		      const value_type& b) {
   141 	return a.second < b.second;
   142       }
   143     };
   144 
   145   public:
   146 
   147     void sort() {
   148       std::sort(this->begin(), this->end(), comparePair());
   149     }
   150 
   151     KruskalMapInput(Graph const& G, Map const& m) {
   152       typedef typename Graph::EdgeIt EdgeIt;
   153       
   154       this->clear();
   155       for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e]));
   156       sort();
   157     }
   158   };
   159 
   160   /// Creates a KruskalMapInput object for \ref kruskal()
   161 
   162   /// It makes is easier to use 
   163   /// \ref KruskalMapInput by making it unnecessary 
   164   /// to explicitly give the type of the parameters.
   165   ///
   166   /// In most cases you possibly
   167   /// want to use the function kruskalEdgeMap() instead.
   168   ///
   169   ///\param G The type of the graph the algorithm runs on.
   170   ///\param m An edge map containing the cost of the edges.
   171   ///\par
   172   ///The cost type can be any type satisfying the
   173   ///STL 'LessThan Comparable'
   174   ///concept if it also has an operator+() implemented. (It is necessary for
   175   ///computing the total cost of the tree).
   176   ///
   177   ///\return An appropriate input source for \ref kruskal().
   178   ///
   179   template<typename Graph, typename Map>
   180   inline
   181   KruskalMapInput<Graph,Map> makeKruskalMapInput(const Graph &G,const Map &m)
   182   {
   183     return KruskalMapInput<Graph,Map>(G,m);
   184   }
   185   
   186   
   187   /* ** ** Output-objects: simple writable bool maps** ** */
   188   
   189   /// A writable bool-map that makes a sequence of "true" keys
   190 
   191   /// A writable bool-map that creates a sequence out of keys that receives
   192   /// the value "true".
   193   /// \warning Not a regular property map, as it doesn't know its KeyType
   194   /// \bug Missing documentation.
   195   /// \todo This class may be of wider usage, therefore it could move to
   196   /// <tt>maps.h</tt>
   197   template<typename Iterator>
   198   class SequenceOutput {
   199     mutable Iterator it;
   200 
   201   public:
   202     typedef bool ValueType;
   203 
   204     SequenceOutput(Iterator const &_it) : it(_it) {}
   205 
   206     template<typename KeyType>
   207     void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
   208   };
   209 
   210   template<typename Iterator>
   211   inline
   212   SequenceOutput<Iterator>
   213   makeSequenceOutput(Iterator it) {
   214     return SequenceOutput<Iterator>(it);
   215   }
   216 
   217   /* ** ** Wrapper funtions ** ** */
   218 
   219 
   220   /// \brief Wrapper function to kruskal().
   221   /// Input is from an edge map, output is a plain bool map.
   222   ///
   223   /// Wrapper function to kruskal().
   224   /// Input is from an edge map, output is a plain bool map.
   225   ///
   226   ///\param G The type of the graph the algorithm runs on.
   227   ///\param in An edge map containing the cost of the edges.
   228   ///\par
   229   ///The cost type can be any type satisfying the
   230   ///STL 'LessThan Comparable'
   231   ///concept if it also has an operator+() implemented. (It is necessary for
   232   ///computing the total cost of the tree).
   233   ///
   234   /// \retval out This must be a writable \c bool edge map.
   235   /// After running the algorithm
   236   /// this will contain the found minimum cost spanning tree: the value of an
   237   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   238   /// be set to \c false. The value of each edge will be set exactly once.
   239   ///
   240   /// \return The cost of the found tree.
   241 
   242 
   243   template <typename Graph, typename EdgeCostMap, typename RetEdgeBoolMap>
   244   inline
   245   typename EdgeCostMap::ValueType
   246   kruskalEdgeMap(Graph const& G,
   247 		 EdgeCostMap const& in,
   248 		 RetEdgeBoolMap &out) {
   249     return kruskal(G,
   250 		   KruskalMapInput<Graph,EdgeCostMap>(G,in),
   251 		   out);
   252   }
   253 
   254   /// \brief Wrapper function to kruskal().
   255   /// Input is from an edge map, output is an STL Sequence.
   256   ///
   257   /// Wrapper function to kruskal().
   258   /// Input is from an edge map, output is an STL Sequence.
   259   ///
   260   ///\param G The type of the graph the algorithm runs on.
   261   ///\param in An edge map containing the cost of the edges.
   262   ///\par
   263   ///The cost type can be any type satisfying the
   264   ///STL 'LessThan Comparable'
   265   ///concept if it also has an operator+() implemented. (It is necessary for
   266   ///computing the total cost of the tree).
   267   ///
   268   /// \retval out This must be an iteraror of an STL Container with
   269   /// <tt>Graph::Edge</tt> as its <tt>value_type</tt>.
   270   /// The algorithm copies the elements of the found tree into this sequence.
   271   /// For example, if we know that the spanning tree of the graph \c G has
   272   /// say 53 edges then
   273   /// we can put its edges into a vector \c tree with a code like this.
   274   /// \code
   275   /// std::vector<Edge> tree(53);
   276   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   277   /// \endcode
   278   /// Or if we don't know in advance the size of the tree, we can write this.
   279   /// \code
   280   /// std::vector<Edge> tree;
   281   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   282   /// \endcode
   283   ///
   284   /// \return The cost of the found tree.
   285   ///
   286   /// \bug its name does not follow the coding style.
   287   template <typename Graph, typename EdgeCostMap, typename RetIterator>
   288   inline
   289   typename EdgeCostMap::ValueType
   290   kruskalEdgeMap_IteratorOut(const Graph& G,
   291 			     const EdgeCostMap& in,
   292 			     RetIterator out)
   293   {
   294     SequenceOutput<RetIterator> _out(out);
   295     return kruskal(G,
   296 		   KruskalMapInput<Graph, EdgeCostMap>(G, in),
   297 		   _out);
   298   }
   299 
   300   /// @}
   301 
   302 } //namespace hugo
   303 
   304 #endif //HUGO_KRUSKAL_H