lemon/kruskal.h
author deba
Tue, 07 Feb 2006 09:32:55 +0000
changeset 1966 65765fb5eb2f
parent 1946 17eb3eaad9f8
child 1979 c2992fd74dad
permissions -rw-r--r--
Easier checking in DEBUG mode

I hope we should not test ArrayMap longer

The vector map checks its limits in debug mode what
helps us to find the bad memory accesses in the maps
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    22 #include <algorithm>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/utility.h>
    26 
    27 /**
    28 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    29 @ingroup galgs
    30 \brief This group containes the algorithms for finding a minimum cost spanning
    31 tree in a graph
    32 
    33 This group containes the algorithms for finding a minimum cost spanning
    34 tree in a graph
    35 */
    36 
    37 ///\ingroup spantree
    38 ///\file
    39 ///\brief Kruskal's algorithm to compute a minimum cost tree
    40 ///
    41 ///Kruskal's algorithm to compute a minimum cost tree.
    42 ///
    43 ///\todo The file still needs some clean-up.
    44 
    45 namespace lemon {
    46 
    47   /// \addtogroup spantree
    48   /// @{
    49 
    50   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    51 
    52   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    53   /// Due to hard C++ hacking, it accepts various input and output types.
    54   ///
    55   /// \param g The graph the algorithm runs on.
    56   /// It can be either \ref concept::StaticGraph "directed" or 
    57   /// \ref concept::UGraph "undirected".
    58   /// If the graph is directed, the algorithm consider it to be 
    59   /// undirected by disregarding the direction of the edges.
    60   ///
    61   /// \param in This object is used to describe the edge costs. It can be one
    62   /// of the following choices.
    63   /// - An STL compatible 'Forward Container'
    64   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    65   /// where \c X is the type of the costs. The pairs indicates the edges along
    66   /// with the assigned cost. <em>They must be in a
    67   /// cost-ascending order.</em>
    68   /// - Any readable Edge map. The values of the map indicate the edge costs.
    69   ///
    70   /// \retval out Here we also have a choise.
    71   /// - Is can be a writable \c bool edge map. 
    72   /// After running the algorithm
    73   /// this will contain the found minimum cost spanning tree: the value of an
    74   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    75   /// be set to \c false. The value of each edge will be set exactly once.
    76   /// - It can also be an iteraror of an STL Container with
    77   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    78   /// The algorithm copies the elements of the found tree into this sequence.
    79   /// For example, if we know that the spanning tree of the graph \c g has
    80   /// say 53 edges, then
    81   /// we can put its edges into a STL vector \c tree with a code like this.
    82   ///\code
    83   /// std::vector<Edge> tree(53);
    84   /// kruskal(g,cost,tree.begin());
    85   ///\endcode
    86   /// Or if we don't know in advance the size of the tree, we can write this.
    87   ///\code
    88   /// std::vector<Edge> tree;
    89   /// kruskal(g,cost,std::back_inserter(tree));
    90   ///\endcode
    91   ///
    92   /// \return The cost of the found tree.
    93   ///
    94   /// \warning If kruskal is run on an
    95   /// \ref lemon::concept::UGraph "undirected graph", be sure that the
    96   /// map storing the tree is also undirected
    97   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
    98   /// half of the edges will not be set.
    99   ///
   100   /// \todo Discuss the case of undirected graphs: In this case the algorithm
   101   /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
   102   /// people would expect. So, one should be careful not to add both of the
   103   /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
   104   /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
   105 
   106 #ifdef DOXYGEN
   107   template <class GR, class IN, class OUT>
   108   typename IN::value_type::second_type
   109   kruskal(GR const& g, IN const& in, 
   110 	  OUT& out)
   111 #else
   112   template <class GR, class IN, class OUT>
   113   typename IN::value_type::second_type
   114   kruskal(GR const& g, IN const& in, 
   115 	  OUT& out,
   116 // 	  typename IN::value_type::first_type = typename GR::Edge()
   117 // 	  ,typename OUT::Key = OUT::Key()
   118 // 	  //,typename OUT::Key = typename GR::Edge()
   119 	  const typename IN::value_type::first_type * = 
   120 	  (const typename IN::value_type::first_type *)(0),
   121 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   122 	  )
   123 #endif
   124   {
   125     typedef typename IN::value_type::second_type EdgeCost;
   126     typedef typename GR::template NodeMap<int> NodeIntMap;
   127     typedef typename GR::Node Node;
   128 
   129     NodeIntMap comp(g, -1);
   130     UnionFind<Node,NodeIntMap> uf(comp); 
   131       
   132     EdgeCost tot_cost = 0;
   133     for (typename IN::const_iterator p = in.begin(); 
   134 	 p!=in.end(); ++p ) {
   135       if ( uf.join(g.target((*p).first),
   136 		   g.source((*p).first)) ) {
   137 	out.set((*p).first, true);
   138 	tot_cost += (*p).second;
   139       }
   140       else {
   141 	out.set((*p).first, false);
   142       }
   143     }
   144     return tot_cost;
   145   }
   146 
   147  
   148   /// @}
   149 
   150   
   151   /* A work-around for running Kruskal with const-reference bool maps... */
   152 
   153   /// Helper class for calling kruskal with "constant" output map.
   154 
   155   /// Helper class for calling kruskal with output maps constructed
   156   /// on-the-fly.
   157   ///
   158   /// A typical examle is the following call:
   159   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   160   /// Here, the third argument is a temporary object (which wraps around an
   161   /// iterator with a writable bool map interface), and thus by rules of C++
   162   /// is a \c const object. To enable call like this exist this class and
   163   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   164   /// third argument.
   165   template<class Map>
   166   class NonConstMapWr {
   167     const Map &m;
   168   public:
   169     typedef typename Map::Key Key;
   170     typedef typename Map::Value Value;
   171 
   172     NonConstMapWr(const Map &_m) : m(_m) {}
   173 
   174     template<class Key>
   175     void set(Key const& k, Value const &v) const { m.set(k,v); }
   176   };
   177 
   178   template <class GR, class IN, class OUT>
   179   inline
   180   typename IN::value_type::second_type
   181   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   182 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   183 // 	  typename OUT::Key = GR::Edge()
   184 	  const typename IN::value_type::first_type * = 
   185 	  (const typename IN::value_type::first_type *)(0),
   186 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   187 	  )
   188   {
   189     NonConstMapWr<OUT> map_wr(out_map);
   190     return kruskal(g, edges, map_wr);
   191   }  
   192 
   193   /* ** ** Input-objects ** ** */
   194 
   195   /// Kruskal's input source.
   196  
   197   /// Kruskal's input source.
   198   ///
   199   /// In most cases you possibly want to use the \ref kruskal() instead.
   200   ///
   201   /// \sa makeKruskalMapInput()
   202   ///
   203   ///\param GR The type of the graph the algorithm runs on.
   204   ///\param Map An edge map containing the cost of the edges.
   205   ///\par
   206   ///The cost type can be any type satisfying
   207   ///the STL 'LessThan comparable'
   208   ///concept if it also has an operator+() implemented. (It is necessary for
   209   ///computing the total cost of the tree).
   210   ///
   211   template<class GR, class Map>
   212   class KruskalMapInput
   213     : public std::vector< std::pair<typename GR::Edge,
   214 				    typename Map::Value> > {
   215     
   216   public:
   217     typedef std::vector< std::pair<typename GR::Edge,
   218 				   typename Map::Value> > Parent;
   219     typedef typename Parent::value_type value_type;
   220 
   221   private:
   222     class comparePair {
   223     public:
   224       bool operator()(const value_type& a,
   225 		      const value_type& b) {
   226 	return a.second < b.second;
   227       }
   228     };
   229 
   230     template<class _GR>
   231     typename enable_if<typename _GR::UTag,void>::type
   232     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   233     {
   234       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
   235 	push_back(value_type(g.direct(e, true), m[e]));
   236     }
   237 
   238     template<class _GR>
   239     typename disable_if<typename _GR::UTag,void>::type
   240     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   241     {
   242       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   243 	push_back(value_type(e, m[e]));
   244     }
   245     
   246     
   247   public:
   248 
   249     void sort() {
   250       std::sort(this->begin(), this->end(), comparePair());
   251     }
   252 
   253     KruskalMapInput(GR const& g, Map const& m) {
   254       fillWithEdges(g,m); 
   255       sort();
   256     }
   257   };
   258 
   259   /// Creates a KruskalMapInput object for \ref kruskal()
   260 
   261   /// It makes easier to use 
   262   /// \ref KruskalMapInput by making it unnecessary 
   263   /// to explicitly give the type of the parameters.
   264   ///
   265   /// In most cases you possibly
   266   /// want to use \ref kruskal() instead.
   267   ///
   268   ///\param g The type of the graph the algorithm runs on.
   269   ///\param m An edge map containing the cost of the edges.
   270   ///\par
   271   ///The cost type can be any type satisfying the
   272   ///STL 'LessThan Comparable'
   273   ///concept if it also has an operator+() implemented. (It is necessary for
   274   ///computing the total cost of the tree).
   275   ///
   276   ///\return An appropriate input source for \ref kruskal().
   277   ///
   278   template<class GR, class Map>
   279   inline
   280   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   281   {
   282     return KruskalMapInput<GR,Map>(g,m);
   283   }
   284   
   285   
   286 
   287   /* ** ** Output-objects: simple writable bool maps ** ** */
   288   
   289 
   290 
   291   /// A writable bool-map that makes a sequence of "true" keys
   292 
   293   /// A writable bool-map that creates a sequence out of keys that receives
   294   /// the value "true".
   295   ///
   296   /// \sa makeKruskalSequenceOutput()
   297   ///
   298   /// Very often, when looking for a min cost spanning tree, we want as
   299   /// output a container containing the edges of the found tree. For this
   300   /// purpose exist this class that wraps around an STL iterator with a
   301   /// writable bool map interface. When a key gets value "true" this key
   302   /// is added to sequence pointed by the iterator.
   303   ///
   304   /// A typical usage:
   305   ///\code
   306   /// std::vector<Graph::Edge> v;
   307   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   308   ///\endcode
   309   /// 
   310   /// For the most common case, when the input is given by a simple edge
   311   /// map and the output is a sequence of the tree edges, a special
   312   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   313   ///
   314   /// \warning Not a regular property map, as it doesn't know its Key
   315 
   316   template<class Iterator>
   317   class KruskalSequenceOutput {
   318     mutable Iterator it;
   319 
   320   public:
   321     typedef typename std::iterator_traits<Iterator>::value_type Key;
   322     typedef bool Value;
   323 
   324     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   325 
   326     template<typename Key>
   327     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   328   };
   329 
   330   template<class Iterator>
   331   inline
   332   KruskalSequenceOutput<Iterator>
   333   makeKruskalSequenceOutput(Iterator it) {
   334     return KruskalSequenceOutput<Iterator>(it);
   335   }
   336 
   337 
   338 
   339   /* ** ** Wrapper funtions ** ** */
   340 
   341 //   \brief Wrapper function to kruskal().
   342 //   Input is from an edge map, output is a plain bool map.
   343 //  
   344 //   Wrapper function to kruskal().
   345 //   Input is from an edge map, output is a plain bool map.
   346 //  
   347 //   \param g The type of the graph the algorithm runs on.
   348 //   \param in An edge map containing the cost of the edges.
   349 //   \par
   350 //   The cost type can be any type satisfying the
   351 //   STL 'LessThan Comparable'
   352 //   concept if it also has an operator+() implemented. (It is necessary for
   353 //   computing the total cost of the tree).
   354 //  
   355 //   \retval out This must be a writable \c bool edge map.
   356 //   After running the algorithm
   357 //   this will contain the found minimum cost spanning tree: the value of an
   358 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   359 //   be set to \c false. The value of each edge will be set exactly once.
   360 //  
   361 //   \return The cost of the found tree.
   362 
   363   template <class GR, class IN, class RET>
   364   inline
   365   typename IN::Value
   366   kruskal(GR const& g,
   367 	  IN const& in,
   368 	  RET &out,
   369 	  //	  typename IN::Key = typename GR::Edge(),
   370 	  //typename IN::Key = typename IN::Key (),
   371 	  //	  typename RET::Key = typename GR::Edge()
   372 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   373 	  const typename RET::Key * = (const typename RET::Key *)(0)
   374 	  )
   375   {
   376     return kruskal(g,
   377 		   KruskalMapInput<GR,IN>(g,in),
   378 		   out);
   379   }
   380 
   381 //   \brief Wrapper function to kruskal().
   382 //   Input is from an edge map, output is an STL Sequence.
   383 //  
   384 //   Wrapper function to kruskal().
   385 //   Input is from an edge map, output is an STL Sequence.
   386 //  
   387 //   \param g The type of the graph the algorithm runs on.
   388 //   \param in An edge map containing the cost of the edges.
   389 //   \par
   390 //   The cost type can be any type satisfying the
   391 //   STL 'LessThan Comparable'
   392 //   concept if it also has an operator+() implemented. (It is necessary for
   393 //   computing the total cost of the tree).
   394 //  
   395 //   \retval out This must be an iteraror of an STL Container with
   396 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   397 //   The algorithm copies the elements of the found tree into this sequence.
   398 //   For example, if we know that the spanning tree of the graph \c g has
   399 //   say 53 edges, then
   400 //   we can put its edges into a STL vector \c tree with a code like this.
   401 //\code
   402 //   std::vector<Edge> tree(53);
   403 //   kruskal(g,cost,tree.begin());
   404 //\endcode
   405 //   Or if we don't know in advance the size of the tree, we can write this.
   406 //\code
   407 //   std::vector<Edge> tree;
   408 //   kruskal(g,cost,std::back_inserter(tree));
   409 //\endcode
   410 //  
   411 //   \return The cost of the found tree.
   412 //  
   413 //   \bug its name does not follow the coding style.
   414 
   415   template <class GR, class IN, class RET>
   416   inline
   417   typename IN::Value
   418   kruskal(const GR& g,
   419 	  const IN& in,
   420 	  RET out,
   421 	  const typename RET::value_type * = 
   422 	  (const typename RET::value_type *)(0)
   423 	  )
   424   {
   425     KruskalSequenceOutput<RET> _out(out);
   426     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   427   }
   428  
   429   template <class GR, class IN, class RET>
   430   inline
   431   typename IN::Value
   432   kruskal(const GR& g,
   433 	  const IN& in,
   434 	  RET *out
   435 	  )
   436   {
   437     KruskalSequenceOutput<RET*> _out(out);
   438     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   439   }
   440  
   441   /// @}
   442 
   443 } //namespace lemon
   444 
   445 #endif //LEMON_KRUSKAL_H