lemon/fib_heap.h
author deba
Wed, 07 Mar 2007 11:56:14 +0000
changeset 2396 658c04d74729
parent 2263 9273fe7d850c
child 2529 93de38566e6c
permissions -rw-r--r--
naming convention:
header sentry
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FIB_HEAP_H
    20 #define LEMON_FIB_HEAP_H
    21 
    22 ///\file
    23 ///\ingroup auxdat
    24 ///\brief Fibonacci Heap implementation.
    25 
    26 #include <vector>
    27 #include <functional>
    28 #include <cmath>
    29 
    30 namespace lemon {
    31   
    32   /// \ingroup auxdat
    33 
    34   /// Fibonacci Heap.
    35 
    36   ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    37   ///is a data structure for storing items with specified values called \e
    38   ///priorities in such a way that finding the item with minimum priority is
    39   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    40   ///one can change the priority of an item, add or erase an item, etc.
    41   ///
    42   ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    43   ///heap. In case of many calls to these operations, it is better to use a
    44   ///\e binary \e heap.
    45   ///
    46   ///\param Prio Type of the priority of the items.
    47   ///\param ItemIntMap A read and writable Item int map, used internally
    48   ///to handle the cross references.
    49   ///\param Compare A class for the ordering of the priorities. The
    50   ///default is \c std::less<Prio>.
    51   ///
    52   ///\sa BinHeap
    53   ///\sa Dijkstra
    54   ///\author Jacint Szabo 
    55  
    56 #ifdef DOXYGEN
    57   template <typename Prio, 
    58 	    typename ItemIntMap, 
    59 	    typename Compare>
    60 #else
    61   template <typename Prio, 
    62 	    typename ItemIntMap, 
    63 	    typename Compare = std::less<Prio> >
    64 #endif
    65   class FibHeap {
    66   public:
    67     typedef typename ItemIntMap::Key Item;
    68     typedef Prio PrioType;
    69     
    70   private:
    71     class store;
    72     
    73     std::vector<store> container;
    74     int minimum;
    75     ItemIntMap &iimap;
    76     Compare comp;
    77     int num_items;
    78     
    79   public:
    80     ///Status of the nodes
    81     enum state_enum {
    82       ///The node is in the heap
    83       IN_HEAP = 0,
    84       ///The node has never been in the heap
    85       PRE_HEAP = -1,
    86       ///The node was in the heap but it got out of it
    87       POST_HEAP = -2
    88     };
    89     
    90     /// \brief The constructor
    91     ///
    92     /// \c _iimap should be given to the constructor, since it is
    93     ///   used internally to handle the cross references.
    94     explicit FibHeap(ItemIntMap &_iimap) 
    95       : minimum(0), iimap(_iimap), num_items() {} 
    96  
    97     /// \brief The constructor
    98     ///
    99     /// \c _iimap should be given to the constructor, since it is used
   100     /// internally to handle the cross references. \c _comp is an
   101     /// object for ordering of the priorities. 
   102     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
   103 		  iimap(_iimap), comp(_comp), num_items() {}
   104     
   105     /// \brief The number of items stored in the heap.
   106     ///
   107     /// Returns the number of items stored in the heap.
   108     int size() const { return num_items; }
   109 
   110     /// \brief Checks if the heap stores no items.
   111     ///
   112     ///   Returns \c true if and only if the heap stores no items.
   113     bool empty() const { return num_items==0; }
   114 
   115     /// \brief Make empty this heap.
   116     /// 
   117     /// Make empty this heap. It does not change the cross reference
   118     /// map.  If you want to reuse a heap what is not surely empty you
   119     /// should first clear the heap and after that you should set the
   120     /// cross reference map for each item to \c PRE_HEAP.
   121     void clear() {
   122       container.clear(); minimum = 0; num_items = 0;
   123     }
   124 
   125     /// \brief \c item gets to the heap with priority \c value independently 
   126     /// if \c item was already there.
   127     ///
   128     /// This method calls \ref push(\c item, \c value) if \c item is not
   129     /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   130     /// \ref increase(\c item, \c value) otherwise.
   131     void set (Item const item, PrioType const value); 
   132     
   133     /// \brief Adds \c item to the heap with priority \c value. 
   134     ///    
   135     /// Adds \c item to the heap with priority \c value. 
   136     /// \pre \c item must not be stored in the heap. 
   137     void push (Item const item, PrioType const value);
   138     
   139     /// \brief Returns the item with minimum priority relative to \c Compare.
   140     ///
   141     /// This method returns the item with minimum priority relative to \c
   142     /// Compare.  
   143     /// \pre The heap must be nonempty.  
   144     Item top() const { return container[minimum].name; }
   145 
   146     /// \brief Returns the minimum priority relative to \c Compare.
   147     ///
   148     /// It returns the minimum priority relative to \c Compare.
   149     /// \pre The heap must be nonempty.
   150     PrioType prio() const { return container[minimum].prio; }
   151     
   152     /// \brief Returns the priority of \c item.
   153     ///
   154     /// This function returns the priority of \c item.
   155     /// \pre \c item must be in the heap.
   156     PrioType& operator[](const Item& item) { 
   157       return container[iimap[item]].prio; 
   158     }
   159     
   160     /// \brief Returns the priority of \c item.
   161     ///
   162     /// It returns the priority of \c item.
   163     /// \pre \c item must be in the heap.
   164     const PrioType& operator[](const Item& item) const { 
   165       return container[iimap[item]].prio; 
   166     }
   167 
   168 
   169     /// \brief Deletes the item with minimum priority relative to \c Compare.
   170     ///
   171     /// This method deletes the item with minimum priority relative to \c
   172     /// Compare from the heap.  
   173     /// \pre The heap must be non-empty.  
   174     void pop();
   175 
   176     /// \brief Deletes \c item from the heap.
   177     ///
   178     /// This method deletes \c item from the heap, if \c item was already
   179     /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   180     void erase (const Item& item); 
   181 
   182     /// \brief Decreases the priority of \c item to \c value.
   183     ///
   184     /// This method decreases the priority of \c item to \c value.
   185     /// \pre \c item must be stored in the heap with priority at least \c
   186     ///   value relative to \c Compare.
   187     void decrease (Item item, PrioType const value); 
   188 
   189     /// \brief Increases the priority of \c item to \c value.
   190     ///
   191     /// This method sets the priority of \c item to \c value. Though
   192     /// there is no precondition on the priority of \c item, this
   193     /// method should be used only if it is indeed necessary to increase
   194     /// (relative to \c Compare) the priority of \c item, because this
   195     /// method is inefficient.
   196     void increase (Item item, PrioType const value) {
   197       erase(item);
   198       push(item, value);
   199     }
   200 
   201 
   202     /// \brief Returns if \c item is in, has already been in, or has never 
   203     /// been in the heap.
   204     ///
   205     /// This method returns PRE_HEAP if \c item has never been in the
   206     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   207     /// otherwise. In the latter case it is possible that \c item will
   208     /// get back to the heap again.
   209     state_enum state(const Item &item) const {
   210       int i=iimap[item];
   211       if( i>=0 ) {
   212 	if ( container[i].in ) i=0;
   213 	else i=-2; 
   214       }
   215       return state_enum(i);
   216     }    
   217 
   218     /// \brief Sets the state of the \c item in the heap.
   219     ///
   220     /// Sets the state of the \c item in the heap. It can be used to
   221     /// manually clear the heap when it is important to achive the
   222     /// better time complexity.
   223     /// \param i The item.
   224     /// \param st The state. It should not be \c IN_HEAP. 
   225     void state(const Item& i, state_enum st) {
   226       switch (st) {
   227       case POST_HEAP:
   228       case PRE_HEAP:
   229         if (state(i) == IN_HEAP) {
   230           erase(i);
   231         }
   232         iimap[i] = st;
   233         break;
   234       case IN_HEAP:
   235         break;
   236       }
   237     }
   238     
   239   private:
   240     
   241     void balance();
   242     void makeroot(int c);
   243     void cut(int a, int b);
   244     void cascade(int a);
   245     void fuse(int a, int b);
   246     void unlace(int a);
   247 
   248 
   249     class store {
   250       friend class FibHeap;
   251       
   252       Item name;
   253       int parent;
   254       int left_neighbor;
   255       int right_neighbor;
   256       int child;
   257       int degree;  
   258       bool marked;
   259       bool in;
   260       PrioType prio;
   261       
   262       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   263     };
   264   };    
   265  
   266 
   267 
   268     // **********************************************************************
   269     //  IMPLEMENTATIONS
   270     // **********************************************************************
   271     
   272   template <typename Prio, typename ItemIntMap, 
   273     typename Compare>
   274   void FibHeap<Prio, ItemIntMap, Compare>::set 
   275   (Item const item, PrioType const value) 
   276   {
   277     int i=iimap[item];
   278     if ( i >= 0 && container[i].in ) {
   279       if ( comp(value, container[i].prio) ) decrease(item, value); 
   280       if ( comp(container[i].prio, value) ) increase(item, value); 
   281     } else push(item, value);
   282   }
   283     
   284   template <typename Prio, typename ItemIntMap, 
   285     typename Compare>
   286   void FibHeap<Prio, ItemIntMap, Compare>::push 
   287   (Item const item, PrioType const value) {
   288       int i=iimap[item];      
   289       if ( i < 0 ) {
   290 	int s=container.size();
   291 	iimap.set( item, s );	
   292 	store st;
   293 	st.name=item;
   294 	container.push_back(st);
   295 	i=s;
   296       } else {
   297 	container[i].parent=container[i].child=-1;
   298 	container[i].degree=0;
   299 	container[i].in=true;
   300 	container[i].marked=false;
   301       }
   302 
   303       if ( num_items ) {
   304 	container[container[minimum].right_neighbor].left_neighbor=i;
   305 	container[i].right_neighbor=container[minimum].right_neighbor;
   306 	container[minimum].right_neighbor=i;
   307 	container[i].left_neighbor=minimum;
   308 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   309       } else {
   310 	container[i].right_neighbor=container[i].left_neighbor=i;
   311 	minimum=i;	
   312       }
   313       container[i].prio=value;
   314       ++num_items;
   315     }
   316     
   317   template <typename Prio, typename ItemIntMap, 
   318     typename Compare>
   319   void FibHeap<Prio, ItemIntMap, Compare>::pop() {
   320       /*The first case is that there are only one root.*/
   321       if ( container[minimum].left_neighbor==minimum ) {
   322 	container[minimum].in=false;
   323 	if ( container[minimum].degree!=0 ) { 
   324 	  makeroot(container[minimum].child);
   325 	  minimum=container[minimum].child;
   326 	  balance();
   327 	}
   328       } else {
   329 	int right=container[minimum].right_neighbor;
   330 	unlace(minimum);
   331 	container[minimum].in=false;
   332 	if ( container[minimum].degree > 0 ) {
   333 	  int left=container[minimum].left_neighbor;
   334 	  int child=container[minimum].child;
   335 	  int last_child=container[child].left_neighbor;
   336 	
   337 	  makeroot(child);
   338 	  
   339 	  container[left].right_neighbor=child;
   340 	  container[child].left_neighbor=left;
   341 	  container[right].left_neighbor=last_child;
   342 	  container[last_child].right_neighbor=right;
   343 	}
   344 	minimum=right;
   345 	balance();
   346       } // the case where there are more roots
   347       --num_items;   
   348     }
   349 
   350 
   351   template <typename Prio, typename ItemIntMap, 
   352     typename Compare>
   353   void FibHeap<Prio, ItemIntMap, Compare>::erase 
   354   (const Item& item) {
   355       int i=iimap[item];
   356       
   357       if ( i >= 0 && container[i].in ) { 	
   358 	if ( container[i].parent!=-1 ) {
   359 	  int p=container[i].parent;
   360 	  cut(i,p);	    
   361 	  cascade(p);
   362 	}
   363 	minimum=i;     //As if its prio would be -infinity
   364 	pop();
   365       }
   366   }
   367     
   368   template <typename Prio, typename ItemIntMap, 
   369     typename Compare>
   370   void FibHeap<Prio, ItemIntMap, Compare>::decrease 
   371   (Item item, PrioType const value) {
   372       int i=iimap[item];
   373       container[i].prio=value;
   374       int p=container[i].parent;
   375       
   376       if ( p!=-1 && comp(value, container[p].prio) ) {
   377 	cut(i,p);	    
   378 	cascade(p);
   379       }      
   380       if ( comp(value, container[minimum].prio) ) minimum=i; 
   381   }
   382  
   383 
   384   template <typename Prio, typename ItemIntMap, 
   385     typename Compare>
   386   void FibHeap<Prio, ItemIntMap, Compare>::balance() {      
   387 
   388     int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
   389   
   390     std::vector<int> A(maxdeg,-1); 
   391     
   392     /*
   393      *Recall that now minimum does not point to the minimum prio element.
   394      *We set minimum to this during balance().
   395      */
   396     int anchor=container[minimum].left_neighbor; 
   397     int next=minimum; 
   398     bool end=false; 
   399     	
   400        do {
   401 	int active=next;
   402 	if ( anchor==active ) end=true;
   403 	int d=container[active].degree;
   404 	next=container[active].right_neighbor;
   405 
   406 	while (A[d]!=-1) {	  
   407 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   408 	    fuse(active,A[d]); 
   409 	  } else { 
   410 	    fuse(A[d],active);
   411 	    active=A[d];
   412 	  } 
   413 	  A[d]=-1;
   414 	  ++d;
   415 	}	
   416 	A[d]=active;
   417        } while ( !end );
   418 
   419 
   420        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   421        int s=minimum;
   422        int m=minimum;
   423        do {  
   424 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   425 	 s=container[s].right_neighbor;
   426        } while ( s != m );
   427     }
   428 
   429   template <typename Prio, typename ItemIntMap, 
   430     typename Compare>
   431   void FibHeap<Prio, ItemIntMap, Compare>::makeroot 
   432   (int c) {
   433       int s=c;
   434       do {  
   435 	container[s].parent=-1;
   436 	s=container[s].right_neighbor;
   437       } while ( s != c );
   438     }
   439   
   440   
   441   template <typename Prio, typename ItemIntMap, 
   442     typename Compare>
   443   void FibHeap<Prio, ItemIntMap, Compare>::cut 
   444   (int a, int b) {    
   445     /*
   446      *Replacing a from the children of b.
   447      */
   448     --container[b].degree;
   449     
   450     if ( container[b].degree !=0 ) {
   451       int child=container[b].child;
   452       if ( child==a ) 
   453 	container[b].child=container[child].right_neighbor;
   454       unlace(a);
   455     }
   456     
   457     
   458     /*Lacing a to the roots.*/
   459     int right=container[minimum].right_neighbor;
   460     container[minimum].right_neighbor=a;
   461     container[a].left_neighbor=minimum;
   462     container[a].right_neighbor=right;
   463     container[right].left_neighbor=a;
   464     
   465     container[a].parent=-1;
   466     container[a].marked=false;
   467   }
   468   
   469 
   470   template <typename Prio, typename ItemIntMap, 
   471     typename Compare>
   472   void FibHeap<Prio, ItemIntMap, Compare>::cascade 
   473   (int a) 
   474     {
   475       if ( container[a].parent!=-1 ) {
   476 	int p=container[a].parent;
   477 	
   478 	if ( container[a].marked==false ) container[a].marked=true;
   479 	else {
   480 	  cut(a,p);
   481 	  cascade(p);
   482 	}
   483       }
   484     }
   485 
   486 
   487   template <typename Prio, typename ItemIntMap, 
   488     typename Compare>
   489   void FibHeap<Prio, ItemIntMap, Compare>::fuse 
   490   (int a, int b) {
   491       unlace(b);
   492       
   493       /*Lacing b under a.*/
   494       container[b].parent=a;
   495 
   496       if (container[a].degree==0) {
   497 	container[b].left_neighbor=b;
   498 	container[b].right_neighbor=b;
   499 	container[a].child=b;	
   500       } else {
   501 	int child=container[a].child;
   502 	int last_child=container[child].left_neighbor;
   503 	container[child].left_neighbor=b;
   504 	container[b].right_neighbor=child;
   505 	container[last_child].right_neighbor=b;
   506 	container[b].left_neighbor=last_child;
   507       }
   508 
   509       ++container[a].degree;
   510       
   511       container[b].marked=false;
   512     }
   513 
   514   
   515   /*
   516    *It is invoked only if a has siblings.
   517    */
   518   template <typename Prio, typename ItemIntMap, 
   519     typename Compare>
   520   void FibHeap<Prio, ItemIntMap, Compare>::unlace 
   521   (int a) {      
   522       int leftn=container[a].left_neighbor;
   523       int rightn=container[a].right_neighbor;
   524       container[leftn].right_neighbor=rightn;
   525       container[rightn].left_neighbor=leftn;
   526   }
   527   
   528 
   529 } //namespace lemon
   530 
   531 #endif //LEMON_FIB_HEAP_H
   532