src/work/jacint/max_flow_no_stack.h
author jacint
Tue, 20 Jul 2004 14:31:24 +0000
changeset 715 665689d86225
child 719 cb9efd4cc9db
permissions -rw-r--r--
trying if without stl stack we are faster
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_NO_STACK_H
     3 #define HUGO_MAX_FLOW_NO_STACK_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 //#include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <bfs_dfs.h>
    11 #include <hugo/invalid.h>
    12 #include <hugo/maps.h>
    13 #include <hugo/for_each_macros.h>
    14 
    15 /// \file
    16 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
    17 /// \ingroup galgs
    18 
    19 namespace hugo {
    20 
    21   /// \addtogroup galgs
    22   /// @{                                                                                                                                        
    23   ///Maximum flow algorithms class.
    24 
    25   ///This class provides various algorithms for finding a flow of
    26   ///maximum value in a directed graph. The \e source node, the \e
    27   ///target node, the \e capacity of the edges and the \e starting \e
    28   ///flow value of the edges should be passed to the algorithm through the
    29   ///constructor. It is possible to change these quantities using the
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    32   ///the class \ref resetFlow should be called. 
    33 
    34   ///After running an algorithm of the class, the actual flow value 
    35   ///can be obtained by calling \ref flowValue(). The minimum
    36   ///value cut can be written into a \c node map of \c bools by
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    38   ///the inclusionwise minimum and maximum of the minimum value
    39   ///cuts, resp.)                                                                                                                               
    40   ///\param Graph The directed graph type the algorithm runs on.
    41   ///\param Num The number type of the capacities and the flow values.
    42   ///\param CapMap The capacity map type.
    43   ///\param FlowMap The flow map type.                                                                                                           
    44   ///\author Marton Makai, Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class MaxFlowNoStack {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     //    typedef typename std::vector<std::stack<Node> > VecStack;
    57     typedef typename std::vector<Node> VecFirst;
    58     typedef typename Graph::template NodeMap<Node> NNMap;
    59     typedef typename std::vector<Node> VecNode;
    60 
    61     const Graph* g;
    62     Node s;
    63     Node t;
    64     const CapMap* capacity;
    65     FlowMap* flow;
    66     int n;      //the number of nodes of G
    67     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    68     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    69     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    70     typedef typename ResGW::Edge ResGWEdge;
    71     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    72     typedef typename Graph::template NodeMap<int> ReachedMap;
    73 
    74 
    75     //level works as a bool map in augmenting path algorithms and is
    76     //used by bfs for storing reached information.  In preflow, it
    77     //shows the levels of nodes.     
    78     ReachedMap level;
    79 
    80     //excess is needed only in preflow
    81     typename Graph::template NodeMap<Num> excess;
    82 
    83     //fixme    
    84 //   protected:
    85     //     MaxFlow() { }
    86     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    87     // 	     FlowMap& _flow)
    88     //       {
    89     // 	g=&_G;
    90     // 	s=_s;
    91     // 	t=_t;
    92     // 	capacity=&_capacity;
    93     // 	flow=&_flow;
    94     // 	n=_G.nodeNum;
    95     // 	level.set (_G); //kellene vmi ilyesmi fv
    96     // 	excess(_G,0); //itt is
    97     //       }
    98 
    99     // constants used for heuristics
   100     static const int H0=20;
   101     static const int H1=1;
   102 
   103   public:
   104 
   105     ///Indicates the property of the starting flow.
   106 
   107     ///Indicates the property of the starting flow. The meanings are as follows:
   108     ///- \c ZERO_FLOW: constant zero flow
   109     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   110     ///the sum of the out-flows in every node except the \e source and
   111     ///the \e target.
   112     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   113     ///least the sum of the out-flows in every node except the \e source.
   114     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   115     ///set to the constant zero flow in the beginning of the algorithm in this case.
   116     enum FlowEnum{
   117       ZERO_FLOW,
   118       GEN_FLOW,
   119       PRE_FLOW,
   120       NO_FLOW
   121     };
   122 
   123     enum StatusEnum {
   124       AFTER_NOTHING,
   125       AFTER_AUGMENTING,
   126       AFTER_FAST_AUGMENTING, 
   127       AFTER_PRE_FLOW_PHASE_1,      
   128       AFTER_PRE_FLOW_PHASE_2
   129     };
   130 
   131     /// Don not needle this flag only if necessary.
   132     StatusEnum status;
   133     int number_of_augmentations;
   134 
   135 
   136     template<typename IntMap>
   137     class TrickyReachedMap {
   138     protected:
   139       IntMap* map;
   140       int* number_of_augmentations;
   141     public:
   142       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   143 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   144       void set(const Node& n, bool b) {
   145 	if (b)
   146 	  map->set(n, *number_of_augmentations);
   147 	else 
   148 	  map->set(n, *number_of_augmentations-1);
   149       }
   150       bool operator[](const Node& n) const { 
   151 	return (*map)[n]==*number_of_augmentations; 
   152       }
   153     };
   154     
   155     ///Constructor
   156 
   157     ///\todo Document, please.
   158     ///
   159     MaxFlowNoStack(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   160 	    FlowMap& _flow) :
   161       g(&_G), s(_s), t(_t), capacity(&_capacity),
   162       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   163       status(AFTER_NOTHING), number_of_augmentations(0) { }
   164 
   165     ///Runs a maximum flow algorithm.
   166 
   167     ///Runs a preflow algorithm, which is the fastest maximum flow
   168     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   169     ///\pre The starting flow must be
   170     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   171     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   172     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   173     /// - any map if \c fe is NO_FLOW.
   174     void run(FlowEnum fe=ZERO_FLOW) {
   175       preflow(fe);
   176     }
   177 
   178                                                                               
   179     ///Runs a preflow algorithm.  
   180 
   181     ///Runs a preflow algorithm. The preflow algorithms provide the
   182     ///fastest way to compute a maximum flow in a directed graph.
   183     ///\pre The starting flow must be
   184     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   185     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   186     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   187     /// - any map if \c fe is NO_FLOW.
   188     ///
   189     ///\todo NO_FLOW should be the default flow.
   190     void preflow(FlowEnum fe) {
   191       preflowPhase1(fe);
   192       preflowPhase2();
   193     }
   194     // Heuristics:
   195     //   2 phase
   196     //   gap
   197     //   list 'level_list' on the nodes on level i implemented by hand
   198     //   stack 'active' on the active nodes on level i                                                                                    
   199     //   runs heuristic 'highest label' for H1*n relabels
   200     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   201     //   Parameters H0 and H1 are initialized to 20 and 1.
   202 
   203     ///Runs the first phase of the preflow algorithm.
   204 
   205     ///The preflow algorithm consists of two phases, this method runs the
   206     ///first phase. After the first phase the maximum flow value and a
   207     ///minimum value cut can already be computed, though a maximum flow
   208     ///is net yet obtained. So after calling this method \ref flowValue
   209     ///and \ref actMinCut gives proper results.
   210     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   211     ///give minimum value cuts unless calling \ref preflowPhase2.
   212     ///\pre The starting flow must be
   213     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   214     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   215     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   216     /// - any map if \c fe is NO_FLOW.
   217     void preflowPhase1(FlowEnum fe);
   218 
   219     ///Runs the second phase of the preflow algorithm.
   220 
   221     ///The preflow algorithm consists of two phases, this method runs
   222     ///the second phase. After calling \ref preflowPhase1 and then
   223     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   224     ///\ref minMinCut and \ref maxMinCut give proper results.
   225     ///\pre \ref preflowPhase1 must be called before.
   226     void preflowPhase2();
   227 
   228     /// Starting from a flow, this method searches for an augmenting path
   229     /// according to the Edmonds-Karp algorithm
   230     /// and augments the flow on if any.
   231     /// The return value shows if the augmentation was succesful.
   232     bool augmentOnShortestPath();
   233     bool augmentOnShortestPath2();
   234 
   235     /// Starting from a flow, this method searches for an augmenting blocking
   236     /// flow according to Dinits' algorithm and augments the flow on if any.
   237     /// The blocking flow is computed in a physically constructed
   238     /// residual graph of type \c Mutablegraph.
   239     /// The return value show sif the augmentation was succesful.
   240     template<typename MutableGraph> bool augmentOnBlockingFlow();
   241 
   242     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   243     /// residual graph is not constructed physically.
   244     /// The return value shows if the augmentation was succesful.
   245     bool augmentOnBlockingFlow2();
   246 
   247     /// Returns the maximum value of a flow.
   248 
   249     /// Returns the maximum value of a flow, by counting the 
   250     /// over-flow of the target node \ref t.
   251     /// It can be called already after running \ref preflowPhase1.
   252     Num flowValue() const {
   253       Num a=0;
   254       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   255       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   256       return a;
   257       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   258     }
   259 
   260     ///Returns a minimum value cut after calling \ref preflowPhase1.
   261 
   262     ///After the first phase of the preflow algorithm the maximum flow
   263     ///value and a minimum value cut can already be computed. This
   264     ///method can be called after running \ref preflowPhase1 for
   265     ///obtaining a minimum value cut.
   266     /// \warning Gives proper result only right after calling \ref
   267     /// preflowPhase1.
   268     /// \todo We have to make some status variable which shows the
   269     /// actual state
   270     /// of the class. This enables us to determine which methods are valid
   271     /// for MinCut computation
   272     template<typename _CutMap>
   273     void actMinCut(_CutMap& M) const {
   274       NodeIt v;
   275       switch (status) {
   276       case AFTER_PRE_FLOW_PHASE_1:
   277 	for(g->first(v); g->valid(v); g->next(v)) {
   278 	  if (level[v] < n) {
   279 	    M.set(v, false);
   280 	  } else {
   281 	    M.set(v, true);
   282 	  }
   283 	}
   284 	break;
   285       case AFTER_PRE_FLOW_PHASE_2:
   286       case AFTER_NOTHING:
   287 	minMinCut(M);
   288 	break;
   289       case AFTER_AUGMENTING:
   290 	for(g->first(v); g->valid(v); g->next(v)) {
   291 	  if (level[v]) {
   292 	    M.set(v, true);
   293 	  } else {
   294 	    M.set(v, false);
   295 	  }
   296 	}
   297 	break;
   298       case AFTER_FAST_AUGMENTING:
   299 	for(g->first(v); g->valid(v); g->next(v)) {
   300 	  if (level[v]==number_of_augmentations) {
   301 	    M.set(v, true);
   302 	  } else {
   303 	    M.set(v, false);
   304 	  }
   305 	}
   306 	break;
   307       }
   308     }
   309 
   310     ///Returns the inclusionwise minimum of the minimum value cuts.
   311 
   312     ///Sets \c M to the characteristic vector of the minimum value cut
   313     ///which is inclusionwise minimum. It is computed by processing
   314     ///a bfs from the source node \c s in the residual graph.
   315     ///\pre M should be a node map of bools initialized to false.
   316     ///\pre \c flow must be a maximum flow.
   317     template<typename _CutMap>
   318     void minMinCut(_CutMap& M) const {
   319       std::queue<Node> queue;
   320 
   321       M.set(s,true);
   322       queue.push(s);
   323 
   324       while (!queue.empty()) {
   325         Node w=queue.front();
   326 	queue.pop();
   327 
   328 	OutEdgeIt e;
   329 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   330 	  Node v=g->head(e);
   331 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   332 	    queue.push(v);
   333 	    M.set(v, true);
   334 	  }
   335 	}
   336 
   337 	InEdgeIt f;
   338 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   339 	  Node v=g->tail(f);
   340 	  if (!M[v] && (*flow)[f] > 0 ) {
   341 	    queue.push(v);
   342 	    M.set(v, true);
   343 	  }
   344 	}
   345       }
   346     }
   347 
   348     ///Returns the inclusionwise maximum of the minimum value cuts.
   349 
   350     ///Sets \c M to the characteristic vector of the minimum value cut
   351     ///which is inclusionwise maximum. It is computed by processing a
   352     ///backward bfs from the target node \c t in the residual graph.
   353     ///\pre M should be a node map of bools initialized to false.
   354     ///\pre \c flow must be a maximum flow. 
   355     template<typename _CutMap>
   356     void maxMinCut(_CutMap& M) const {
   357 
   358       NodeIt v;
   359       for(g->first(v) ; g->valid(v); g->next(v)) {
   360 	M.set(v, true);
   361       }
   362 
   363       std::queue<Node> queue;
   364 
   365       M.set(t,false);
   366       queue.push(t);
   367 
   368       while (!queue.empty()) {
   369         Node w=queue.front();
   370 	queue.pop();
   371 
   372 	InEdgeIt e;
   373 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   374 	  Node v=g->tail(e);
   375 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   376 	    queue.push(v);
   377 	    M.set(v, false);
   378 	  }
   379 	}
   380 
   381 	OutEdgeIt f;
   382 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   383 	  Node v=g->head(f);
   384 	  if (M[v] && (*flow)[f] > 0 ) {
   385 	    queue.push(v);
   386 	    M.set(v, false);
   387 	  }
   388 	}
   389       }
   390     }
   391 
   392     ///Returns a minimum value cut.
   393 
   394     ///Sets \c M to the characteristic vector of a minimum value cut.
   395     ///\pre M should be a node map of bools initialized to false.
   396     ///\pre \c flow must be a maximum flow.    
   397     template<typename CutMap>
   398     void minCut(CutMap& M) const { minMinCut(M); }
   399 
   400     ///Resets the source node to \c _s.
   401 
   402     ///Resets the source node to \c _s.
   403     /// 
   404     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   405 
   406     ///Resets the target node to \c _t.
   407 
   408     ///Resets the target node to \c _t.
   409     ///
   410     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   411 
   412     /// Resets the edge map of the capacities to _cap.
   413 
   414     /// Resets the edge map of the capacities to _cap.
   415     /// 
   416     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   417 
   418     /// Resets the edge map of the flows to _flow.
   419 
   420     /// Resets the edge map of the flows to _flow.
   421     /// 
   422     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   423 
   424 
   425   private:
   426 
   427     int push(Node w, NNMap& next, VecFirst& first) {
   428 
   429       int lev=level[w];
   430       Num exc=excess[w];
   431       int newlevel=n;       //bound on the next level of w
   432 
   433       OutEdgeIt e;
   434       for(g->first(e,w); g->valid(e); g->next(e)) {
   435 
   436 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   437 	Node v=g->head(e);
   438 
   439 	if( lev > level[v] ) { //Push is allowed now
   440 
   441 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   442 	    next.set(v,first[level[v]]);
   443 	    first[level[v]]=v;
   444 	    //	    int lev_v=level[v];
   445 	    //active[lev_v].push(v);
   446 	  }
   447 
   448 	  Num cap=(*capacity)[e];
   449 	  Num flo=(*flow)[e];
   450 	  Num remcap=cap-flo;
   451 
   452 	  if ( remcap >= exc ) { //A nonsaturating push.
   453 
   454 	    flow->set(e, flo+exc);
   455 	    excess.set(v, excess[v]+exc);
   456 	    exc=0;
   457 	    break;
   458 
   459 	  } else { //A saturating push.
   460 	    flow->set(e, cap);
   461 	    excess.set(v, excess[v]+remcap);
   462 	    exc-=remcap;
   463 	  }
   464 	} else if ( newlevel > level[v] ) newlevel = level[v];
   465       } //for out edges wv
   466 
   467       if ( exc > 0 ) {
   468 	InEdgeIt e;
   469 	for(g->first(e,w); g->valid(e); g->next(e)) {
   470 
   471 	  if( (*flow)[e] <= 0 ) continue;
   472 	  Node v=g->tail(e);
   473 
   474 	  if( lev > level[v] ) { //Push is allowed now
   475 
   476 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   477 	      next.set(v,first[level[v]]);
   478 	      first[level[v]]=v;
   479 	      //int lev_v=level[v];
   480 	      //active[lev_v].push(v);
   481 	    }
   482 
   483 	    Num flo=(*flow)[e];
   484 
   485 	    if ( flo >= exc ) { //A nonsaturating push.
   486 
   487 	      flow->set(e, flo-exc);
   488 	      excess.set(v, excess[v]+exc);
   489 	      exc=0;
   490 	      break;
   491 	    } else {  //A saturating push.
   492 
   493 	      excess.set(v, excess[v]+flo);
   494 	      exc-=flo;
   495 	      flow->set(e,0);
   496 	    }
   497 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   498 	} //for in edges vw
   499 
   500       } // if w still has excess after the out edge for cycle
   501 
   502       excess.set(w, exc);
   503 
   504       return newlevel;
   505     }
   506 
   507 
   508     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
   509 			VecNode& level_list, NNMap& left, NNMap& right)
   510     {
   511       std::queue<Node> bfs_queue;
   512 
   513       switch (fe) {
   514       case NO_FLOW:   //flow is already set to const zero in this case
   515       case ZERO_FLOW:
   516 	{
   517 	  //Reverse_bfs from t, to find the starting level.
   518 	  level.set(t,0);
   519 	  bfs_queue.push(t);
   520 
   521 	  while (!bfs_queue.empty()) {
   522 
   523 	    Node v=bfs_queue.front();
   524 	    bfs_queue.pop();
   525 	    int l=level[v]+1;
   526 
   527 	    InEdgeIt e;
   528 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   529 	      Node w=g->tail(e);
   530 	      if ( level[w] == n && w != s ) {
   531 		bfs_queue.push(w);
   532 		Node z=level_list[l];
   533 		if ( g->valid(z) ) left.set(z,w);
   534 		right.set(w,z);
   535 		level_list[l]=w;
   536 		level.set(w, l);
   537 	      }
   538 	    }
   539 	  }
   540 
   541 	  //the starting flow
   542 	  OutEdgeIt e;
   543 	  for(g->first(e,s); g->valid(e); g->next(e))
   544 	    {
   545 	      Num c=(*capacity)[e];
   546 	      if ( c <= 0 ) continue;
   547 	      Node w=g->head(e);
   548 	      if ( level[w] < n ) {
   549 		if ( excess[w] <= 0 && w!=t ) 
   550 		  {
   551 		    next.set(w,first[level[w]]);
   552 		    first[level[w]]=w;
   553 		    //active[level[w]].push(w);
   554 		  }
   555 		flow->set(e, c);
   556 		excess.set(w, excess[w]+c);
   557 	      }
   558 	    }
   559 	  break;
   560 	}
   561 
   562       case GEN_FLOW:
   563       case PRE_FLOW:
   564 	{
   565 	  //Reverse_bfs from t in the residual graph,
   566 	  //to find the starting level.
   567 	  level.set(t,0);
   568 	  bfs_queue.push(t);
   569 
   570 	  while (!bfs_queue.empty()) {
   571 
   572 	    Node v=bfs_queue.front();
   573 	    bfs_queue.pop();
   574 	    int l=level[v]+1;
   575 
   576 	    InEdgeIt e;
   577 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   578 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   579 	      Node w=g->tail(e);
   580 	      if ( level[w] == n && w != s ) {
   581 		bfs_queue.push(w);
   582 		Node z=level_list[l];
   583 		if ( g->valid(z) ) left.set(z,w);
   584 		right.set(w,z);
   585 		level_list[l]=w;
   586 		level.set(w, l);
   587 	      }
   588 	    }
   589 
   590 	    OutEdgeIt f;
   591 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   592 	      if ( 0 >= (*flow)[f] ) continue;
   593 	      Node w=g->head(f);
   594 	      if ( level[w] == n && w != s ) {
   595 		bfs_queue.push(w);
   596 		Node z=level_list[l];
   597 		if ( g->valid(z) ) left.set(z,w);
   598 		right.set(w,z);
   599 		level_list[l]=w;
   600 		level.set(w, l);
   601 	      }
   602 	    }
   603 	  }
   604 
   605 
   606 	  //the starting flow
   607 	  OutEdgeIt e;
   608 	  for(g->first(e,s); g->valid(e); g->next(e))
   609 	    {
   610 	      Num rem=(*capacity)[e]-(*flow)[e];
   611 	      if ( rem <= 0 ) continue;
   612 	      Node w=g->head(e);
   613 	      if ( level[w] < n ) {
   614 		if ( excess[w] <= 0 && w!=t )
   615 		  {
   616 		    next.set(w,first[level[w]]);
   617 		    first[level[w]]=w;
   618 		    //active[level[w]].push(w);
   619 		  }   
   620 		flow->set(e, (*capacity)[e]);
   621 		excess.set(w, excess[w]+rem);
   622 	      }
   623 	    }
   624 
   625 	  InEdgeIt f;
   626 	  for(g->first(f,s); g->valid(f); g->next(f))
   627 	    {
   628 	      if ( (*flow)[f] <= 0 ) continue;
   629 	      Node w=g->tail(f);
   630 	      if ( level[w] < n ) {
   631 		if ( excess[w] <= 0 && w!=t )
   632 		  {
   633 		    next.set(w,first[level[w]]);
   634 		    first[level[w]]=w;
   635 		    //active[level[w]].push(w);
   636 		  }   
   637 		excess.set(w, excess[w]+(*flow)[f]);
   638 		flow->set(f, 0);
   639 	      }
   640 	    }
   641 	  break;
   642 	} //case PRE_FLOW
   643       }
   644     } //preflowPreproc
   645 
   646 
   647 
   648     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
   649 		 VecNode& level_list, NNMap& left,
   650 		 NNMap& right, int& b, int& k, bool what_heur )
   651     {
   652 
   653       Num lev=level[w];
   654 
   655       Node right_n=right[w];
   656       Node left_n=left[w];
   657 
   658       //unlacing starts
   659       if ( g->valid(right_n) ) {
   660 	if ( g->valid(left_n) ) {
   661 	  right.set(left_n, right_n);
   662 	  left.set(right_n, left_n);
   663 	} else {
   664 	  level_list[lev]=right_n;
   665 	  left.set(right_n, INVALID);
   666 	}
   667       } else {
   668 	if ( g->valid(left_n) ) {
   669 	  right.set(left_n, INVALID);
   670 	} else {
   671 	  level_list[lev]=INVALID;
   672 	}
   673       }
   674       //unlacing ends
   675 
   676       if ( !g->valid(level_list[lev]) ) {
   677 
   678 	//gapping starts
   679 	for (int i=lev; i!=k ; ) {
   680 	  Node v=level_list[++i];
   681 	  while ( g->valid(v) ) {
   682 	    level.set(v,n);
   683 	    v=right[v];
   684 	  }
   685 	  level_list[i]=INVALID;
   686 	  if ( !what_heur ) first[i]=INVALID;
   687 	  /*{
   688 	    while ( !active[i].empty() ) {
   689 	    active[i].pop();    //FIXME: ezt szebben kene
   690 	    }
   691 	    }*/
   692 	}
   693 
   694 	level.set(w,n);
   695 	b=lev-1;
   696 	k=b;
   697 	//gapping ends
   698 
   699       } else {
   700 
   701 	if ( newlevel == n ) level.set(w,n);
   702 	else {
   703 	  level.set(w,++newlevel);
   704 	  next.set(w,first[newlevel]);
   705 	  first[newlevel]=w;
   706 	  //	  active[newlevel].push(w);
   707 	  if ( what_heur ) b=newlevel;
   708 	  if ( k < newlevel ) ++k;      //now k=newlevel
   709 	  Node z=level_list[newlevel];
   710 	  if ( g->valid(z) ) left.set(z,w);
   711 	  right.set(w,z);
   712 	  left.set(w,INVALID);
   713 	  level_list[newlevel]=w;
   714 	}
   715       }
   716 
   717     } //relabel
   718 
   719 
   720     template<typename MapGraphWrapper>
   721     class DistanceMap {
   722     protected:
   723       const MapGraphWrapper* g;
   724       typename MapGraphWrapper::template NodeMap<int> dist;
   725     public:
   726       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   727       void set(const typename MapGraphWrapper::Node& n, int a) {
   728 	dist.set(n, a);
   729       }
   730       int operator[](const typename MapGraphWrapper::Node& n) const { 
   731 	return dist[n]; 
   732       }
   733       //       int get(const typename MapGraphWrapper::Node& n) const {
   734       // 	return dist[n]; }
   735       //       bool get(const typename MapGraphWrapper::Edge& e) const {
   736       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   737       bool operator[](const typename MapGraphWrapper::Edge& e) const {
   738 	return (dist[g->tail(e)]<dist[g->head(e)]);
   739       }
   740     };
   741 
   742   };
   743 
   744 
   745   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   746   void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   747   {
   748 
   749     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   750     int heur1=(int)(H1*n);  //time while running 'highest label'
   751     int heur=heur1;         //starting time interval (#of relabels)
   752     int numrelabel=0;
   753 
   754     bool what_heur=1;
   755     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   756 
   757     bool end=false;
   758     //Needed for 'bound decrease', true means no active nodes are above bound
   759     //b.
   760 
   761     int k=n-2;  //bound on the highest level under n containing a node
   762     int b=k;    //bound on the highest level under n of an active node
   763 
   764     VecFirst first(n, INVALID);
   765     NNMap next(*g, INVALID); //maybe INVALID is not needed
   766     //    VecStack active(n);
   767 
   768     NNMap left(*g, INVALID);
   769     NNMap right(*g, INVALID);
   770     VecNode level_list(n,INVALID);
   771     //List of the nodes in level i<n, set to n.
   772 
   773     NodeIt v;
   774     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   775     //setting each node to level n
   776 
   777     if ( fe == NO_FLOW ) {
   778       EdgeIt e;
   779       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   780     }
   781 
   782     switch (fe) { //computing the excess
   783     case PRE_FLOW:
   784       {
   785 	NodeIt v;
   786 	for(g->first(v); g->valid(v); g->next(v)) {
   787 	  Num exc=0;
   788 
   789 	  InEdgeIt e;
   790 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   791 	  OutEdgeIt f;
   792 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   793 
   794 	  excess.set(v,exc);
   795 
   796 	  //putting the active nodes into the stack
   797 	  int lev=level[v];
   798 	  if ( exc > 0 && lev < n && v != t ) 
   799 	    {
   800 	      next.set(v,first[lev]);
   801 	      first[lev]=v;
   802 	    }
   803 	  //	  active[lev].push(v);
   804 	}
   805 	break;
   806       }
   807     case GEN_FLOW:
   808       {
   809 	NodeIt v;
   810 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   811 
   812 	Num exc=0;
   813 	InEdgeIt e;
   814 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   815 	OutEdgeIt f;
   816 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   817 	excess.set(t,exc);
   818 	break;
   819       }
   820     case ZERO_FLOW:
   821     case NO_FLOW:
   822       {
   823 	NodeIt v;
   824         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   825 	break;
   826       }
   827     }
   828 
   829     preflowPreproc(fe, next, first,/*active*/ level_list, left, right);
   830     //End of preprocessing
   831 
   832 
   833     //Push/relabel on the highest level active nodes.
   834     while ( true ) {
   835       if ( b == 0 ) {
   836 	if ( !what_heur && !end && k > 0 ) {
   837 	  b=k;
   838 	  end=true;
   839 	} else break;
   840       }
   841 
   842       if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
   843       else {
   844 	end=false;
   845 	Node w=first[b];
   846 	first[b]=next[w];
   847 	/*	Node w=active[b].top();
   848 		active[b].pop();*/
   849 	int newlevel=push(w,/*active*/next, first);
   850 	if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list,
   851 				     left, right, b, k, what_heur);
   852 
   853 	++numrelabel;
   854 	if ( numrelabel >= heur ) {
   855 	  numrelabel=0;
   856 	  if ( what_heur ) {
   857 	    what_heur=0;
   858 	    heur=heur0;
   859 	    end=false;
   860 	  } else {
   861 	    what_heur=1;
   862 	    heur=heur1;
   863 	    b=k;
   864 	  }
   865 	}
   866       }
   867     }
   868 
   869     status=AFTER_PRE_FLOW_PHASE_1;
   870   }
   871 
   872 
   873 
   874   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   875   void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   876   {
   877 
   878     int k=n-2;  //bound on the highest level under n containing a node
   879     int b=k;    //bound on the highest level under n of an active node
   880 
   881     
   882     VecFirst first(n, INVALID);
   883     NNMap next(*g, INVALID); //maybe INVALID is not needed
   884     //    VecStack active(n);
   885     level.set(s,0);
   886     std::queue<Node> bfs_queue;
   887     bfs_queue.push(s);
   888 
   889     while (!bfs_queue.empty()) {
   890 
   891       Node v=bfs_queue.front();
   892       bfs_queue.pop();
   893       int l=level[v]+1;
   894 
   895       InEdgeIt e;
   896       for(g->first(e,v); g->valid(e); g->next(e)) {
   897 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   898 	Node u=g->tail(e);
   899 	if ( level[u] >= n ) {
   900 	  bfs_queue.push(u);
   901 	  level.set(u, l);
   902 	  if ( excess[u] > 0 ) {
   903 	    next.set(u,first[l]);
   904 	    first[l]=u;
   905 	    //active[l].push(u);
   906 	  }
   907 	}
   908       }
   909 
   910       OutEdgeIt f;
   911       for(g->first(f,v); g->valid(f); g->next(f)) {
   912 	if ( 0 >= (*flow)[f] ) continue;
   913 	Node u=g->head(f);
   914 	if ( level[u] >= n ) {
   915 	  bfs_queue.push(u);
   916 	  level.set(u, l);
   917 	  if ( excess[u] > 0 ) {
   918 	    next.set(u,first[l]);
   919 	    first[l]=u;
   920 	    //active[l].push(u);
   921 	  }
   922 	}
   923       }
   924     }
   925     b=n-2;
   926 
   927     while ( true ) {
   928 
   929       if ( b == 0 ) break;
   930 
   931       if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
   932       else {
   933 
   934 	Node w=first[b];
   935 	first[b]=next[w];
   936 	/*	Node w=active[b].top();
   937 		active[b].pop();*/
   938 	int newlevel=push(w,next, first/*active*/);
   939 
   940 	//relabel
   941 	if ( excess[w] > 0 ) {
   942 	  level.set(w,++newlevel);
   943 	  next.set(w,first[newlevel]);
   944 	  first[newlevel]=w;
   945 	  //active[newlevel].push(w);
   946 	  b=newlevel;
   947 	}
   948       }  // if stack[b] is nonempty
   949     } // while(true)
   950 
   951     status=AFTER_PRE_FLOW_PHASE_2;
   952   }
   953 
   954 
   955 
   956   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   957   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   958   {
   959     ResGW res_graph(*g, *capacity, *flow);
   960     bool _augment=false;
   961 
   962     //ReachedMap level(res_graph);
   963     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   964     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   965     bfs.pushAndSetReached(s);
   966 
   967     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   968     pred.set(s, INVALID);
   969 
   970     typename ResGW::template NodeMap<Num> free(res_graph);
   971 
   972     //searching for augmenting path
   973     while ( !bfs.finished() ) {
   974       ResGWOutEdgeIt e=bfs;
   975       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   976 	Node v=res_graph.tail(e);
   977 	Node w=res_graph.head(e);
   978 	pred.set(w, e);
   979 	if (res_graph.valid(pred[v])) {
   980 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   981 	} else {
   982 	  free.set(w, res_graph.resCap(e));
   983 	}
   984 	if (res_graph.head(e)==t) { _augment=true; break; }
   985       }
   986 
   987       ++bfs;
   988     } //end of searching augmenting path
   989 
   990     if (_augment) {
   991       Node n=t;
   992       Num augment_value=free[t];
   993       while (res_graph.valid(pred[n])) {
   994 	ResGWEdge e=pred[n];
   995 	res_graph.augment(e, augment_value);
   996 	n=res_graph.tail(e);
   997       }
   998     }
   999 
  1000     status=AFTER_AUGMENTING;
  1001     return _augment;
  1002   }
  1003 
  1004 
  1005   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1006   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
  1007   {
  1008     ResGW res_graph(*g, *capacity, *flow);
  1009     bool _augment=false;
  1010 
  1011     if (status!=AFTER_FAST_AUGMENTING) {
  1012       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
  1013       number_of_augmentations=1;
  1014     } else {
  1015       ++number_of_augmentations;
  1016     }
  1017     TrickyReachedMap<ReachedMap> 
  1018       tricky_reached_map(level, number_of_augmentations);
  1019     //ReachedMap level(res_graph);
  1020 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1021     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
  1022       bfs(res_graph, tricky_reached_map);
  1023     bfs.pushAndSetReached(s);
  1024 
  1025     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
  1026     pred.set(s, INVALID);
  1027 
  1028     typename ResGW::template NodeMap<Num> free(res_graph);
  1029 
  1030     //searching for augmenting path
  1031     while ( !bfs.finished() ) {
  1032       ResGWOutEdgeIt e=bfs;
  1033       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1034 	Node v=res_graph.tail(e);
  1035 	Node w=res_graph.head(e);
  1036 	pred.set(w, e);
  1037 	if (res_graph.valid(pred[v])) {
  1038 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
  1039 	} else {
  1040 	  free.set(w, res_graph.resCap(e));
  1041 	}
  1042 	if (res_graph.head(e)==t) { _augment=true; break; }
  1043       }
  1044 
  1045       ++bfs;
  1046     } //end of searching augmenting path
  1047 
  1048     if (_augment) {
  1049       Node n=t;
  1050       Num augment_value=free[t];
  1051       while (res_graph.valid(pred[n])) {
  1052 	ResGWEdge e=pred[n];
  1053 	res_graph.augment(e, augment_value);
  1054 	n=res_graph.tail(e);
  1055       }
  1056     }
  1057 
  1058     status=AFTER_FAST_AUGMENTING;
  1059     return _augment;
  1060   }
  1061 
  1062 
  1063   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1064   template<typename MutableGraph>
  1065   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
  1066   {
  1067     typedef MutableGraph MG;
  1068     bool _augment=false;
  1069 
  1070     ResGW res_graph(*g, *capacity, *flow);
  1071 
  1072     //bfs for distances on the residual graph
  1073     //ReachedMap level(res_graph);
  1074     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1075     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1076     bfs.pushAndSetReached(s);
  1077     typename ResGW::template NodeMap<int>
  1078       dist(res_graph); //filled up with 0's
  1079 
  1080     //F will contain the physical copy of the residual graph
  1081     //with the set of edges which are on shortest paths
  1082     MG F;
  1083     typename ResGW::template NodeMap<typename MG::Node>
  1084       res_graph_to_F(res_graph);
  1085     {
  1086       typename ResGW::NodeIt n;
  1087       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  1088 	res_graph_to_F.set(n, F.addNode());
  1089       }
  1090     }
  1091 
  1092     typename MG::Node sF=res_graph_to_F[s];
  1093     typename MG::Node tF=res_graph_to_F[t];
  1094     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  1095     typename MG::template EdgeMap<Num> residual_capacity(F);
  1096 
  1097     while ( !bfs.finished() ) {
  1098       ResGWOutEdgeIt e=bfs;
  1099       if (res_graph.valid(e)) {
  1100 	if (bfs.isBNodeNewlyReached()) {
  1101 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1102 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1103 					res_graph_to_F[res_graph.head(e)]);
  1104 	  original_edge.update();
  1105 	  original_edge.set(f, e);
  1106 	  residual_capacity.update();
  1107 	  residual_capacity.set(f, res_graph.resCap(e));
  1108 	} else {
  1109 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
  1110 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1111 					  res_graph_to_F[res_graph.head(e)]);
  1112 	    original_edge.update();
  1113 	    original_edge.set(f, e);
  1114 	    residual_capacity.update();
  1115 	    residual_capacity.set(f, res_graph.resCap(e));
  1116 	  }
  1117 	}
  1118       }
  1119       ++bfs;
  1120     } //computing distances from s in the residual graph
  1121 
  1122     bool __augment=true;
  1123 
  1124     while (__augment) {
  1125       __augment=false;
  1126       //computing blocking flow with dfs
  1127       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  1128       typename MG::template NodeMap<typename MG::Edge> pred(F);
  1129       pred.set(sF, INVALID);
  1130       //invalid iterators for sources
  1131 
  1132       typename MG::template NodeMap<Num> free(F);
  1133 
  1134       dfs.pushAndSetReached(sF);
  1135       while (!dfs.finished()) {
  1136 	++dfs;
  1137 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1138 	  if (dfs.isBNodeNewlyReached()) {
  1139 	    typename MG::Node v=F.aNode(dfs);
  1140 	    typename MG::Node w=F.bNode(dfs);
  1141 	    pred.set(w, dfs);
  1142 	    if (F.valid(pred[v])) {
  1143 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1144 	    } else {
  1145 	      free.set(w, residual_capacity[dfs]);
  1146 	    }
  1147 	    if (w==tF) {
  1148 	      __augment=true;
  1149 	      _augment=true;
  1150 	      break;
  1151 	    }
  1152 
  1153 	  } else {
  1154 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1155 	  }
  1156 	}
  1157       }
  1158 
  1159       if (__augment) {
  1160 	typename MG::Node n=tF;
  1161 	Num augment_value=free[tF];
  1162 	while (F.valid(pred[n])) {
  1163 	  typename MG::Edge e=pred[n];
  1164 	  res_graph.augment(original_edge[e], augment_value);
  1165 	  n=F.tail(e);
  1166 	  if (residual_capacity[e]==augment_value)
  1167 	    F.erase(e);
  1168 	  else
  1169 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1170 	}
  1171       }
  1172 
  1173     }
  1174 
  1175     status=AFTER_AUGMENTING;
  1176     return _augment;
  1177   }
  1178 
  1179 
  1180 
  1181 
  1182   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1183   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1184   {
  1185     bool _augment=false;
  1186 
  1187     ResGW res_graph(*g, *capacity, *flow);
  1188 
  1189     //ReachedMap level(res_graph);
  1190     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1191     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1192 
  1193     bfs.pushAndSetReached(s);
  1194     DistanceMap<ResGW> dist(res_graph);
  1195     while ( !bfs.finished() ) {
  1196       ResGWOutEdgeIt e=bfs;
  1197       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1198 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1199       }
  1200       ++bfs;
  1201     } //computing distances from s in the residual graph
  1202 
  1203       //Subgraph containing the edges on some shortest paths
  1204     ConstMap<typename ResGW::Node, bool> true_map(true);
  1205     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1206       DistanceMap<ResGW> > FilterResGW;
  1207     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1208 
  1209     //Subgraph, which is able to delete edges which are already
  1210     //met by the dfs
  1211     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1212       first_out_edges(filter_res_graph);
  1213     typename FilterResGW::NodeIt v;
  1214     for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1215 	filter_res_graph.next(v))
  1216       {
  1217  	typename FilterResGW::OutEdgeIt e;
  1218  	filter_res_graph.first(e, v);
  1219  	first_out_edges.set(v, e);
  1220       }
  1221     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1222       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1223     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1224 
  1225     bool __augment=true;
  1226 
  1227     while (__augment) {
  1228 
  1229       __augment=false;
  1230       //computing blocking flow with dfs
  1231       DfsIterator< ErasingResGW,
  1232 	typename ErasingResGW::template NodeMap<bool> >
  1233 	dfs(erasing_res_graph);
  1234       typename ErasingResGW::
  1235 	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1236 	pred(erasing_res_graph);
  1237       pred.set(s, INVALID);
  1238       //invalid iterators for sources
  1239 
  1240       typename ErasingResGW::template NodeMap<Num>
  1241 	free1(erasing_res_graph);
  1242 
  1243       dfs.pushAndSetReached
  1244 	///\bug hugo 0.2
  1245 	(typename ErasingResGW::Node
  1246 	 (typename FilterResGW::Node
  1247 	  (typename ResGW::Node(s)
  1248 	   )
  1249 	  )
  1250 	 );
  1251       while (!dfs.finished()) {
  1252 	++dfs;
  1253 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1254  	  {
  1255   	    if (dfs.isBNodeNewlyReached()) {
  1256 
  1257  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1258  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1259 
  1260  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1261  	      if (erasing_res_graph.valid(pred[v])) {
  1262  		free1.set
  1263 		  (w, std::min(free1[v], res_graph.resCap
  1264 			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1265  	      } else {
  1266  		free1.set
  1267 		  (w, res_graph.resCap
  1268 		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1269  	      }
  1270 
  1271  	      if (w==t) {
  1272  		__augment=true;
  1273  		_augment=true;
  1274  		break;
  1275  	      }
  1276  	    } else {
  1277  	      erasing_res_graph.erase(dfs);
  1278 	    }
  1279 	  }
  1280       }
  1281 
  1282       if (__augment) {
  1283 	typename ErasingResGW::Node
  1284 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1285 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1286 	// 	  typename ResGW::Node b;
  1287 	// 	  Num j=a[b];
  1288 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1289 	// 	  typename FilterResGW::Node b1;
  1290 	// 	  Num j1=a1[b1];
  1291 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1292 	// 	  typename ErasingResGW::Node b2;
  1293 	// 	  Num j2=a2[b2];
  1294 	Num augment_value=free1[n];
  1295 	while (erasing_res_graph.valid(pred[n])) {
  1296 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1297 	  res_graph.augment(e, augment_value);
  1298 	  n=erasing_res_graph.tail(e);
  1299 	  if (res_graph.resCap(e)==0)
  1300 	    erasing_res_graph.erase(e);
  1301 	}
  1302       }
  1303 
  1304     } //while (__augment)
  1305 
  1306     status=AFTER_AUGMENTING;
  1307     return _augment;
  1308   }
  1309 
  1310 
  1311 } //namespace hugo
  1312 
  1313 #endif //HUGO_MAX_FLOW_H
  1314 
  1315 
  1316 
  1317