lemon/graph_adaptor.h
author klao
Mon, 27 Mar 2006 16:09:54 +0000
changeset 2018 66a1f0950700
parent 1993 2115143eceea
child 2031 080d51024ac5
permissions -rw-r--r--
missing ignore
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_ADAPTOR_H
    20 #define LEMON_GRAPH_ADAPTOR_H
    21 
    22 ///\ingroup graph_adaptors
    23 ///\file
    24 ///\brief Several graph adaptors.
    25 ///
    26 ///This file contains several useful graph adaptor functions.
    27 ///
    28 ///\author Marton Makai
    29 
    30 #include <lemon/bits/invalid.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <lemon/bits/base_extender.h>
    34 #include <lemon/bits/graph_adaptor_extender.h>
    35 #include <lemon/bits/graph_extender.h>
    36 
    37 #include <iostream>
    38 
    39 namespace lemon {
    40 
    41   ///\brief Base type for the Graph Adaptors
    42   ///\ingroup graph_adaptors
    43   ///
    44   ///Base type for the Graph Adaptors
    45   ///
    46   ///\warning Graph adaptors are in even
    47   ///more experimental state than the other
    48   ///parts of the lib. Use them at you own risk.
    49   ///
    50   ///This is the base type for most of LEMON graph adaptors. 
    51   ///This class implements a trivial graph adaptor i.e. it only wraps the 
    52   ///functions and types of the graph. The purpose of this class is to 
    53   ///make easier implementing graph adaptors. E.g. if an adaptor is 
    54   ///considered which differs from the wrapped graph only in some of its 
    55   ///functions or types, then it can be derived from GraphAdaptor,
    56   ///and only the 
    57   ///differences should be implemented.
    58   ///
    59   ///author Marton Makai 
    60   template<typename _Graph>
    61   class GraphAdaptorBase {
    62   public:
    63     typedef _Graph Graph;
    64     typedef Graph ParentGraph;
    65 
    66   protected:
    67     Graph* graph;
    68     GraphAdaptorBase() : graph(0) { }
    69     void setGraph(Graph& _graph) { graph=&_graph; }
    70 
    71   public:
    72     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    73  
    74     typedef typename Graph::Node Node;
    75     typedef typename Graph::Edge Edge;
    76    
    77     void first(Node& i) const { graph->first(i); }
    78     void first(Edge& i) const { graph->first(i); }
    79     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    80     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    81 
    82     void next(Node& i) const { graph->next(i); }
    83     void next(Edge& i) const { graph->next(i); }
    84     void nextIn(Edge& i) const { graph->nextIn(i); }
    85     void nextOut(Edge& i) const { graph->nextOut(i); }
    86 
    87     Node source(const Edge& e) const { return graph->source(e); }
    88     Node target(const Edge& e) const { return graph->target(e); }
    89 
    90     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    91     int nodeNum() const { return graph->nodeNum(); }
    92     
    93     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    94     int edgeNum() const { return graph->edgeNum(); }
    95 
    96     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
    97     Edge findEdge(const Node& source, const Node& target, 
    98 		  const Edge& prev = INVALID) {
    99       return graph->findEdge(source, target, prev);
   100     }
   101   
   102     Node addNode() const { 
   103       return Node(graph->addNode()); 
   104     }
   105 
   106     Edge addEdge(const Node& source, const Node& target) const { 
   107       return Edge(graph->addEdge(source, target)); 
   108     }
   109 
   110     void erase(const Node& i) const { graph->erase(i); }
   111     void erase(const Edge& i) const { graph->erase(i); }
   112   
   113     void clear() const { graph->clear(); }
   114     
   115     int id(const Node& v) const { return graph->id(v); }
   116     int id(const Edge& e) const { return graph->id(e); }
   117 
   118     int maxNodeId() const {
   119       return graph->maxNodeId();
   120     }
   121 
   122     int maxEdgeId() const {
   123       return graph->maxEdgeId();
   124     }
   125 
   126     typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
   127 
   128     NodeNotifier& getNotifier(Node) const {
   129       return graph->getNotifier(Node());
   130     } 
   131 
   132     typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
   133 
   134     EdgeNotifier& getNotifier(Edge) const {
   135       return graph->getNotifier(Edge());
   136     } 
   137     
   138     template <typename _Value>
   139     class NodeMap : public _Graph::template NodeMap<_Value> {
   140     public:
   141       typedef typename _Graph::template NodeMap<_Value> Parent;
   142       explicit NodeMap(const GraphAdaptorBase<_Graph>& ga) 
   143 	: Parent(*ga.graph) { }
   144       NodeMap(const GraphAdaptorBase<_Graph>& ga, const _Value& value)
   145 	: Parent(*ga.graph, value) { }
   146     };
   147 
   148     template <typename _Value>
   149     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   150     public:
   151       typedef typename _Graph::template EdgeMap<_Value> Parent;
   152       explicit EdgeMap(const GraphAdaptorBase<_Graph>& ga) 
   153 	: Parent(*ga.graph) { }
   154       EdgeMap(const GraphAdaptorBase<_Graph>& ga, const _Value& value)
   155 	: Parent(*ga.graph, value) { }
   156     };
   157 
   158   };
   159 
   160   template <typename _Graph>
   161   class GraphAdaptor :
   162     public GraphAdaptorExtender<GraphAdaptorBase<_Graph> > { 
   163   public:
   164     typedef _Graph Graph;
   165     typedef GraphAdaptorExtender<GraphAdaptorBase<_Graph> > Parent;
   166   protected:
   167     GraphAdaptor() : Parent() { }
   168 
   169   public:
   170     explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   171   };
   172 
   173   /// \brief Just gives back a graph adaptor
   174   ///
   175   /// Just gives back a graph adaptor which 
   176   /// should be provide original graph
   177   template<typename Graph>
   178   GraphAdaptor<const Graph>
   179   graphAdaptor(const Graph& graph) {
   180     return GraphAdaptor<const Graph>(graph);
   181   }
   182 
   183 
   184   template <typename _Graph>
   185   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   186   public:
   187     typedef _Graph Graph;
   188     typedef GraphAdaptorBase<_Graph> Parent;
   189   protected:
   190     RevGraphAdaptorBase() : Parent() { }
   191   public:
   192     typedef typename Parent::Node Node;
   193     typedef typename Parent::Edge Edge;
   194 
   195     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   196     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   197 
   198     void nextIn(Edge& i) const { Parent::nextOut(i); }
   199     void nextOut(Edge& i) const { Parent::nextIn(i); }
   200 
   201     Node source(const Edge& e) const { return Parent::target(e); }
   202     Node target(const Edge& e) const { return Parent::source(e); }
   203 
   204     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   205     Edge findEdge(const Node& source, const Node& target, 
   206 		  const Edge& prev = INVALID) {
   207       return Parent::findEdge(target, source, prev);
   208     }
   209 
   210   };
   211     
   212 
   213   ///\brief A graph adaptor which reverses the orientation of the edges.
   214   ///\ingroup graph_adaptors
   215   ///
   216   ///\warning Graph adaptors are in even more experimental 
   217   ///state than the other
   218   ///parts of the lib. Use them at you own risk.
   219   ///
   220   /// If \c g is defined as
   221   ///\code
   222   /// ListGraph g;
   223   ///\endcode
   224   /// then
   225   ///\code
   226   /// RevGraphAdaptor<ListGraph> ga(g);
   227   ///\endcode
   228   ///implements the graph obtained from \c g by 
   229   /// reversing the orientation of its edges.
   230 
   231   template<typename _Graph>
   232   class RevGraphAdaptor : 
   233     public GraphAdaptorExtender<RevGraphAdaptorBase<_Graph> > {
   234   public:
   235     typedef _Graph Graph;
   236     typedef GraphAdaptorExtender<
   237       RevGraphAdaptorBase<_Graph> > Parent;
   238   protected:
   239     RevGraphAdaptor() { }
   240   public:
   241     explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   242   };
   243 
   244   /// \brief Just gives back a reverse graph adaptor
   245   ///
   246   /// Just gives back a reverse graph adaptor
   247   template<typename Graph>
   248   RevGraphAdaptor<const Graph>
   249   revGraphAdaptor(const Graph& graph) {
   250     return RevGraphAdaptor<const Graph>(graph);
   251   }
   252 
   253   template <typename _Graph, typename NodeFilterMap, 
   254 	    typename EdgeFilterMap, bool checked = true>
   255   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   256   public:
   257     typedef _Graph Graph;
   258     typedef GraphAdaptorBase<_Graph> Parent;
   259   protected:
   260     NodeFilterMap* node_filter_map;
   261     EdgeFilterMap* edge_filter_map;
   262     SubGraphAdaptorBase() : Parent(), 
   263 			    node_filter_map(0), edge_filter_map(0) { }
   264 
   265     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   266       node_filter_map=&_node_filter_map;
   267     }
   268     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   269       edge_filter_map=&_edge_filter_map;
   270     }
   271 
   272   public:
   273 
   274     typedef typename Parent::Node Node;
   275     typedef typename Parent::Edge Edge;
   276 
   277     void first(Node& i) const { 
   278       Parent::first(i); 
   279       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   280     }
   281 
   282     void first(Edge& i) const { 
   283       Parent::first(i); 
   284       while (i!=INVALID && (!(*edge_filter_map)[i] 
   285 	     || !(*node_filter_map)[Parent::source(i)]
   286 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   287     }
   288 
   289     void firstIn(Edge& i, const Node& n) const { 
   290       Parent::firstIn(i, n); 
   291       while (i!=INVALID && (!(*edge_filter_map)[i] 
   292 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   293     }
   294 
   295     void firstOut(Edge& i, const Node& n) const { 
   296       Parent::firstOut(i, n); 
   297       while (i!=INVALID && (!(*edge_filter_map)[i] 
   298 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   299     }
   300 
   301     void next(Node& i) const { 
   302       Parent::next(i); 
   303       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   304     }
   305 
   306     void next(Edge& i) const { 
   307       Parent::next(i); 
   308       while (i!=INVALID && (!(*edge_filter_map)[i] 
   309 	     || !(*node_filter_map)[Parent::source(i)]
   310 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   311     }
   312 
   313     void nextIn(Edge& i) const { 
   314       Parent::nextIn(i); 
   315       while (i!=INVALID && (!(*edge_filter_map)[i] 
   316 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   317     }
   318 
   319     void nextOut(Edge& i) const { 
   320       Parent::nextOut(i); 
   321       while (i!=INVALID && (!(*edge_filter_map)[i] 
   322 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   323     }
   324 
   325     ///\e
   326 
   327     /// This function hides \c n in the graph, i.e. the iteration 
   328     /// jumps over it. This is done by simply setting the value of \c n  
   329     /// to be false in the corresponding node-map.
   330     void hide(const Node& n) const { node_filter_map->set(n, false); }
   331 
   332     ///\e
   333 
   334     /// This function hides \c e in the graph, i.e. the iteration 
   335     /// jumps over it. This is done by simply setting the value of \c e  
   336     /// to be false in the corresponding edge-map.
   337     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   338 
   339     ///\e
   340 
   341     /// The value of \c n is set to be true in the node-map which stores 
   342     /// hide information. If \c n was hidden previuosly, then it is shown 
   343     /// again
   344      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   345 
   346     ///\e
   347 
   348     /// The value of \c e is set to be true in the edge-map which stores 
   349     /// hide information. If \c e was hidden previuosly, then it is shown 
   350     /// again
   351     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   352 
   353     /// Returns true if \c n is hidden.
   354     
   355     ///\e
   356     ///
   357     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   358 
   359     /// Returns true if \c n is hidden.
   360     
   361     ///\e
   362     ///
   363     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   364 
   365     typedef False NodeNumTag;
   366     typedef False EdgeNumTag;
   367 
   368     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   369     Edge findEdge(const Node& source, const Node& target, 
   370 		  const Edge& prev = INVALID) {
   371       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   372         return INVALID;
   373       }
   374       Edge edge = Parent::findEdge(source, target, prev);
   375       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   376         edge = Parent::findEdge(source, target, edge);
   377       }
   378       return edge;
   379     }
   380   };
   381 
   382   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   383   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   384     : public GraphAdaptorBase<_Graph> {
   385   public:
   386     typedef _Graph Graph;
   387     typedef GraphAdaptorBase<_Graph> Parent;
   388   protected:
   389     NodeFilterMap* node_filter_map;
   390     EdgeFilterMap* edge_filter_map;
   391     SubGraphAdaptorBase() : Parent(), 
   392 			    node_filter_map(0), edge_filter_map(0) { }
   393 
   394     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   395       node_filter_map=&_node_filter_map;
   396     }
   397     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   398       edge_filter_map=&_edge_filter_map;
   399     }
   400 
   401   public:
   402 
   403     typedef typename Parent::Node Node;
   404     typedef typename Parent::Edge Edge;
   405 
   406     void first(Node& i) const { 
   407       Parent::first(i); 
   408       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   409     }
   410 
   411     void first(Edge& i) const { 
   412       Parent::first(i); 
   413       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   414     }
   415 
   416     void firstIn(Edge& i, const Node& n) const { 
   417       Parent::firstIn(i, n); 
   418       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   419     }
   420 
   421     void firstOut(Edge& i, const Node& n) const { 
   422       Parent::firstOut(i, n); 
   423       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   424     }
   425 
   426     void next(Node& i) const { 
   427       Parent::next(i); 
   428       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   429     }
   430     void next(Edge& i) const { 
   431       Parent::next(i); 
   432       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   433     }
   434     void nextIn(Edge& i) const { 
   435       Parent::nextIn(i); 
   436       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   437     }
   438 
   439     void nextOut(Edge& i) const { 
   440       Parent::nextOut(i); 
   441       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   442     }
   443 
   444     ///\e
   445 
   446     /// This function hides \c n in the graph, i.e. the iteration 
   447     /// jumps over it. This is done by simply setting the value of \c n  
   448     /// to be false in the corresponding node-map.
   449     void hide(const Node& n) const { node_filter_map->set(n, false); }
   450 
   451     ///\e
   452 
   453     /// This function hides \c e in the graph, i.e. the iteration 
   454     /// jumps over it. This is done by simply setting the value of \c e  
   455     /// to be false in the corresponding edge-map.
   456     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   457 
   458     ///\e
   459 
   460     /// The value of \c n is set to be true in the node-map which stores 
   461     /// hide information. If \c n was hidden previuosly, then it is shown 
   462     /// again
   463      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   464 
   465     ///\e
   466 
   467     /// The value of \c e is set to be true in the edge-map which stores 
   468     /// hide information. If \c e was hidden previuosly, then it is shown 
   469     /// again
   470     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   471 
   472     /// Returns true if \c n is hidden.
   473     
   474     ///\e
   475     ///
   476     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   477 
   478     /// Returns true if \c n is hidden.
   479     
   480     ///\e
   481     ///
   482     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   483 
   484     typedef False NodeNumTag;
   485     typedef False EdgeNumTag;
   486 
   487     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   488     Edge findEdge(const Node& source, const Node& target, 
   489 		  const Edge& prev = INVALID) {
   490       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   491         return INVALID;
   492       }
   493       Edge edge = Parent::findEdge(source, target, prev);
   494       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   495         edge = Parent::findEdge(source, target, edge);
   496       }
   497       return edge;
   498     }
   499   };
   500 
   501   /// \brief A graph adaptor for hiding nodes and edges from a graph.
   502   /// \ingroup graph_adaptors
   503   /// 
   504   /// \warning Graph adaptors are in even more experimental state than the
   505   /// other parts of the lib. Use them at you own risk.
   506   /// 
   507   /// SubGraphAdaptor shows the graph with filtered node-set and 
   508   /// edge-set. If the \c checked parameter is true then it filters the edgeset
   509   /// to do not get invalid edges without source or target.
   510   /// Let \f$ G=(V, A) \f$ be a directed graph
   511   /// and suppose that the graph instance \c g of type ListGraph
   512   /// implements \f$ G \f$.
   513   /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp.
   514   /// on the node-set and edge-set.
   515   /// SubGraphAdaptor<...>::NodeIt iterates 
   516   /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and 
   517   /// SubGraphAdaptor<...>::EdgeIt iterates 
   518   /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, 
   519   /// SubGraphAdaptor<...>::OutEdgeIt and
   520   /// SubGraphAdaptor<...>::InEdgeIt iterates 
   521   /// only on edges leaving and entering a specific node which have true value.
   522   /// 
   523   /// If the \c checked template parameter is false then we have to note that 
   524   /// the node-iterator cares only the filter on the node-set, and the 
   525   /// edge-iterator cares only the filter on the edge-set.
   526   /// This way the edge-map
   527   /// should filter all edges which's source or target is filtered by the 
   528   /// node-filter.
   529   ///\code
   530   /// typedef ListGraph Graph;
   531   /// Graph g;
   532   /// typedef Graph::Node Node;
   533   /// typedef Graph::Edge Edge;
   534   /// Node u=g.addNode(); //node of id 0
   535   /// Node v=g.addNode(); //node of id 1
   536   /// Node e=g.addEdge(u, v); //edge of id 0
   537   /// Node f=g.addEdge(v, u); //edge of id 1
   538   /// Graph::NodeMap<bool> nm(g, true);
   539   /// nm.set(u, false);
   540   /// Graph::EdgeMap<bool> em(g, true);
   541   /// em.set(e, false);
   542   /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGA;
   543   /// SubGA ga(g, nm, em);
   544   /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   545   /// std::cout << ":-)" << std::endl;
   546   /// for (SubGA::EdgeIt e(ga); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   547   ///\endcode
   548   /// The output of the above code is the following.
   549   ///\code
   550   /// 1
   551   /// :-)
   552   /// 1
   553   ///\endcode
   554   /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to
   555   /// \c Graph::Node that is why \c g.id(n) can be applied.
   556   /// 
   557   /// For other examples see also the documentation of NodeSubGraphAdaptor and 
   558   /// EdgeSubGraphAdaptor.
   559   /// 
   560   /// \author Marton Makai
   561 
   562   template<typename _Graph, typename NodeFilterMap, 
   563 	   typename EdgeFilterMap, bool checked = true>
   564   class SubGraphAdaptor : 
   565     public GraphAdaptorExtender<
   566     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   567   public:
   568     typedef _Graph Graph;
   569     typedef GraphAdaptorExtender<
   570       SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   571   protected:
   572     SubGraphAdaptor() { }
   573   public:
   574     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   575 		    EdgeFilterMap& _edge_filter_map) { 
   576       setGraph(_graph);
   577       setNodeFilterMap(_node_filter_map);
   578       setEdgeFilterMap(_edge_filter_map);
   579     }
   580   };
   581 
   582   /// \brief Just gives back a sub graph adaptor
   583   ///
   584   /// Just gives back a sub graph adaptor
   585   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   586   SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   587   subGraphAdaptor(const Graph& graph, 
   588                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   589     return SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   590       (graph, nfm, efm);
   591   }
   592 
   593   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   594   SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   595   subGraphAdaptor(const Graph& graph, 
   596                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   597     return SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   598       (graph, nfm, efm);
   599   }
   600 
   601   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   602   SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   603   subGraphAdaptor(const Graph& graph, 
   604                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   605     return SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   606       (graph, nfm, efm);
   607   }
   608 
   609   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   610   SubGraphAdaptor<const Graph, const NodeFilterMap, const EdgeFilterMap>
   611   subGraphAdaptor(const Graph& graph, 
   612                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   613     return SubGraphAdaptor<const Graph, const NodeFilterMap, 
   614       const EdgeFilterMap>(graph, nfm, efm);
   615   }
   616 
   617 
   618 
   619   ///\brief An adaptor for hiding nodes from a graph.
   620   ///\ingroup graph_adaptors
   621   ///
   622   ///\warning Graph adaptors are in even more experimental state
   623   ///than the other
   624   ///parts of the lib. Use them at you own risk.
   625   ///
   626   ///An adaptor for hiding nodes from a graph.
   627   ///This adaptor specializes SubGraphAdaptor in the way that only
   628   ///the node-set 
   629   ///can be filtered. In usual case the checked parameter is true, we get the
   630   ///induced subgraph. But if the checked parameter is false then we can only
   631   ///filter only isolated nodes.
   632   ///\author Marton Makai
   633   template<typename Graph, typename NodeFilterMap, bool checked = true>
   634   class NodeSubGraphAdaptor : 
   635     public SubGraphAdaptor<Graph, NodeFilterMap, 
   636 			   ConstMap<typename Graph::Edge,bool>, checked> {
   637   public:
   638     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   639 			    ConstMap<typename Graph::Edge,bool> > Parent;
   640   protected:
   641     ConstMap<typename Graph::Edge, bool> const_true_map;
   642 
   643     NodeSubGraphAdaptor() : const_true_map(true) {
   644       Parent::setEdgeFilterMap(const_true_map);
   645     }
   646 
   647   public:
   648     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   649       Parent(), const_true_map(true) { 
   650       Parent::setGraph(_graph);
   651       Parent::setNodeFilterMap(_node_filter_map);
   652       Parent::setEdgeFilterMap(const_true_map);
   653     }
   654   };
   655 
   656 
   657   /// \brief Just gives back a node sub graph adaptor
   658   ///
   659   /// Just gives back a node sub graph adaptor
   660   template<typename Graph, typename NodeFilterMap>
   661   NodeSubGraphAdaptor<const Graph, NodeFilterMap>
   662   nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) {
   663     return NodeSubGraphAdaptor<const Graph, NodeFilterMap>(graph, nfm);
   664   }
   665 
   666   template<typename Graph, typename NodeFilterMap>
   667   NodeSubGraphAdaptor<const Graph, const NodeFilterMap>
   668   nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) {
   669     return NodeSubGraphAdaptor<const Graph, const NodeFilterMap>(graph, nfm);
   670   }
   671 
   672   ///\brief An adaptor for hiding edges from a graph.
   673   ///
   674   ///\warning Graph adaptors are in even more experimental state
   675   ///than the other parts of the lib. Use them at you own risk.
   676   ///
   677   ///An adaptor for hiding edges from a graph.
   678   ///This adaptor specializes SubGraphAdaptor in the way that
   679   ///only the edge-set 
   680   ///can be filtered. The usefulness of this adaptor is demonstrated in the 
   681   ///problem of searching a maximum number of edge-disjoint shortest paths 
   682   ///between 
   683   ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   684   ///non-negative edge-lengths. Note that 
   685   ///the comprehension of the presented solution 
   686   ///need's some elementary knowledge from combinatorial optimization. 
   687   ///
   688   ///If a single shortest path is to be 
   689   ///searched between \c s and \c t, then this can be done easily by 
   690   ///applying the Dijkstra algorithm. What happens, if a maximum number of 
   691   ///edge-disjoint shortest paths is to be computed. It can be proved that an 
   692   ///edge can be in a shortest path if and only
   693   ///if it is tight with respect to 
   694   ///the potential function computed by Dijkstra.
   695   ///Moreover, any path containing 
   696   ///only such edges is a shortest one.
   697   ///Thus we have to compute a maximum number 
   698   ///of edge-disjoint paths between \c s and \c t in
   699   ///the graph which has edge-set 
   700   ///all the tight edges. The computation will be demonstrated
   701   ///on the following 
   702   ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   703   ///The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   704   ///If you are interested in more demo programs, you can use 
   705   ///\ref dim_to_dot.cc to generate .dot files from dimacs files. 
   706   ///The .dot file of the following figure was generated by  
   707   ///the demo program \ref dim_to_dot.cc.
   708   ///
   709   ///\dot
   710   ///digraph lemon_dot_example {
   711   ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   712   ///n0 [ label="0 (s)" ];
   713   ///n1 [ label="1" ];
   714   ///n2 [ label="2" ];
   715   ///n3 [ label="3" ];
   716   ///n4 [ label="4" ];
   717   ///n5 [ label="5" ];
   718   ///n6 [ label="6 (t)" ];
   719   ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   720   ///n5 ->  n6 [ label="9, length:4" ];
   721   ///n4 ->  n6 [ label="8, length:2" ];
   722   ///n3 ->  n5 [ label="7, length:1" ];
   723   ///n2 ->  n5 [ label="6, length:3" ];
   724   ///n2 ->  n6 [ label="5, length:5" ];
   725   ///n2 ->  n4 [ label="4, length:2" ];
   726   ///n1 ->  n4 [ label="3, length:3" ];
   727   ///n0 ->  n3 [ label="2, length:1" ];
   728   ///n0 ->  n2 [ label="1, length:2" ];
   729   ///n0 ->  n1 [ label="0, length:3" ];
   730   ///}
   731   ///\enddot
   732   ///
   733   ///\code
   734   ///Graph g;
   735   ///Node s, t;
   736   ///LengthMap length(g);
   737   ///
   738   ///readDimacs(std::cin, g, length, s, t);
   739   ///
   740   ///cout << "edges with lengths (of form id, source--length->target): " << endl;
   741   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   742   ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   743   ///       << length[e] << "->" << g.id(g.target(e)) << endl;
   744   ///
   745   ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   746   ///\endcode
   747   ///Next, the potential function is computed with Dijkstra.
   748   ///\code
   749   ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
   750   ///Dijkstra dijkstra(g, length);
   751   ///dijkstra.run(s);
   752   ///\endcode
   753   ///Next, we consrtruct a map which filters the edge-set to the tight edges.
   754   ///\code
   755   ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   756   ///  TightEdgeFilter;
   757   ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   758   ///
   759   ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGA;
   760   ///SubGA ga(g, tight_edge_filter);
   761   ///\endcode
   762   ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   763   ///with a max flow algorithm Preflow.
   764   ///\code
   765   ///ConstMap<Edge, int> const_1_map(1);
   766   ///Graph::EdgeMap<int> flow(g, 0);
   767   ///
   768   ///Preflow<SubGA, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   769   ///  preflow(ga, s, t, const_1_map, flow);
   770   ///preflow.run();
   771   ///\endcode
   772   ///Last, the output is:
   773   ///\code  
   774   ///cout << "maximum number of edge-disjoint shortest path: " 
   775   ///     << preflow.flowValue() << endl;
   776   ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   777   ///     << endl;
   778   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   779   ///  if (flow[e])
   780   ///    cout << " " << g.id(g.source(e)) << "--"
   781   ///         << length[e] << "->" << g.id(g.target(e)) << endl;
   782   ///\endcode
   783   ///The program has the following (expected :-)) output:
   784   ///\code
   785   ///edges with lengths (of form id, source--length->target):
   786   /// 9, 5--4->6
   787   /// 8, 4--2->6
   788   /// 7, 3--1->5
   789   /// 6, 2--3->5
   790   /// 5, 2--5->6
   791   /// 4, 2--2->4
   792   /// 3, 1--3->4
   793   /// 2, 0--1->3
   794   /// 1, 0--2->2
   795   /// 0, 0--3->1
   796   ///s: 0 t: 6
   797   ///maximum number of edge-disjoint shortest path: 2
   798   ///edges of the maximum number of edge-disjoint shortest s-t paths:
   799   /// 9, 5--4->6
   800   /// 8, 4--2->6
   801   /// 7, 3--1->5
   802   /// 4, 2--2->4
   803   /// 2, 0--1->3
   804   /// 1, 0--2->2
   805   ///\endcode
   806   ///
   807   ///\author Marton Makai
   808   template<typename Graph, typename EdgeFilterMap>
   809   class EdgeSubGraphAdaptor : 
   810     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   811 			   EdgeFilterMap, false> {
   812   public:
   813     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   814 			    EdgeFilterMap, false> Parent;
   815   protected:
   816     ConstMap<typename Graph::Node, bool> const_true_map;
   817 
   818     EdgeSubGraphAdaptor() : const_true_map(true) {
   819       Parent::setNodeFilterMap(const_true_map);
   820     }
   821 
   822   public:
   823     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   824       Parent(), const_true_map(true) { 
   825       Parent::setGraph(_graph);
   826       Parent::setNodeFilterMap(const_true_map);
   827       Parent::setEdgeFilterMap(_edge_filter_map);
   828     }
   829   };
   830 
   831   /// \brief Just gives back an edge sub graph adaptor
   832   ///
   833   /// Just gives back an edge sub graph adaptor
   834   template<typename Graph, typename EdgeFilterMap>
   835   EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>
   836   edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) {
   837     return EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>(graph, efm);
   838   }
   839 
   840   template<typename Graph, typename EdgeFilterMap>
   841   EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>
   842   edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) {
   843     return EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>(graph, efm);
   844   }
   845 
   846   template <typename _Graph, typename Enable = void>
   847   class UndirGraphAdaptorBase : 
   848     public UGraphBaseExtender<GraphAdaptorBase<_Graph> > {
   849   public:
   850     typedef _Graph Graph;
   851     typedef UGraphBaseExtender<GraphAdaptorBase<_Graph> > Parent;
   852 
   853   protected:
   854 
   855     UndirGraphAdaptorBase() : Parent() {}
   856 
   857   public:
   858 
   859     typedef typename Parent::UEdge UEdge;
   860     typedef typename Parent::Edge Edge;
   861 
   862     
   863     template <typename _Value>
   864     class EdgeMap {
   865     private:
   866       
   867       typedef typename _Graph::template EdgeMap<_Value> MapImpl;
   868       
   869     public:
   870 
   871       typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
   872 
   873       typedef _Value Value;
   874       typedef Edge Key;
   875       
   876       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) :
   877 	forward_map(*(_g.graph)), backward_map(*(_g.graph)) {}
   878 
   879       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, const Value& a) 
   880         : forward_map(*(_g.graph), a), backward_map(*(_g.graph), a) {}
   881       
   882       void set(const Edge& e, const Value& a) { 
   883 	if (Parent::direction(e)) {
   884 	  forward_map.set(e, a); 
   885         } else { 
   886 	  backward_map.set(e, a);
   887         } 
   888       }
   889 
   890       typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const { 
   891 	if (Parent::direction(e)) {
   892 	  return forward_map[e]; 
   893 	} else { 
   894 	  return backward_map[e]; 
   895         }
   896       }
   897 
   898       typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) { 
   899 	if (Parent::direction(e)) {
   900 	  return forward_map[e]; 
   901 	} else { 
   902 	  return backward_map[e]; 
   903         }
   904       }
   905 
   906     protected:
   907 
   908       MapImpl forward_map, backward_map; 
   909 
   910     };
   911         
   912     template <typename _Value>
   913     class UEdgeMap : public _Graph::template EdgeMap<_Value> {
   914     public:
   915 
   916       typedef typename _Graph::template EdgeMap<_Value> Parent; 
   917 
   918       UEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) 
   919         : Parent(*(g.graph)) {}
   920 
   921       UEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, const _Value& a) 
   922         : Parent(*(g.graph), a) {}
   923       
   924     };
   925       
   926   };
   927 
   928   template <typename _Graph>
   929   class UndirGraphAdaptorBase<
   930     _Graph, typename enable_if<
   931     typename _Graph::EdgeNotifier::Notifier>::type > 
   932       : public UGraphBaseExtender<GraphAdaptorBase<_Graph> > {
   933   public:
   934 
   935     typedef _Graph Graph;
   936     typedef UGraphBaseExtender<GraphAdaptorBase<_Graph> > Parent;
   937 
   938   protected:
   939 
   940     UndirGraphAdaptorBase() 
   941       : edge_notifier(*this), edge_notifier_proxy(edge_notifier) {}
   942 
   943     void setGraph(_Graph& graph) {
   944       Parent::setGraph(graph);
   945       edge_notifier_proxy.setUEdgeNotifier(graph.getNotifier(UEdge()));
   946     }
   947 
   948   public:
   949 
   950     ~UndirGraphAdaptorBase() {
   951       edge_notifier.clear();
   952     }
   953 
   954     int maxId(typename Parent::Edge) const {
   955       return Parent::maxEdgeId();
   956     }
   957 
   958 
   959     typedef typename Parent::UEdge UEdge;
   960     typedef typename Parent::Edge Edge;
   961 
   962     typedef typename Parent::EdgeNotifier UEdgeNotifier;
   963 
   964     using Parent::getNotifier;
   965 
   966     typedef AlterationNotifier<UndirGraphAdaptorBase, Edge> EdgeNotifier;
   967     EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
   968 
   969   protected:
   970 
   971     class NotifierProxy : public UEdgeNotifier::ObserverBase {
   972     public:
   973 
   974       typedef typename UEdgeNotifier::ObserverBase Parent;
   975       typedef UndirGraphAdaptorBase AdaptorBase;
   976       
   977       NotifierProxy(EdgeNotifier& _edge_notifier)
   978         : Parent(), edge_notifier(_edge_notifier) {
   979       }
   980 
   981       virtual ~NotifierProxy() {
   982         if (Parent::attached()) {
   983           Parent::detach();
   984         }
   985       }
   986 
   987       void setUEdgeNotifier(UEdgeNotifier& _uedge_notifier) {
   988         Parent::attach(_uedge_notifier);
   989       }
   990 
   991       
   992     protected:
   993 
   994       virtual void add(const UEdge& uedge) {
   995         std::vector<Edge> edges;
   996         edges.push_back(AdaptorBase::Parent::direct(uedge, true));
   997         edges.push_back(AdaptorBase::Parent::direct(uedge, false));
   998         edge_notifier.add(edges);
   999       }
  1000       virtual void add(const std::vector<UEdge>& uedges) {
  1001         std::vector<Edge> edges;
  1002         for (int i = 0; i < (int)uedges.size(); ++i) { 
  1003           edges.push_back(AdaptorBase::Parent::direct(uedges[i], true));
  1004           edges.push_back(AdaptorBase::Parent::direct(uedges[i], false));
  1005         }
  1006         edge_notifier.add(edges);
  1007       }
  1008       virtual void erase(const UEdge& uedge) {
  1009         std::vector<Edge> edges;
  1010         edges.push_back(AdaptorBase::Parent::direct(uedge, true));
  1011         edges.push_back(AdaptorBase::Parent::direct(uedge, false));
  1012         edge_notifier.erase(edges);
  1013       }
  1014       virtual void erase(const std::vector<UEdge>& uedges) {
  1015         std::vector<Edge> edges;
  1016         for (int i = 0; i < (int)uedges.size(); ++i) { 
  1017           edges.push_back(AdaptorBase::Parent::direct(uedges[i], true));
  1018           edges.push_back(AdaptorBase::Parent::direct(uedges[i], false));
  1019         }
  1020         edge_notifier.erase(edges);
  1021       }
  1022       virtual void build() {
  1023         edge_notifier.build();
  1024       }
  1025       virtual void clear() {
  1026         edge_notifier.clear();
  1027       }
  1028 
  1029       EdgeNotifier& edge_notifier;
  1030     };
  1031 
  1032 
  1033     mutable EdgeNotifier edge_notifier;
  1034     NotifierProxy edge_notifier_proxy;
  1035 
  1036   public:
  1037     
  1038     
  1039     template <typename _Value>
  1040     class EdgeMap {
  1041     private:
  1042       
  1043       typedef typename _Graph::template EdgeMap<_Value> MapImpl;
  1044       
  1045     public:
  1046 
  1047       typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  1048 
  1049       typedef _Value Value;
  1050       typedef Edge Key;
  1051       
  1052       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) :
  1053 	forward_map(*(_g.graph)), backward_map(*(_g.graph)) {}
  1054 
  1055       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, const Value& a) 
  1056         : forward_map(*(_g.graph), a), backward_map(*(_g.graph), a) {}
  1057       
  1058       void set(const Edge& e, const Value& a) { 
  1059 	if (Parent::direction(e)) {
  1060 	  forward_map.set(e, a); 
  1061         } else { 
  1062 	  backward_map.set(e, a);
  1063         } 
  1064       }
  1065 
  1066       typename MapTraits<MapImpl>::ConstReturnValue 
  1067       operator[](const Edge& e) const { 
  1068 	if (Parent::direction(e)) {
  1069 	  return forward_map[e]; 
  1070 	} else { 
  1071 	  return backward_map[e]; 
  1072         }
  1073       }
  1074 
  1075       typename MapTraits<MapImpl>::ReturnValue 
  1076       operator[](const Edge& e) { 
  1077 	if (Parent::direction(e)) {
  1078 	  return forward_map[e]; 
  1079 	} else { 
  1080 	  return backward_map[e]; 
  1081         }
  1082       }
  1083 
  1084     protected:
  1085 
  1086       MapImpl forward_map, backward_map; 
  1087 
  1088     };
  1089         
  1090     template <typename _Value>
  1091     class UEdgeMap : public _Graph::template EdgeMap<_Value> {
  1092     public:
  1093 
  1094       typedef typename _Graph::template EdgeMap<_Value> Parent; 
  1095 
  1096       UEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) 
  1097         : Parent(*(g.graph)) {}
  1098 
  1099       UEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, const _Value& a) 
  1100         : Parent(*(g.graph), a) {}
  1101       
  1102     };
  1103       
  1104   };
  1105 
  1106   ///\brief An undirected graph is made from a directed graph by an adaptor
  1107   ///\ingroup graph_adaptors
  1108   ///
  1109   /// Undocumented, untested!!!
  1110   /// If somebody knows nice demo application, let's polulate it.
  1111   /// 
  1112   /// \author Marton Makai
  1113   template<typename _Graph>
  1114   class UndirGraphAdaptor : 
  1115     public UGraphAdaptorExtender<
  1116     UndirGraphAdaptorBase<_Graph> > {
  1117   public:
  1118     typedef _Graph Graph;
  1119     typedef UGraphAdaptorExtender<
  1120       UndirGraphAdaptorBase<_Graph> > Parent;
  1121   protected:
  1122     UndirGraphAdaptor() { }
  1123   public:
  1124     UndirGraphAdaptor(_Graph& _graph) { 
  1125       setGraph(_graph);
  1126     }
  1127 
  1128     template <typename _ForwardMap, typename _BackwardMap>
  1129     class CombinedEdgeMap {
  1130     public:
  1131       
  1132       typedef _ForwardMap ForwardMap;
  1133       typedef _BackwardMap BackwardMap;
  1134 
  1135       typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
  1136 
  1137       typedef typename ForwardMap::Value Value;
  1138       typedef typename Parent::Edge Key;
  1139       
  1140       CombinedEdgeMap() : forward_map(0), backward_map(0) {}
  1141 
  1142       CombinedEdgeMap(ForwardMap& _forward_map, BackwardMap& _backward_map) 
  1143         : forward_map(&_forward_map), backward_map(&_backward_map) {}
  1144       
  1145       void set(const Key& e, const Value& a) { 
  1146 	if (Parent::direction(e)) {
  1147 	  forward_map->set(e, a); 
  1148         } else { 
  1149 	  backward_map->set(e, a);
  1150         } 
  1151       }
  1152 
  1153       typename MapTraits<ForwardMap>::ConstReturnValue 
  1154       operator[](const Key& e) const { 
  1155 	if (Parent::direction(e)) {
  1156 	  return (*forward_map)[e]; 
  1157 	} else { 
  1158 	  return (*backward_map)[e]; 
  1159         }
  1160       }
  1161 
  1162       typename MapTraits<ForwardMap>::ReturnValue 
  1163       operator[](const Key& e) { 
  1164 	if (Parent::direction(e)) {
  1165 	  return (*forward_map)[e]; 
  1166 	} else { 
  1167 	  return (*backward_map)[e]; 
  1168         }
  1169       }
  1170 
  1171       void setForwardMap(ForwardMap& _forward_map) {
  1172         forward_map = &_forward_map;
  1173       }
  1174 
  1175       void setBackwardMap(BackwardMap& _backward_map) {
  1176         backward_map = &_backward_map;
  1177       }
  1178 
  1179     protected:
  1180 
  1181       ForwardMap* forward_map;
  1182       BackwardMap* backward_map; 
  1183 
  1184     };
  1185 
  1186   };
  1187 
  1188   /// \brief Just gives back an undir graph adaptor
  1189   ///
  1190   /// Just gives back an undir graph adaptor
  1191   template<typename Graph>
  1192   UndirGraphAdaptor<const Graph>
  1193   undirGraphAdaptor(const Graph& graph) {
  1194     return UndirGraphAdaptor<const Graph>(graph);
  1195   }
  1196 
  1197   template<typename Graph, typename Number,
  1198 	   typename CapacityMap, typename FlowMap>
  1199   class ResForwardFilter {
  1200     const CapacityMap* capacity;
  1201     const FlowMap* flow;
  1202   public:
  1203     typedef typename Graph::Edge Key;
  1204     typedef bool Value;
  1205 
  1206     ResForwardFilter(const CapacityMap& _capacity, const FlowMap& _flow) 
  1207       : capacity(&_capacity), flow(&_flow) { }
  1208     ResForwardFilter() : capacity(0), flow(0) { }
  1209     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1210     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1211     bool operator[](const typename Graph::Edge& e) const {
  1212       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1213     }
  1214   };
  1215 
  1216   template<typename Graph, typename Number,
  1217 	   typename CapacityMap, typename FlowMap>
  1218   class ResBackwardFilter {
  1219     const CapacityMap* capacity;
  1220     const FlowMap* flow;
  1221   public:
  1222     typedef typename Graph::Edge Key;
  1223     typedef bool Value;
  1224 
  1225     ResBackwardFilter(const CapacityMap& _capacity, const FlowMap& _flow) 
  1226       : capacity(&_capacity), flow(&_flow) { }
  1227     ResBackwardFilter() : capacity(0), flow(0) { }
  1228     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1229     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1230     bool operator[](const typename Graph::Edge& e) const {
  1231       return (Number(0) < Number((*flow)[e]));
  1232     }
  1233   };
  1234 
  1235   
  1236   ///\brief An adaptor for composing the residual
  1237   ///graph for directed flow and circulation problems.
  1238   ///\ingroup graph_adaptors
  1239   ///
  1240   ///An adaptor for composing the residual graph for
  1241   ///directed flow and circulation problems. 
  1242   ///Let \f$ G=(V, A) \f$ be a directed graph and let \f$ F \f$ be a 
  1243   ///number type. Let moreover 
  1244   ///\f$ f,c:A\to F \f$, be functions on the edge-set. 
  1245   ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands for a flow 
  1246   ///and \f$ c \f$ for a capacity function.   
  1247   ///Suppose that a graph instange \c g of type 
  1248   ///\c ListGraph implements \f$ G \f$.
  1249   ///\code
  1250   ///  ListGraph g;
  1251   ///\endcode
  1252   ///Then RevGraphAdaptor implements the graph structure with node-set 
  1253   ///\f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$, where 
  1254   ///\f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and 
  1255   ///\f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, 
  1256   ///i.e. the so called residual graph. 
  1257   ///When we take the union \f$ A_{forward}\cup A_{backward} \f$, 
  1258   ///multilicities are counted, i.e. if an edge is in both 
  1259   ///\f$ A_{forward} \f$ and \f$ A_{backward} \f$, then in the adaptor it 
  1260   ///appears twice. 
  1261   ///The following code shows how 
  1262   ///such an instance can be constructed.
  1263   ///\code
  1264   ///typedef ListGraph Graph;
  1265   ///Graph::EdgeMap<int> f(g);
  1266   ///Graph::EdgeMap<int> c(g);
  1267   ///ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > ga(g);
  1268   ///\endcode
  1269   ///\author Marton Makai
  1270   ///
  1271   template<typename Graph, typename Number, 
  1272 	   typename CapacityMap, typename FlowMap>
  1273   class ResGraphAdaptor : 
  1274     public EdgeSubGraphAdaptor< 
  1275     UndirGraphAdaptor<Graph>, 
  1276     typename UndirGraphAdaptor<Graph>::template CombinedEdgeMap<
  1277     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1278     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > > {
  1279   public:
  1280 
  1281     typedef UndirGraphAdaptor<Graph> UGraph;
  1282 
  1283     typedef ResForwardFilter<Graph, Number, CapacityMap, FlowMap> 
  1284     ForwardFilter;
  1285 
  1286     typedef ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> 
  1287     BackwardFilter;
  1288 
  1289     typedef typename UGraph::
  1290     template CombinedEdgeMap<ForwardFilter, BackwardFilter>
  1291     EdgeFilter;
  1292 
  1293     typedef EdgeSubGraphAdaptor<UGraph, EdgeFilter> Parent;
  1294 
  1295   protected:
  1296 
  1297     const CapacityMap* capacity;
  1298     FlowMap* flow;
  1299 
  1300     UGraph ugraph;
  1301     ForwardFilter forward_filter;
  1302     BackwardFilter backward_filter;
  1303     EdgeFilter edge_filter;
  1304 
  1305     void setCapacityMap(const CapacityMap& _capacity) {
  1306       capacity=&_capacity;
  1307       forward_filter.setCapacity(_capacity);
  1308       backward_filter.setCapacity(_capacity);
  1309     }
  1310 
  1311     void setFlowMap(FlowMap& _flow) {
  1312       flow=&_flow;
  1313       forward_filter.setFlow(_flow);
  1314       backward_filter.setFlow(_flow);
  1315     }
  1316 
  1317   public:
  1318 
  1319     ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
  1320                     FlowMap& _flow) 
  1321       : Parent(), capacity(&_capacity), flow(&_flow),
  1322         ugraph(_graph),
  1323         forward_filter(_capacity, _flow), 
  1324         backward_filter(_capacity, _flow),
  1325         edge_filter(forward_filter, backward_filter) {
  1326       Parent::setGraph(ugraph);
  1327       Parent::setEdgeFilterMap(edge_filter);
  1328     }
  1329 
  1330     typedef typename Parent::Edge Edge;
  1331 
  1332     void augment(const Edge& e, Number a) const {
  1333       if (UGraph::direction(e)) {
  1334 	flow->set(e, (*flow)[e]+a);
  1335       } else {  
  1336 	flow->set(e, (*flow)[e]-a);
  1337       }
  1338     }
  1339 
  1340     static bool forward(const Edge& e) {
  1341       return UGraph::direction(e);
  1342     }
  1343 
  1344     static bool backward(const Edge& e) {
  1345       return !UGraph::direction(e);
  1346     }
  1347 
  1348     static Edge forward(const typename Graph::Edge& e) {
  1349       return UGraph::direct(e, true);
  1350     }
  1351 
  1352     static Edge backward(const typename Graph::Edge& e) {
  1353       return UGraph::direct(e, false);
  1354     }
  1355 
  1356 
  1357     /// \brief Residual capacity map.
  1358     ///
  1359     /// In generic residual graphs the residual capacity can be obtained 
  1360     /// as a map. 
  1361     class ResCap {
  1362     protected:
  1363       const ResGraphAdaptor* res_graph;
  1364     public:
  1365       typedef Number Value;
  1366       typedef Edge Key;
  1367       ResCap(const ResGraphAdaptor& _res_graph) 
  1368         : res_graph(&_res_graph) {}
  1369       
  1370       Number operator[](const Edge& e) const { 
  1371 	if (ResGraphAdaptor::direction(e)) 
  1372 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1373 	else 
  1374 	  return (*(res_graph->flow))[e]; 
  1375       }
  1376       
  1377     };
  1378 
  1379   };
  1380 
  1381 
  1382 
  1383   template <typename _Graph, typename FirstOutEdgesMap>
  1384   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1385   public:
  1386     typedef _Graph Graph;
  1387     typedef GraphAdaptorBase<_Graph> Parent;
  1388   protected:
  1389     FirstOutEdgesMap* first_out_edges;
  1390     ErasingFirstGraphAdaptorBase() : Parent(), 
  1391 				     first_out_edges(0) { }
  1392 
  1393     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1394       first_out_edges=&_first_out_edges;
  1395     }
  1396 
  1397   public:
  1398 
  1399     typedef typename Parent::Node Node;
  1400     typedef typename Parent::Edge Edge;
  1401 
  1402     void firstOut(Edge& i, const Node& n) const { 
  1403       i=(*first_out_edges)[n];
  1404     }
  1405 
  1406     void erase(const Edge& e) const {
  1407       Node n=source(e);
  1408       Edge f=e;
  1409       Parent::nextOut(f);
  1410       first_out_edges->set(n, f);
  1411     }    
  1412   };
  1413 
  1414 
  1415   ///\brief For blocking flows.
  1416   ///\ingroup graph_adaptors
  1417   ///
  1418   ///\warning Graph adaptors are in even more
  1419   ///experimental state than the other
  1420   ///parts of the lib. Use them at you own risk.
  1421   ///
  1422   ///This graph adaptor is used for on-the-fly 
  1423   ///Dinits blocking flow computations.
  1424   ///For each node, an out-edge is stored which is used when the 
  1425   ///\code
  1426   ///OutEdgeIt& first(OutEdgeIt&, const Node&)
  1427   ///\endcode
  1428   ///is called. 
  1429   ///
  1430   ///\author Marton Makai
  1431   ///
  1432   template <typename _Graph, typename FirstOutEdgesMap>
  1433   class ErasingFirstGraphAdaptor : 
  1434     public GraphAdaptorExtender<
  1435     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1436   public:
  1437     typedef _Graph Graph;
  1438     typedef GraphAdaptorExtender<
  1439       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1440     ErasingFirstGraphAdaptor(Graph& _graph, 
  1441 			     FirstOutEdgesMap& _first_out_edges) { 
  1442       setGraph(_graph);
  1443       setFirstOutEdgesMap(_first_out_edges);
  1444     } 
  1445 
  1446   };
  1447 
  1448 //   template <typename _Graph>
  1449 //   class SplitGraphAdaptorBase 
  1450 //     : public GraphAdaptorBase<_Graph> {
  1451 //   public:
  1452 //     typedef GraphAdaptorBase<_Graph> Parent;
  1453 
  1454 //     class Node;
  1455 //     class Edge;
  1456 //     template <typename T> class NodeMap;
  1457 //     template <typename T> class EdgeMap;
  1458     
  1459 
  1460 //     class Node : public Parent::Node {
  1461 //       friend class SplitGraphAdaptorBase;
  1462 //       template <typename T> friend class NodeMap;
  1463 //       typedef typename Parent::Node NodeParent;
  1464 //     private:
  1465 
  1466 //       bool entry;
  1467 //       Node(typename Parent::Node _node, bool _entry)
  1468 // 	: Parent::Node(_node), entry(_entry) {}
  1469       
  1470 //     public:
  1471 //       Node() {}
  1472 //       Node(Invalid) : NodeParent(INVALID), entry(true) {}
  1473 
  1474 //       bool operator==(const Node& node) const {
  1475 // 	return NodeParent::operator==(node) && entry == node.entry;
  1476 //       }
  1477       
  1478 //       bool operator!=(const Node& node) const {
  1479 // 	return !(*this == node);
  1480 //       }
  1481       
  1482 //       bool operator<(const Node& node) const {
  1483 // 	return NodeParent::operator<(node) || 
  1484 // 	  (NodeParent::operator==(node) && entry < node.entry);
  1485 //       }
  1486 //     };
  1487 
  1488 //     /// \todo May we want VARIANT/union type
  1489 //     class Edge : public Parent::Edge {
  1490 //       friend class SplitGraphAdaptorBase;
  1491 //       template <typename T> friend class EdgeMap;
  1492 //     private:
  1493 //       typedef typename Parent::Edge EdgeParent;
  1494 //       typedef typename Parent::Node NodeParent;
  1495 //       NodeParent bind;
  1496 
  1497 //       Edge(const EdgeParent& edge, const NodeParent& node)
  1498 // 	: EdgeParent(edge), bind(node) {}
  1499 //     public:
  1500 //       Edge() {}
  1501 //       Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
  1502 
  1503 //       bool operator==(const Edge& edge) const {
  1504 // 	return EdgeParent::operator==(edge) && bind == edge.bind;
  1505 //       }
  1506       
  1507 //       bool operator!=(const Edge& edge) const {
  1508 // 	return !(*this == edge);
  1509 //       }
  1510       
  1511 //       bool operator<(const Edge& edge) const {
  1512 // 	return EdgeParent::operator<(edge) || 
  1513 // 	  (EdgeParent::operator==(edge) && bind < edge.bind);
  1514 //       }
  1515 //     };
  1516 
  1517 //     void first(Node& node) const {
  1518 //       Parent::first(node);
  1519 //       node.entry = true;
  1520 //     } 
  1521 
  1522 //     void next(Node& node) const {
  1523 //       if (node.entry) {
  1524 // 	node.entry = false;
  1525 //       } else {
  1526 // 	node.entry = true;
  1527 // 	Parent::next(node);
  1528 //       }
  1529 //     }
  1530 
  1531 //     void first(Edge& edge) const {
  1532 //       Parent::first(edge);
  1533 //       if ((typename Parent::Edge&)edge == INVALID) {
  1534 // 	Parent::first(edge.bind);
  1535 //       } else {
  1536 // 	edge.bind = INVALID;
  1537 //       }
  1538 //     }
  1539 
  1540 //     void next(Edge& edge) const {
  1541 //       if ((typename Parent::Edge&)edge != INVALID) {
  1542 // 	Parent::next(edge);
  1543 // 	if ((typename Parent::Edge&)edge == INVALID) {
  1544 // 	  Parent::first(edge.bind);
  1545 // 	}
  1546 //       } else {
  1547 // 	Parent::next(edge.bind);
  1548 //       }      
  1549 //     }
  1550 
  1551 //     void firstIn(Edge& edge, const Node& node) const {
  1552 //       if (node.entry) {
  1553 // 	Parent::firstIn(edge, node);
  1554 // 	edge.bind = INVALID;
  1555 //       } else {
  1556 // 	(typename Parent::Edge&)edge = INVALID;
  1557 // 	edge.bind = node;
  1558 //       }
  1559 //     }
  1560 
  1561 //     void nextIn(Edge& edge) const {
  1562 //       if ((typename Parent::Edge&)edge != INVALID) {
  1563 // 	Parent::nextIn(edge);
  1564 //       } else {
  1565 // 	edge.bind = INVALID;
  1566 //       }      
  1567 //     }
  1568 
  1569 //     void firstOut(Edge& edge, const Node& node) const {
  1570 //       if (!node.entry) {
  1571 // 	Parent::firstOut(edge, node);
  1572 // 	edge.bind = INVALID;
  1573 //       } else {
  1574 // 	(typename Parent::Edge&)edge = INVALID;
  1575 // 	edge.bind = node;
  1576 //       }
  1577 //     }
  1578 
  1579 //     void nextOut(Edge& edge) const {
  1580 //       if ((typename Parent::Edge&)edge != INVALID) {
  1581 // 	Parent::nextOut(edge);
  1582 //       } else {
  1583 // 	edge.bind = INVALID;
  1584 //       }
  1585 //     }
  1586 
  1587 //     Node source(const Edge& edge) const {
  1588 //       if ((typename Parent::Edge&)edge != INVALID) {
  1589 // 	return Node(Parent::source(edge), false);
  1590 //       } else {
  1591 // 	return Node(edge.bind, true);
  1592 //       }
  1593 //     }
  1594 
  1595 //     Node target(const Edge& edge) const {
  1596 //       if ((typename Parent::Edge&)edge != INVALID) {
  1597 // 	return Node(Parent::target(edge), true);
  1598 //       } else {
  1599 // 	return Node(edge.bind, false);
  1600 //       }
  1601 //     }
  1602 
  1603 //     static bool entryNode(const Node& node) {
  1604 //       return node.entry;
  1605 //     }
  1606 
  1607 //     static bool exitNode(const Node& node) {
  1608 //       return !node.entry;
  1609 //     }
  1610 
  1611 //     static Node getEntry(const typename Parent::Node& node) {
  1612 //       return Node(node, true);
  1613 //     }
  1614 
  1615 //     static Node getExit(const typename Parent::Node& node) {
  1616 //       return Node(node, false);
  1617 //     }
  1618 
  1619 //     static bool originalEdge(const Edge& edge) {
  1620 //       return (typename Parent::Edge&)edge != INVALID;
  1621 //     }
  1622 
  1623 //     static bool bindingEdge(const Edge& edge) {
  1624 //       return edge.bind != INVALID;
  1625 //     }
  1626 
  1627 //     static Node getBindedNode(const Edge& edge) {
  1628 //       return edge.bind;
  1629 //     }
  1630 
  1631 //     int nodeNum() const {
  1632 //       return Parent::nodeNum() * 2;
  1633 //     }
  1634 
  1635 //     typedef True EdgeNumTag;
  1636     
  1637 //     int edgeNum() const {
  1638 //       return countEdges() + Parent::nodeNum();
  1639 //     }
  1640 
  1641 //     Edge findEdge(const Node& source, const Node& target, 
  1642 // 		  const Edge& prev = INVALID) const {
  1643 //       if (exitNode(source) && entryNode(target)) {
  1644 // 	return Parent::findEdge(source, target, prev);
  1645 //       } else {
  1646 // 	if (prev == INVALID && entryNode(source) && exitNode(target) && 
  1647 // 	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
  1648 // 	  return Edge(INVALID, source);
  1649 // 	} else {
  1650 // 	  return INVALID;
  1651 // 	}
  1652 //       }
  1653 //     }
  1654     
  1655 //     template <typename T>
  1656 //     class NodeMap : public MapBase<Node, T> {
  1657 //       typedef typename Parent::template NodeMap<T> NodeImpl;
  1658 //     public:
  1659 //       NodeMap(const SplitGraphAdaptorBase& _graph) 
  1660 // 	: entry(_graph), exit(_graph) {}
  1661 //       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1662 // 	: entry(_graph, t), exit(_graph, t) {}
  1663       
  1664 //       void set(const Node& key, const T& val) {
  1665 // 	if (key.entry) { entry.set(key, val); }
  1666 // 	else {exit.set(key, val); }
  1667 //       }
  1668       
  1669 //       typename MapTraits<NodeImpl>::ReturnValue 
  1670 //       operator[](const Node& key) {
  1671 // 	if (key.entry) { return entry[key]; }
  1672 // 	else { return exit[key]; }
  1673 //       }
  1674 
  1675 //       typename MapTraits<NodeImpl>::ConstReturnValue
  1676 //       operator[](const Node& key) const {
  1677 // 	if (key.entry) { return entry[key]; }
  1678 // 	else { return exit[key]; }
  1679 //       }
  1680 
  1681 //     private:
  1682 //       NodeImpl entry, exit;
  1683 //     };
  1684 
  1685 //     template <typename T>
  1686 //     class EdgeMap : public MapBase<Edge, T> {
  1687 //       typedef typename Parent::template NodeMap<T> NodeImpl;
  1688 //       typedef typename Parent::template EdgeMap<T> EdgeImpl;
  1689 //     public:
  1690 //       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  1691 // 	: bind(_graph), orig(_graph) {}
  1692 //       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1693 // 	: bind(_graph, t), orig(_graph, t) {}
  1694       
  1695 //       void set(const Edge& key, const T& val) {
  1696 // 	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
  1697 // 	else {bind.set(key.bind, val); }
  1698 //       }
  1699       
  1700 //       typename MapTraits<EdgeImpl>::ReturnValue
  1701 //       operator[](const Edge& key) {
  1702 // 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1703 // 	else {return bind[key.bind]; }
  1704 //       }
  1705 
  1706 //       typename MapTraits<EdgeImpl>::ConstReturnValue
  1707 //       operator[](const Edge& key) const {
  1708 // 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1709 // 	else {return bind[key.bind]; }
  1710 //       }
  1711 
  1712 //     private:
  1713 //       typename Parent::template NodeMap<T> bind;
  1714 //       typename Parent::template EdgeMap<T> orig;
  1715 //     };
  1716 
  1717 //     template <typename EntryMap, typename ExitMap>
  1718 //     class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
  1719 //     public:
  1720 //       typedef MapBase<Node, typename EntryMap::Value> Parent;
  1721 
  1722 //       typedef typename Parent::Key Key;
  1723 //       typedef typename Parent::Value Value;
  1724 
  1725 //       CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
  1726 // 	: entryMap(_entryMap), exitMap(_exitMap) {}
  1727 
  1728 //       Value& operator[](const Key& key) {
  1729 // 	if (key.entry) {
  1730 // 	  return entryMap[key];
  1731 // 	} else {
  1732 // 	  return exitMap[key];
  1733 // 	}
  1734 //       }
  1735 
  1736 //       Value operator[](const Key& key) const {
  1737 // 	if (key.entry) {
  1738 // 	  return entryMap[key];
  1739 // 	} else {
  1740 // 	  return exitMap[key];
  1741 // 	}
  1742 //       }
  1743 
  1744 //       void set(const Key& key, const Value& value) {
  1745 // 	if (key.entry) {
  1746 // 	  entryMap.set(key, value);
  1747 // 	} else {
  1748 // 	  exitMap.set(key, value);
  1749 // 	}
  1750 //       }
  1751       
  1752 //     private:
  1753       
  1754 //       EntryMap& entryMap;
  1755 //       ExitMap& exitMap;
  1756       
  1757 //     };
  1758 
  1759 //     template <typename EdgeMap, typename NodeMap>
  1760 //     class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
  1761 //     public:
  1762 //       typedef MapBase<Edge, typename EdgeMap::Value> Parent;
  1763 
  1764 //       typedef typename Parent::Key Key;
  1765 //       typedef typename Parent::Value Value;
  1766 
  1767 //       CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
  1768 // 	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
  1769 
  1770 //       void set(const Edge& edge, const Value& val) {
  1771 // 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1772 // 	  edgeMap.set(edge, val);
  1773 // 	} else {
  1774 // 	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
  1775 // 	}
  1776 //       }
  1777 
  1778 //       Value operator[](const Key& edge) const {
  1779 // 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1780 // 	  return edgeMap[edge];
  1781 // 	} else {
  1782 // 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1783 // 	}
  1784 //       }      
  1785 
  1786 //       Value& operator[](const Key& edge) {
  1787 // 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1788 // 	  return edgeMap[edge];
  1789 // 	} else {
  1790 // 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1791 // 	}
  1792 //       }      
  1793       
  1794 //     private:
  1795 //       EdgeMap& edgeMap;
  1796 //       NodeMap& nodeMap;
  1797 //     };
  1798 
  1799 //   };
  1800 
  1801 //   template <typename _Graph>
  1802 //   class SplitGraphAdaptor 
  1803 //     : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  1804 //   public:
  1805 //     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  1806 
  1807 //     SplitGraphAdaptor(_Graph& graph) {
  1808 //       Parent::setGraph(graph);
  1809 //     }
  1810 
  1811 
  1812 //   };
  1813 
  1814 } //namespace lemon
  1815 
  1816 #endif //LEMON_GRAPH_ADAPTOR_H
  1817