lemon/floyd_warshall.h
author hegyi
Thu, 06 Oct 2005 12:32:06 +0000
changeset 1714 66c89fe52d4e
parent 1699 29428f7b8b66
child 1723 fb4f801dd692
permissions -rw-r--r--
Shape keeping movement is implemented, at last. Many thanks to Alpar.
     1 /* -*- C++ -*-
     2  * lemon/floyd_warshall.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FLOYD_WARSHALL_H
    18 #define LEMON_FLOYD_WARSHALL_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief FloydWarshall algorithm.
    23 ///
    24 /// \todo getPath() should be implemented! (also for BFS and DFS)
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 
    32 #include <limits>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default OperationTraits for the FloydWarshall algorithm class.
    37   ///  
    38   /// It defines all computational operations and constants which are
    39   /// used in the Floyd-Warshall algorithm. The default implementation
    40   /// is based on the numeric_limits class. If the numeric type does not
    41   /// have infinity value then the maximum value is used as extremal
    42   /// infinity value.
    43   template <
    44     typename Value, 
    45     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    46   struct FloydWarshallDefaultOperationTraits {
    47     /// \brief Gives back the zero value of the type.
    48     static Value zero() {
    49       return static_cast<Value>(0);
    50     }
    51     /// \brief Gives back the positive infinity value of the type.
    52     static Value infinity() {
    53       return std::numeric_limits<Value>::infinity();
    54     }
    55     /// \brief Gives back the sum of the given two elements.
    56     static Value plus(const Value& left, const Value& right) {
    57       return left + right;
    58     }
    59     /// \brief Gives back true only if the first value less than the second.
    60     static bool less(const Value& left, const Value& right) {
    61       return left < right;
    62     }
    63   };
    64 
    65   template <typename Value>
    66   struct FloydWarshallDefaultOperationTraits<Value, false> {
    67     static Value zero() {
    68       return static_cast<Value>(0);
    69     }
    70     static Value infinity() {
    71       return std::numeric_limits<Value>::max();
    72     }
    73     static Value plus(const Value& left, const Value& right) {
    74       if (left == infinity() || right == infinity()) return infinity();
    75       return left + right;
    76     }
    77     static bool less(const Value& left, const Value& right) {
    78       return left < right;
    79     }
    80   };
    81   
    82   /// \brief Default traits class of FloydWarshall class.
    83   ///
    84   /// Default traits class of FloydWarshall class.
    85   /// \param _Graph Graph type.
    86   /// \param _LegthMap Type of length map.
    87   template<class _Graph, class _LengthMap>
    88   struct FloydWarshallDefaultTraits {
    89     /// The graph type the algorithm runs on. 
    90     typedef _Graph Graph;
    91 
    92     /// \brief The type of the map that stores the edge lengths.
    93     ///
    94     /// The type of the map that stores the edge lengths.
    95     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    96     typedef _LengthMap LengthMap;
    97 
    98     // The type of the length of the edges.
    99     typedef typename _LengthMap::Value Value;
   100 
   101     /// \brief Operation traits for belmann-ford algorithm.
   102     ///
   103     /// It defines the infinity type on the given Value type
   104     /// and the used operation.
   105     /// \see FloydWarshallDefaultOperationTraits
   106     typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
   107  
   108     /// \brief The type of the map that stores the last edges of the 
   109     /// shortest paths.
   110     /// 
   111     /// The type of the map that stores the last
   112     /// edges of the shortest paths.
   113     /// It must be a matrix map with \c Graph::Edge value type.
   114     ///
   115     typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   116 
   117     /// \brief Instantiates a PredMap.
   118     /// 
   119     /// This function instantiates a \ref PredMap. 
   120     /// \param G is the graph, to which we would like to define the PredMap.
   121     /// \todo The graph alone may be insufficient for the initialization
   122     static PredMap *createPredMap(const _Graph& graph) {
   123       return new PredMap(graph);
   124     }
   125 
   126     /// \brief The type of the map that stores the dists of the nodes.
   127     ///
   128     /// The type of the map that stores the dists of the nodes.
   129     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   130     ///
   131     typedef NodeMatrixMap<Graph, Value> DistMap;
   132 
   133     /// \brief Instantiates a DistMap.
   134     ///
   135     /// This function instantiates a \ref DistMap. 
   136     /// \param G is the graph, to which we would like to define the 
   137     /// \ref DistMap
   138     static DistMap *createDistMap(const _Graph& graph) {
   139       return new DistMap(graph);
   140     }
   141 
   142   };
   143   
   144   /// \brief FloydWarshall algorithm class.
   145   ///
   146   /// \ingroup flowalgs
   147   /// This class provides an efficient implementation of \c FloydWarshall 
   148   /// algorithm. The edge lengths are passed to the algorithm using a
   149   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   150   /// kind of length.
   151   ///
   152   /// The type of the length is determined by the
   153   /// \ref concept::ReadMap::Value "Value" of the length map.
   154   ///
   155   /// \param _Graph The graph type the algorithm runs on. The default value
   156   /// is \ref ListGraph. The value of _Graph is not used directly by
   157   /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
   158   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   159   /// edges. It is read once for each edge, so the map may involve in
   160   /// relatively time consuming process to compute the edge length if
   161   /// it is necessary. The default map type is \ref
   162   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   163   /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
   164   /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
   165   /// various data types used by the algorithm.  The default traits
   166   /// class is \ref FloydWarshallDefaultTraits
   167   /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
   168   /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
   169   /// traits class.
   170   ///
   171   /// \author Balazs Dezso
   172 
   173 #ifdef DOXYGEN
   174   template <typename _Graph, typename _LengthMap typename _Traits >
   175 #else
   176   template <typename _Graph=ListGraph,
   177 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   178 	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
   179 #endif
   180   class FloydWarshall {
   181   public:
   182     
   183     /// \brief \ref Exception for uninitialized parameters.
   184     ///
   185     /// This error represents problems in the initialization
   186     /// of the parameters of the algorithms.
   187 
   188     class UninitializedParameter : public lemon::UninitializedParameter {
   189     public:
   190       virtual const char* exceptionName() const {
   191 	return "lemon::FloydWarshall::UninitializedParameter";
   192       }
   193     };
   194 
   195     typedef _Traits Traits;
   196     ///The type of the underlying graph.
   197     typedef typename _Traits::Graph Graph;
   198 
   199     typedef typename Graph::Node Node;
   200     typedef typename Graph::NodeIt NodeIt;
   201     typedef typename Graph::Edge Edge;
   202     typedef typename Graph::EdgeIt EdgeIt;
   203     
   204     /// \brief The type of the length of the edges.
   205     typedef typename _Traits::LengthMap::Value Value;
   206     /// \brief The type of the map that stores the edge lengths.
   207     typedef typename _Traits::LengthMap LengthMap;
   208     /// \brief The type of the map that stores the last
   209     /// edges of the shortest paths. The type of the PredMap
   210     /// is a matrix map for Edges
   211     typedef typename _Traits::PredMap PredMap;
   212     /// \brief The type of the map that stores the dists of the nodes.
   213     /// The type of the DistMap is a matrix map for Values
   214     typedef typename _Traits::DistMap DistMap;
   215     /// \brief The operation traits.
   216     typedef typename _Traits::OperationTraits OperationTraits;
   217   private:
   218     /// Pointer to the underlying graph.
   219     const Graph *graph;
   220     /// Pointer to the length map
   221     const LengthMap *length;
   222     ///Pointer to the map of predecessors edges.
   223     PredMap *_pred;
   224     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   225     bool local_pred;
   226     ///Pointer to the map of distances.
   227     DistMap *_dist;
   228     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   229     bool local_dist;
   230 
   231     /// Creates the maps if necessary.
   232     void create_maps() {
   233       if(!_pred) {
   234 	local_pred = true;
   235 	_pred = Traits::createPredMap(*graph);
   236       }
   237       if(!_dist) {
   238 	local_dist = true;
   239 	_dist = Traits::createDistMap(*graph);
   240       }
   241     }
   242     
   243   public :
   244  
   245     /// \name Named template parameters
   246 
   247     ///@{
   248 
   249     template <class T>
   250     struct DefPredMapTraits : public Traits {
   251       typedef T PredMap;
   252       static PredMap *createPredMap(const Graph& graph) {
   253 	throw UninitializedParameter();
   254       }
   255     };
   256 
   257     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   258     /// type
   259     /// \ref named-templ-param "Named parameter" for setting PredMap type
   260     ///
   261     template <class T>
   262     struct DefPredMap 
   263       : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
   264       typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
   265     };
   266     
   267     template <class T>
   268     struct DefDistMapTraits : public Traits {
   269       typedef T DistMap;
   270       static DistMap *createDistMap(const Graph& graph) {
   271 	throw UninitializedParameter();
   272       }
   273     };
   274     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   275     /// type
   276     ///
   277     /// \ref named-templ-param "Named parameter" for setting DistMap type
   278     ///
   279     template <class T>
   280     struct DefDistMap 
   281       : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
   282       typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
   283     };
   284     
   285     template <class T>
   286     struct DefOperationTraitsTraits : public Traits {
   287       typedef T OperationTraits;
   288     };
   289     
   290     /// \brief \ref named-templ-param "Named parameter" for setting 
   291     /// OperationTraits type
   292     ///
   293     /// \ref named-templ-param "Named parameter" for setting PredMap type
   294     template <class T>
   295     struct DefOperationTraits
   296       : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   297       typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
   298       Create;
   299     };
   300     
   301     ///@}
   302 
   303   protected:
   304 
   305     FloydWarshall() {}
   306 
   307   public:      
   308 
   309     typedef FloydWarshall Create;
   310     
   311     /// \brief Constructor.
   312     ///
   313     /// \param _graph the graph the algorithm will run on.
   314     /// \param _length the length map used by the algorithm.
   315     FloydWarshall(const Graph& _graph, const LengthMap& _length) :
   316       graph(&_graph), length(&_length),
   317       _pred(0), local_pred(false),
   318       _dist(0), local_dist(false) {}
   319     
   320     ///Destructor.
   321     ~FloydWarshall() {
   322       if(local_pred) delete _pred;
   323       if(local_dist) delete _dist;
   324     }
   325 
   326     /// \brief Sets the length map.
   327     ///
   328     /// Sets the length map.
   329     /// \return \c (*this)
   330     FloydWarshall &lengthMap(const LengthMap &m) {
   331       length = &m;
   332       return *this;
   333     }
   334 
   335     /// \brief Sets the map storing the predecessor edges.
   336     ///
   337     /// Sets the map storing the predecessor edges.
   338     /// If you don't use this function before calling \ref run(),
   339     /// it will allocate one. The destuctor deallocates this
   340     /// automatically allocated map, of course.
   341     /// \return \c (*this)
   342     FloydWarshall &predMap(PredMap &m) {
   343       if(local_pred) {
   344 	delete _pred;
   345 	local_pred=false;
   346       }
   347       _pred = &m;
   348       return *this;
   349     }
   350 
   351     /// \brief Sets the map storing the distances calculated by the algorithm.
   352     ///
   353     /// Sets the map storing the distances calculated by the algorithm.
   354     /// If you don't use this function before calling \ref run(),
   355     /// it will allocate one. The destuctor deallocates this
   356     /// automatically allocated map, of course.
   357     /// \return \c (*this)
   358     FloydWarshall &distMap(DistMap &m) {
   359       if(local_dist) {
   360 	delete _dist;
   361 	local_dist=false;
   362       }
   363       _dist = &m;
   364       return *this;
   365     }
   366 
   367     ///\name Execution control
   368     /// The simplest way to execute the algorithm is to use
   369     /// one of the member functions called \c run(...).
   370     /// \n
   371     /// If you need more control on the execution,
   372     /// Finally \ref start() will perform the actual path
   373     /// computation.
   374 
   375     ///@{
   376 
   377     /// \brief Initializes the internal data structures.
   378     /// 
   379     /// Initializes the internal data structures.
   380     void init() {
   381       create_maps();
   382       for (NodeIt it(*graph); it != INVALID; ++it) {
   383 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   384 	  _pred->set(it, jt, INVALID);
   385 	  _dist->set(it, jt, it == jt ? 
   386 		     OperationTraits::zero() : OperationTraits::infinity());
   387 	}
   388       }
   389       for (EdgeIt it(*graph); it != INVALID; ++it) {
   390 	Node source = graph->source(it);
   391 	Node target = graph->target(it);	
   392 	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
   393 	  _dist->set(source, target, (*length)[it]);
   394 	  _pred->set(source, target, it);
   395 	}
   396       }
   397     }
   398     
   399     /// \brief Executes the algorithm.
   400     ///
   401     /// This method runs the %FloydWarshall algorithm in order to compute 
   402     /// the shortest path to each node pairs. The algorithm 
   403     /// computes 
   404     /// - The shortest path tree for each node.
   405     /// - The distance between each node pairs.
   406     void start() {
   407       for (NodeIt kt(*graph); kt != INVALID; ++kt) {
   408 	for (NodeIt it(*graph); it != INVALID; ++it) {
   409 	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   410 	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
   411 						  (*_dist)(kt, jt));
   412 	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
   413 	      _dist->set(it, jt, relaxed);
   414 	      _pred->set(it, jt, (*_pred)(kt, jt));
   415 	    }
   416 	  }
   417 	}
   418       }
   419     }
   420     
   421     /// \brief Runs %FloydWarshall algorithm.
   422     ///    
   423     /// This method runs the %FloydWarshall algorithm from a each node
   424     /// in order to compute the shortest path to each node pairs. 
   425     /// The algorithm computes
   426     /// - The shortest path tree for each node.
   427     /// - The distance between each node pairs.
   428     ///
   429     /// \note d.run(s) is just a shortcut of the following code.
   430     /// \code
   431     ///  d.init();
   432     ///  d.start();
   433     /// \endcode
   434     void run() {
   435       init();
   436       start();
   437     }
   438     
   439     ///@}
   440 
   441     /// \name Query Functions
   442     /// The result of the %FloydWarshall algorithm can be obtained using these
   443     /// functions.\n
   444     /// Before the use of these functions,
   445     /// either run() or start() must be called.
   446     
   447     ///@{
   448 
   449     /// \brief Copies the shortest path to \c t into \c p
   450     ///    
   451     /// This function copies the shortest path to \c t into \c p.
   452     /// If it \c t is a source itself or unreachable, then it does not
   453     /// alter \c p.
   454     /// \todo Is it the right way to handle unreachable nodes?
   455     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   456     /// \c false otherwise.
   457     /// \sa DirPath
   458     template <typename Path>
   459     bool getPath(Path &p, Node source, Node target) {
   460       if (connected(source, target)) {
   461 	p.clear();
   462 	typename Path::Builder b(target);
   463 	for(b.setStartNode(target); pred(source, target) != INVALID;
   464 	    target = predNode(target)) {
   465 	  b.pushFront(pred(source, target));
   466 	}
   467 	b.commit();
   468 	return true;
   469       }
   470       return false;
   471     }
   472 	  
   473     /// \brief The distance between two nodes.
   474     ///
   475     /// Returns the distance between two nodes.
   476     /// \pre \ref run() must be called before using this function.
   477     /// \warning If node \c v in unreachable from the root the return value
   478     /// of this funcion is undefined.
   479     Value dist(Node source, Node target) const { 
   480       return (*_dist)(source, target); 
   481     }
   482 
   483     /// \brief Returns the 'previous edge' of the shortest path tree.
   484     ///
   485     /// For the node \c node it returns the 'previous edge' of the shortest 
   486     /// path tree to direction of the node \c root 
   487     /// i.e. it returns the last edge of a shortest path from the node \c root 
   488     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   489     /// or if \c node=root. The shortest path tree used here is equal to the 
   490     /// shortest path tree used in \ref predNode(). 
   491     /// \pre \ref run() must be called before using this function.
   492     /// \todo predEdge could be a better name.
   493     Edge pred(Node root, Node node) const { 
   494       return (*_pred)(root, node); 
   495     }
   496 
   497     /// \brief Returns the 'previous node' of the shortest path tree.
   498     ///
   499     /// For a node \c node it returns the 'previous node' of the shortest path 
   500     /// tree to direction of the node \c root, i.e. it returns the last but 
   501     /// one node from a shortest path from the \c root to \c node. It is 
   502     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   503     /// The shortest path tree used here is equal to the 
   504     /// shortest path tree used in \ref pred().  
   505     /// \pre \ref run() must be called before using this function.
   506     Node predNode(Node root, Node node) const { 
   507       return (*_pred)(root, node) == INVALID ? 
   508       INVALID : graph->source((*_pred)(root, node)); 
   509     }
   510     
   511     /// \brief Returns a reference to the matrix node map of distances.
   512     ///
   513     /// Returns a reference to the matrix node map of distances. 
   514     ///
   515     /// \pre \ref run() must be called before using this function.
   516     const DistMap &distMap() const { return *_dist;}
   517  
   518     /// \brief Returns a reference to the shortest path tree map.
   519     ///
   520     /// Returns a reference to the matrix node map of the edges of the
   521     /// shortest path tree.
   522     /// \pre \ref run() must be called before using this function.
   523     const PredMap &predMap() const { return *_pred;}
   524  
   525     /// \brief Checks if a node is reachable from the root.
   526     ///
   527     /// Returns \c true if \c v is reachable from the root.
   528     /// \pre \ref run() must be called before using this function.
   529     ///
   530     bool connected(Node source, Node target) { 
   531       return (*_dist)(source, target) != OperationTraits::infinity(); 
   532     }
   533     
   534     ///@}
   535   };
   536  
   537 } //END OF NAMESPACE LEMON
   538 
   539 #endif
   540