Shape keeping movement is implemented, at last. Many thanks to Alpar.
2 * lemon/floyd_warshall.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_FLOYD_WARSHALL_H
18 #define LEMON_FLOYD_WARSHALL_H
22 /// \brief FloydWarshall algorithm.
24 /// \todo getPath() should be implemented! (also for BFS and DFS)
26 #include <lemon/list_graph.h>
27 #include <lemon/graph_utils.h>
28 #include <lemon/invalid.h>
29 #include <lemon/error.h>
30 #include <lemon/maps.h>
36 /// \brief Default OperationTraits for the FloydWarshall algorithm class.
38 /// It defines all computational operations and constants which are
39 /// used in the Floyd-Warshall algorithm. The default implementation
40 /// is based on the numeric_limits class. If the numeric type does not
41 /// have infinity value then the maximum value is used as extremal
45 bool has_infinity = std::numeric_limits<Value>::has_infinity>
46 struct FloydWarshallDefaultOperationTraits {
47 /// \brief Gives back the zero value of the type.
49 return static_cast<Value>(0);
51 /// \brief Gives back the positive infinity value of the type.
52 static Value infinity() {
53 return std::numeric_limits<Value>::infinity();
55 /// \brief Gives back the sum of the given two elements.
56 static Value plus(const Value& left, const Value& right) {
59 /// \brief Gives back true only if the first value less than the second.
60 static bool less(const Value& left, const Value& right) {
65 template <typename Value>
66 struct FloydWarshallDefaultOperationTraits<Value, false> {
68 return static_cast<Value>(0);
70 static Value infinity() {
71 return std::numeric_limits<Value>::max();
73 static Value plus(const Value& left, const Value& right) {
74 if (left == infinity() || right == infinity()) return infinity();
77 static bool less(const Value& left, const Value& right) {
82 /// \brief Default traits class of FloydWarshall class.
84 /// Default traits class of FloydWarshall class.
85 /// \param _Graph Graph type.
86 /// \param _LegthMap Type of length map.
87 template<class _Graph, class _LengthMap>
88 struct FloydWarshallDefaultTraits {
89 /// The graph type the algorithm runs on.
92 /// \brief The type of the map that stores the edge lengths.
94 /// The type of the map that stores the edge lengths.
95 /// It must meet the \ref concept::ReadMap "ReadMap" concept.
96 typedef _LengthMap LengthMap;
98 // The type of the length of the edges.
99 typedef typename _LengthMap::Value Value;
101 /// \brief Operation traits for belmann-ford algorithm.
103 /// It defines the infinity type on the given Value type
104 /// and the used operation.
105 /// \see FloydWarshallDefaultOperationTraits
106 typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
108 /// \brief The type of the map that stores the last edges of the
111 /// The type of the map that stores the last
112 /// edges of the shortest paths.
113 /// It must be a matrix map with \c Graph::Edge value type.
115 typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
117 /// \brief Instantiates a PredMap.
119 /// This function instantiates a \ref PredMap.
120 /// \param G is the graph, to which we would like to define the PredMap.
121 /// \todo The graph alone may be insufficient for the initialization
122 static PredMap *createPredMap(const _Graph& graph) {
123 return new PredMap(graph);
126 /// \brief The type of the map that stores the dists of the nodes.
128 /// The type of the map that stores the dists of the nodes.
129 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
131 typedef NodeMatrixMap<Graph, Value> DistMap;
133 /// \brief Instantiates a DistMap.
135 /// This function instantiates a \ref DistMap.
136 /// \param G is the graph, to which we would like to define the
138 static DistMap *createDistMap(const _Graph& graph) {
139 return new DistMap(graph);
144 /// \brief FloydWarshall algorithm class.
146 /// \ingroup flowalgs
147 /// This class provides an efficient implementation of \c FloydWarshall
148 /// algorithm. The edge lengths are passed to the algorithm using a
149 /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any
152 /// The type of the length is determined by the
153 /// \ref concept::ReadMap::Value "Value" of the length map.
155 /// \param _Graph The graph type the algorithm runs on. The default value
156 /// is \ref ListGraph. The value of _Graph is not used directly by
157 /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
158 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
159 /// edges. It is read once for each edge, so the map may involve in
160 /// relatively time consuming process to compute the edge length if
161 /// it is necessary. The default map type is \ref
162 /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>". The value
163 /// of _LengthMap is not used directly by FloydWarshall, it is only passed
164 /// to \ref FloydWarshallDefaultTraits. \param _Traits Traits class to set
165 /// various data types used by the algorithm. The default traits
166 /// class is \ref FloydWarshallDefaultTraits
167 /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>". See \ref
168 /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall
171 /// \author Balazs Dezso
174 template <typename _Graph, typename _LengthMap typename _Traits >
176 template <typename _Graph=ListGraph,
177 typename _LengthMap=typename _Graph::template EdgeMap<int>,
178 typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
180 class FloydWarshall {
183 /// \brief \ref Exception for uninitialized parameters.
185 /// This error represents problems in the initialization
186 /// of the parameters of the algorithms.
188 class UninitializedParameter : public lemon::UninitializedParameter {
190 virtual const char* exceptionName() const {
191 return "lemon::FloydWarshall::UninitializedParameter";
195 typedef _Traits Traits;
196 ///The type of the underlying graph.
197 typedef typename _Traits::Graph Graph;
199 typedef typename Graph::Node Node;
200 typedef typename Graph::NodeIt NodeIt;
201 typedef typename Graph::Edge Edge;
202 typedef typename Graph::EdgeIt EdgeIt;
204 /// \brief The type of the length of the edges.
205 typedef typename _Traits::LengthMap::Value Value;
206 /// \brief The type of the map that stores the edge lengths.
207 typedef typename _Traits::LengthMap LengthMap;
208 /// \brief The type of the map that stores the last
209 /// edges of the shortest paths. The type of the PredMap
210 /// is a matrix map for Edges
211 typedef typename _Traits::PredMap PredMap;
212 /// \brief The type of the map that stores the dists of the nodes.
213 /// The type of the DistMap is a matrix map for Values
214 typedef typename _Traits::DistMap DistMap;
215 /// \brief The operation traits.
216 typedef typename _Traits::OperationTraits OperationTraits;
218 /// Pointer to the underlying graph.
220 /// Pointer to the length map
221 const LengthMap *length;
222 ///Pointer to the map of predecessors edges.
224 ///Indicates if \ref _pred is locally allocated (\c true) or not.
226 ///Pointer to the map of distances.
228 ///Indicates if \ref _dist is locally allocated (\c true) or not.
231 /// Creates the maps if necessary.
235 _pred = Traits::createPredMap(*graph);
239 _dist = Traits::createDistMap(*graph);
245 /// \name Named template parameters
250 struct DefPredMapTraits : public Traits {
252 static PredMap *createPredMap(const Graph& graph) {
253 throw UninitializedParameter();
257 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
259 /// \ref named-templ-param "Named parameter" for setting PredMap type
263 : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
264 typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
268 struct DefDistMapTraits : public Traits {
270 static DistMap *createDistMap(const Graph& graph) {
271 throw UninitializedParameter();
274 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
277 /// \ref named-templ-param "Named parameter" for setting DistMap type
281 : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
282 typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
286 struct DefOperationTraitsTraits : public Traits {
287 typedef T OperationTraits;
290 /// \brief \ref named-templ-param "Named parameter" for setting
291 /// OperationTraits type
293 /// \ref named-templ-param "Named parameter" for setting PredMap type
295 struct DefOperationTraits
296 : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
297 typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
309 typedef FloydWarshall Create;
311 /// \brief Constructor.
313 /// \param _graph the graph the algorithm will run on.
314 /// \param _length the length map used by the algorithm.
315 FloydWarshall(const Graph& _graph, const LengthMap& _length) :
316 graph(&_graph), length(&_length),
317 _pred(0), local_pred(false),
318 _dist(0), local_dist(false) {}
322 if(local_pred) delete _pred;
323 if(local_dist) delete _dist;
326 /// \brief Sets the length map.
328 /// Sets the length map.
329 /// \return \c (*this)
330 FloydWarshall &lengthMap(const LengthMap &m) {
335 /// \brief Sets the map storing the predecessor edges.
337 /// Sets the map storing the predecessor edges.
338 /// If you don't use this function before calling \ref run(),
339 /// it will allocate one. The destuctor deallocates this
340 /// automatically allocated map, of course.
341 /// \return \c (*this)
342 FloydWarshall &predMap(PredMap &m) {
351 /// \brief Sets the map storing the distances calculated by the algorithm.
353 /// Sets the map storing the distances calculated by the algorithm.
354 /// If you don't use this function before calling \ref run(),
355 /// it will allocate one. The destuctor deallocates this
356 /// automatically allocated map, of course.
357 /// \return \c (*this)
358 FloydWarshall &distMap(DistMap &m) {
367 ///\name Execution control
368 /// The simplest way to execute the algorithm is to use
369 /// one of the member functions called \c run(...).
371 /// If you need more control on the execution,
372 /// Finally \ref start() will perform the actual path
377 /// \brief Initializes the internal data structures.
379 /// Initializes the internal data structures.
382 for (NodeIt it(*graph); it != INVALID; ++it) {
383 for (NodeIt jt(*graph); jt != INVALID; ++jt) {
384 _pred->set(it, jt, INVALID);
385 _dist->set(it, jt, it == jt ?
386 OperationTraits::zero() : OperationTraits::infinity());
389 for (EdgeIt it(*graph); it != INVALID; ++it) {
390 Node source = graph->source(it);
391 Node target = graph->target(it);
392 if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
393 _dist->set(source, target, (*length)[it]);
394 _pred->set(source, target, it);
399 /// \brief Executes the algorithm.
401 /// This method runs the %FloydWarshall algorithm in order to compute
402 /// the shortest path to each node pairs. The algorithm
404 /// - The shortest path tree for each node.
405 /// - The distance between each node pairs.
407 for (NodeIt kt(*graph); kt != INVALID; ++kt) {
408 for (NodeIt it(*graph); it != INVALID; ++it) {
409 for (NodeIt jt(*graph); jt != INVALID; ++jt) {
410 Value relaxed = OperationTraits::plus((*_dist)(it, kt),
412 if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
413 _dist->set(it, jt, relaxed);
414 _pred->set(it, jt, (*_pred)(kt, jt));
421 /// \brief Runs %FloydWarshall algorithm.
423 /// This method runs the %FloydWarshall algorithm from a each node
424 /// in order to compute the shortest path to each node pairs.
425 /// The algorithm computes
426 /// - The shortest path tree for each node.
427 /// - The distance between each node pairs.
429 /// \note d.run(s) is just a shortcut of the following code.
441 /// \name Query Functions
442 /// The result of the %FloydWarshall algorithm can be obtained using these
444 /// Before the use of these functions,
445 /// either run() or start() must be called.
449 /// \brief Copies the shortest path to \c t into \c p
451 /// This function copies the shortest path to \c t into \c p.
452 /// If it \c t is a source itself or unreachable, then it does not
454 /// \todo Is it the right way to handle unreachable nodes?
455 /// \return Returns \c true if a path to \c t was actually copied to \c p,
456 /// \c false otherwise.
458 template <typename Path>
459 bool getPath(Path &p, Node source, Node target) {
460 if (connected(source, target)) {
462 typename Path::Builder b(target);
463 for(b.setStartNode(target); pred(source, target) != INVALID;
464 target = predNode(target)) {
465 b.pushFront(pred(source, target));
473 /// \brief The distance between two nodes.
475 /// Returns the distance between two nodes.
476 /// \pre \ref run() must be called before using this function.
477 /// \warning If node \c v in unreachable from the root the return value
478 /// of this funcion is undefined.
479 Value dist(Node source, Node target) const {
480 return (*_dist)(source, target);
483 /// \brief Returns the 'previous edge' of the shortest path tree.
485 /// For the node \c node it returns the 'previous edge' of the shortest
486 /// path tree to direction of the node \c root
487 /// i.e. it returns the last edge of a shortest path from the node \c root
488 /// to \c node. It is \ref INVALID if \c node is unreachable from the root
489 /// or if \c node=root. The shortest path tree used here is equal to the
490 /// shortest path tree used in \ref predNode().
491 /// \pre \ref run() must be called before using this function.
492 /// \todo predEdge could be a better name.
493 Edge pred(Node root, Node node) const {
494 return (*_pred)(root, node);
497 /// \brief Returns the 'previous node' of the shortest path tree.
499 /// For a node \c node it returns the 'previous node' of the shortest path
500 /// tree to direction of the node \c root, i.e. it returns the last but
501 /// one node from a shortest path from the \c root to \c node. It is
502 /// INVALID if \c node is unreachable from the root or if \c node=root.
503 /// The shortest path tree used here is equal to the
504 /// shortest path tree used in \ref pred().
505 /// \pre \ref run() must be called before using this function.
506 Node predNode(Node root, Node node) const {
507 return (*_pred)(root, node) == INVALID ?
508 INVALID : graph->source((*_pred)(root, node));
511 /// \brief Returns a reference to the matrix node map of distances.
513 /// Returns a reference to the matrix node map of distances.
515 /// \pre \ref run() must be called before using this function.
516 const DistMap &distMap() const { return *_dist;}
518 /// \brief Returns a reference to the shortest path tree map.
520 /// Returns a reference to the matrix node map of the edges of the
521 /// shortest path tree.
522 /// \pre \ref run() must be called before using this function.
523 const PredMap &predMap() const { return *_pred;}
525 /// \brief Checks if a node is reachable from the root.
527 /// Returns \c true if \c v is reachable from the root.
528 /// \pre \ref run() must be called before using this function.
530 bool connected(Node source, Node target) {
531 return (*_dist)(source, target) != OperationTraits::infinity();
537 } //END OF NAMESPACE LEMON