Shape keeping movement is implemented, at last. Many thanks to Alpar.
2 * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_JOHNSON_H
18 #define LEMON_JOHNSON_H
22 /// \brief Johnson algorithm.
25 #include <lemon/list_graph.h>
26 #include <lemon/graph_utils.h>
27 #include <lemon/dijkstra.h>
28 #include <lemon/belmann_ford.h>
29 #include <lemon/invalid.h>
30 #include <lemon/error.h>
31 #include <lemon/maps.h>
37 /// \brief Default OperationTraits for the Johnson algorithm class.
39 /// It defines all computational operations and constants which are
40 /// used in the Floyd-Warshall algorithm. The default implementation
41 /// is based on the numeric_limits class. If the numeric type does not
42 /// have infinity value then the maximum value is used as extremal
46 bool has_infinity = std::numeric_limits<Value>::has_infinity>
47 struct JohnsonDefaultOperationTraits {
48 /// \brief Gives back the zero value of the type.
50 return static_cast<Value>(0);
52 /// \brief Gives back the positive infinity value of the type.
53 static Value infinity() {
54 return std::numeric_limits<Value>::infinity();
56 /// \brief Gives back the sum of the given two elements.
57 static Value plus(const Value& left, const Value& right) {
60 /// \brief Gives back true only if the first value less than the second.
61 static bool less(const Value& left, const Value& right) {
66 template <typename Value>
67 struct JohnsonDefaultOperationTraits<Value, false> {
69 return static_cast<Value>(0);
71 static Value infinity() {
72 return std::numeric_limits<Value>::max();
74 static Value plus(const Value& left, const Value& right) {
75 if (left == infinity() || right == infinity()) return infinity();
78 static bool less(const Value& left, const Value& right) {
83 /// \brief Default traits class of Johnson class.
85 /// Default traits class of Johnson class.
86 /// \param _Graph Graph type.
87 /// \param _LegthMap Type of length map.
88 template<class _Graph, class _LengthMap>
89 struct JohnsonDefaultTraits {
90 /// The graph type the algorithm runs on.
93 /// \brief The type of the map that stores the edge lengths.
95 /// The type of the map that stores the edge lengths.
96 /// It must meet the \ref concept::ReadMap "ReadMap" concept.
97 typedef _LengthMap LengthMap;
99 // The type of the length of the edges.
100 typedef typename _LengthMap::Value Value;
102 /// \brief Operation traits for belmann-ford algorithm.
104 /// It defines the infinity type on the given Value type
105 /// and the used operation.
106 /// \see JohnsonDefaultOperationTraits
107 typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
109 /// \brief The type of the map that stores the last edges of the
112 /// The type of the map that stores the last
113 /// edges of the shortest paths.
114 /// It must be a matrix map with \c Graph::Edge value type.
116 typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
118 /// \brief Instantiates a PredMap.
120 /// This function instantiates a \ref PredMap.
121 /// \param G is the graph, to which we would like to define the PredMap.
122 /// \todo The graph alone may be insufficient for the initialization
123 static PredMap *createPredMap(const _Graph& graph) {
124 return new PredMap(graph);
127 /// \brief The type of the map that stores the dists of the nodes.
129 /// The type of the map that stores the dists of the nodes.
130 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
132 typedef NodeMatrixMap<Graph, Value> DistMap;
134 /// \brief Instantiates a DistMap.
136 /// This function instantiates a \ref DistMap.
137 /// \param G is the graph, to which we would like to define the
139 static DistMap *createDistMap(const _Graph& graph) {
140 return new DistMap(graph);
145 /// \brief Johnson algorithm class.
147 /// \ingroup flowalgs
148 /// This class provides an efficient implementation of \c Johnson
149 /// algorithm. The edge lengths are passed to the algorithm using a
150 /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any
153 /// The type of the length is determined by the
154 /// \ref concept::ReadMap::Value "Value" of the length map.
156 /// \param _Graph The graph type the algorithm runs on. The default value
157 /// is \ref ListGraph. The value of _Graph is not used directly by
158 /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
159 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
160 /// edges. It is read once for each edge, so the map may involve in
161 /// relatively time consuming process to compute the edge length if
162 /// it is necessary. The default map type is \ref
163 /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>". The value
164 /// of _LengthMap is not used directly by Johnson, it is only passed
165 /// to \ref JohnsonDefaultTraits. \param _Traits Traits class to set
166 /// various data types used by the algorithm. The default traits
167 /// class is \ref JohnsonDefaultTraits
168 /// "JohnsonDefaultTraits<_Graph,_LengthMap>". See \ref
169 /// JohnsonDefaultTraits for the documentation of a Johnson traits
172 /// \author Balazs Dezso
175 template <typename _Graph, typename _LengthMap, typename _Traits>
177 template <typename _Graph=ListGraph,
178 typename _LengthMap=typename _Graph::template EdgeMap<int>,
179 typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
184 /// \brief \ref Exception for uninitialized parameters.
186 /// This error represents problems in the initialization
187 /// of the parameters of the algorithms.
189 class UninitializedParameter : public lemon::UninitializedParameter {
191 virtual const char* exceptionName() const {
192 return "lemon::Johnson::UninitializedParameter";
196 typedef _Traits Traits;
197 ///The type of the underlying graph.
198 typedef typename _Traits::Graph Graph;
200 typedef typename Graph::Node Node;
201 typedef typename Graph::NodeIt NodeIt;
202 typedef typename Graph::Edge Edge;
203 typedef typename Graph::EdgeIt EdgeIt;
205 /// \brief The type of the length of the edges.
206 typedef typename _Traits::LengthMap::Value Value;
207 /// \brief The type of the map that stores the edge lengths.
208 typedef typename _Traits::LengthMap LengthMap;
209 /// \brief The type of the map that stores the last
210 /// edges of the shortest paths. The type of the PredMap
211 /// is a matrix map for Edges
212 typedef typename _Traits::PredMap PredMap;
213 /// \brief The type of the map that stores the dists of the nodes.
214 /// The type of the DistMap is a matrix map for Values
215 typedef typename _Traits::DistMap DistMap;
216 /// \brief The operation traits.
217 typedef typename _Traits::OperationTraits OperationTraits;
219 /// Pointer to the underlying graph.
221 /// Pointer to the length map
222 const LengthMap *length;
223 ///Pointer to the map of predecessors edges.
225 ///Indicates if \ref _pred is locally allocated (\c true) or not.
227 ///Pointer to the map of distances.
229 ///Indicates if \ref _dist is locally allocated (\c true) or not.
232 /// Creates the maps if necessary.
236 _pred = Traits::createPredMap(*graph);
240 _dist = Traits::createDistMap(*graph);
246 /// \name Named template parameters
251 struct DefPredMapTraits : public Traits {
253 static PredMap *createPredMap(const Graph& graph) {
254 throw UninitializedParameter();
258 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
260 /// \ref named-templ-param "Named parameter" for setting PredMap type
264 : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
265 typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
269 struct DefDistMapTraits : public Traits {
271 static DistMap *createDistMap(const Graph& graph) {
272 throw UninitializedParameter();
275 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
278 /// \ref named-templ-param "Named parameter" for setting DistMap type
282 : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
283 typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
287 struct DefOperationTraitsTraits : public Traits {
288 typedef T OperationTraits;
291 /// \brief \ref named-templ-param "Named parameter" for setting
292 /// OperationTraits type
294 /// \ref named-templ-param "Named parameter" for setting
295 /// OperationTraits type
297 struct DefOperationTraits
298 : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
299 typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
310 /// \brief Constructor.
312 /// \param _graph the graph the algorithm will run on.
313 /// \param _length the length map used by the algorithm.
314 Johnson(const Graph& _graph, const LengthMap& _length) :
315 graph(&_graph), length(&_length),
316 _pred(0), local_pred(false),
317 _dist(0), local_dist(false) {}
321 if(local_pred) delete _pred;
322 if(local_dist) delete _dist;
325 /// \brief Sets the length map.
327 /// Sets the length map.
328 /// \return \c (*this)
329 Johnson &lengthMap(const LengthMap &m) {
334 /// \brief Sets the map storing the predecessor edges.
336 /// Sets the map storing the predecessor edges.
337 /// If you don't use this function before calling \ref run(),
338 /// it will allocate one. The destuctor deallocates this
339 /// automatically allocated map, of course.
340 /// \return \c (*this)
341 Johnson &predMap(PredMap &m) {
350 /// \brief Sets the map storing the distances calculated by the algorithm.
352 /// Sets the map storing the distances calculated by the algorithm.
353 /// If you don't use this function before calling \ref run(),
354 /// it will allocate one. The destuctor deallocates this
355 /// automatically allocated map, of course.
356 /// \return \c (*this)
357 Johnson &distMap(DistMap &m) {
366 ///\name Execution control
367 /// The simplest way to execute the algorithm is to use
368 /// one of the member functions called \c run(...).
370 /// If you need more control on the execution,
371 /// Finally \ref start() will perform the actual path
376 /// \brief Initializes the internal data structures.
378 /// Initializes the internal data structures.
383 /// \brief Executes the algorithm.
385 /// This method runs the %Johnson algorithm in order to compute
386 /// the shortest path to each node pairs. The algorithm
388 /// - The shortest path tree for each node.
389 /// - The distance between each node pairs.
391 typedef typename BelmannFord<Graph, LengthMap>::
392 template DefOperationTraits<OperationTraits>::
393 template DefPredMap<NullMap<Node, Edge> >::
394 Create BelmannFordType;
396 BelmannFordType belmannford(*graph, *length);
398 NullMap<Node, Edge> predMap;
400 belmannford.predMap(predMap);
402 belmannford.init(OperationTraits::zero());
405 for (NodeIt it(*graph); it != INVALID; ++it) {
406 typedef PotentialDifferenceMap<Graph,
407 typename BelmannFordType::DistMap> PotDiffMap;
408 PotDiffMap potdiff(*graph, belmannford.distMap());
409 typedef SubMap<LengthMap, PotDiffMap> ShiftLengthMap;
410 ShiftLengthMap shiftlen(*length, potdiff);
411 Dijkstra<Graph, ShiftLengthMap> dijkstra(*graph, shiftlen);
413 for (NodeIt jt(*graph); jt != INVALID; ++jt) {
414 if (dijkstra.reached(jt)) {
415 _dist->set(it, jt, dijkstra.dist(jt) +
416 belmannford.dist(jt) - belmannford.dist(it));
417 _pred->set(it, jt, dijkstra.pred(jt));
419 _dist->set(it, jt, OperationTraits::infinity());
420 _pred->set(it, jt, INVALID);
426 /// \brief Runs %Johnson algorithm.
428 /// This method runs the %Johnson algorithm from a each node
429 /// in order to compute the shortest path to each node pairs.
430 /// The algorithm computes
431 /// - The shortest path tree for each node.
432 /// - The distance between each node pairs.
434 /// \note d.run(s) is just a shortcut of the following code.
446 /// \name Query Functions
447 /// The result of the %Johnson algorithm can be obtained using these
449 /// Before the use of these functions,
450 /// either run() or start() must be called.
454 /// \brief Copies the shortest path to \c t into \c p
456 /// This function copies the shortest path to \c t into \c p.
457 /// If it \c t is a source itself or unreachable, then it does not
459 /// \todo Is it the right way to handle unreachable nodes?
460 /// \return Returns \c true if a path to \c t was actually copied to \c p,
461 /// \c false otherwise.
463 template <typename Path>
464 bool getPath(Path &p, Node source, Node target) {
465 if (connected(source, target)) {
467 typename Path::Builder b(target);
468 for(b.setStartNode(target); pred(source, target) != INVALID;
469 target = predNode(target)) {
470 b.pushFront(pred(source, target));
478 /// \brief The distance between two nodes.
480 /// Returns the distance between two nodes.
481 /// \pre \ref run() must be called before using this function.
482 /// \warning If node \c v in unreachable from the root the return value
483 /// of this funcion is undefined.
484 Value dist(Node source, Node target) const {
485 return (*_dist)(source, target);
488 /// \brief Returns the 'previous edge' of the shortest path tree.
490 /// For the node \c node it returns the 'previous edge' of the shortest
491 /// path tree to direction of the node \c root
492 /// i.e. it returns the last edge of a shortest path from the node \c root
493 /// to \c node. It is \ref INVALID if \c node is unreachable from the root
494 /// or if \c node=root. The shortest path tree used here is equal to the
495 /// shortest path tree used in \ref predNode().
496 /// \pre \ref run() must be called before using this function.
497 /// \todo predEdge could be a better name.
498 Edge pred(Node root, Node node) const {
499 return (*_pred)(root, node);
502 /// \brief Returns the 'previous node' of the shortest path tree.
504 /// For a node \c node it returns the 'previous node' of the shortest path
505 /// tree to direction of the node \c root, i.e. it returns the last but
506 /// one node from a shortest path from the \c root to \c node. It is
507 /// INVALID if \c node is unreachable from the root or if \c node=root.
508 /// The shortest path tree used here is equal to the
509 /// shortest path tree used in \ref pred().
510 /// \pre \ref run() must be called before using this function.
511 Node predNode(Node root, Node node) const {
512 return (*_pred)(root, node) == INVALID ?
513 INVALID : graph->source((*_pred)(root, node));
516 /// \brief Returns a reference to the matrix node map of distances.
518 /// Returns a reference to the matrix node map of distances.
520 /// \pre \ref run() must be called before using this function.
521 const DistMap &distMap() const { return *_dist;}
523 /// \brief Returns a reference to the shortest path tree map.
525 /// Returns a reference to the matrix node map of the edges of the
526 /// shortest path tree.
527 /// \pre \ref run() must be called before using this function.
528 const PredMap &predMap() const { return *_pred;}
530 /// \brief Checks if a node is reachable from the root.
532 /// Returns \c true if \c v is reachable from the root.
533 /// \pre \ref run() must be called before using this function.
535 bool connected(Node source, Node target) {
536 return (*_dist)(source, target) != OperationTraits::infinity();
542 } //END OF NAMESPACE LEMON