src/lemon/dijkstra.h
author hegyi
Wed, 16 Mar 2005 17:31:04 +0000
changeset 1221 6706c788ebb5
parent 1218 5331168bbb18
child 1229 aa65e46aebc3
permissions -rw-r--r--
Magic triangle is READY.
     1 /* -*- C++ -*-
     2  * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/bin_heap.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 namespace lemon {
    31 
    32 
    33   
    34   ///Default traits class of Dijkstra class.
    35 
    36   ///Default traits class of Dijkstra class.
    37   ///\param GR Graph type.
    38   ///\param LM Type of length map.
    39   template<class GR, class LM>
    40   struct DijkstraDefaultTraits
    41   {
    42     ///The graph type the algorithm runs on. 
    43     typedef GR Graph;
    44     ///The type of the map that stores the edge lengths.
    45 
    46     ///The type of the map that stores the edge lengths.
    47     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    48     typedef LM LengthMap;
    49     //The type of the length of the edges.
    50     typedef typename LM::Value Value;
    51     ///The heap type used by Dijkstra algorithm.
    52 
    53     ///The heap type used by Dijkstra algorithm.
    54     ///
    55     ///\sa BinHeap
    56     ///\sa Dijkstra
    57     typedef BinHeap<typename Graph::Node,
    58 		    typename LM::Value,
    59 		    typename GR::template NodeMap<int>,
    60 		    std::less<Value> > Heap;
    61 
    62     ///\brief The type of the map that stores the last
    63     ///edges of the shortest paths.
    64     /// 
    65     ///The type of the map that stores the last
    66     ///edges of the shortest paths.
    67     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    68     ///
    69     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    70     ///Instantiates a PredMap.
    71  
    72     ///This function instantiates a \ref PredMap. 
    73     ///\param G is the graph, to which we would like to define the PredMap.
    74     ///\todo The graph alone may be insufficient for the initialization
    75     static PredMap *createPredMap(const GR &G) 
    76     {
    77       return new PredMap(G);
    78     }
    79 //     ///\brief The type of the map that stores the last but one
    80 //     ///nodes of the shortest paths.
    81 //     ///
    82 //     ///The type of the map that stores the last but one
    83 //     ///nodes of the shortest paths.
    84 //     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    85 //     ///
    86 //     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    87 //     ///Instantiates a PredNodeMap.
    88     
    89 //     ///This function instantiates a \ref PredNodeMap. 
    90 //     ///\param G is the graph, to which
    91 //     ///we would like to define the \ref PredNodeMap
    92 //     static PredNodeMap *createPredNodeMap(const GR &G)
    93 //     {
    94 //       return new PredNodeMap();
    95 //     }
    96 
    97     ///The type of the map that stores whether a nodes is processed.
    98  
    99     ///The type of the map that stores whether a nodes is processed.
   100     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   101     ///By default it is a NullMap.
   102     ///\todo If it is set to a real map,
   103     ///Dijkstra::processed() should read this.
   104     ///\todo named parameter to set this type, function to read and write.
   105     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   106     ///Instantiates a ProcessedMap.
   107  
   108     ///This function instantiates a \ref ProcessedMap. 
   109     ///\param G is the graph, to which
   110     ///we would like to define the \ref ProcessedMap
   111     static ProcessedMap *createProcessedMap(const GR &G)
   112     {
   113       return new ProcessedMap();
   114     }
   115     ///The type of the map that stores the dists of the nodes.
   116  
   117     ///The type of the map that stores the dists of the nodes.
   118     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   119     ///
   120     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   121     ///Instantiates a DistMap.
   122  
   123     ///This function instantiates a \ref DistMap. 
   124     ///\param G is the graph, to which we would like to define the \ref DistMap
   125     static DistMap *createDistMap(const GR &G)
   126     {
   127       return new DistMap(G);
   128     }
   129   };
   130   
   131   ///%Dijkstra algorithm class.
   132   
   133   /// \ingroup flowalgs
   134   ///This class provides an efficient implementation of %Dijkstra algorithm.
   135   ///The edge lengths are passed to the algorithm using a
   136   ///\ref concept::ReadMap "ReadMap",
   137   ///so it is easy to change it to any kind of length.
   138   ///
   139   ///The type of the length is determined by the
   140   ///\ref concept::ReadMap::Value "Value" of the length map.
   141   ///
   142   ///It is also possible to change the underlying priority heap.
   143   ///
   144   ///\param GR The graph type the algorithm runs on. The default value
   145   ///is \ref ListGraph. The value of GR is not used directly by
   146   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   147   ///\param LM This read-only EdgeMap determines the lengths of the
   148   ///edges. It is read once for each edge, so the map may involve in
   149   ///relatively time consuming process to compute the edge length if
   150   ///it is necessary. The default map type is \ref
   151   ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   152   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   153   ///DijkstraDefaultTraits.  \param TR Traits class to set
   154   ///various data types used by the algorithm.  The default traits
   155   ///class is \ref DijkstraDefaultTraits
   156   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   157   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   158   ///class.
   159   ///
   160   ///\author Jacint Szabo and Alpar Juttner
   161   ///\todo A compare object would be nice.
   162 
   163 #ifdef DOXYGEN
   164   template <typename GR,
   165 	    typename LM,
   166 	    typename TR>
   167 #else
   168   template <typename GR=ListGraph,
   169 	    typename LM=typename GR::template EdgeMap<int>,
   170 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   171 #endif
   172   class Dijkstra {
   173   public:
   174     /**
   175      * \brief \ref Exception for uninitialized parameters.
   176      *
   177      * This error represents problems in the initialization
   178      * of the parameters of the algorithms.
   179      */
   180     class UninitializedParameter : public lemon::UninitializedParameter {
   181     public:
   182       virtual const char* exceptionName() const {
   183 	return "lemon::Dijkstra::UninitializedParameter";
   184       }
   185     };
   186 
   187     typedef TR Traits;
   188     ///The type of the underlying graph.
   189     typedef typename TR::Graph Graph;
   190     ///\e
   191     typedef typename Graph::Node Node;
   192     ///\e
   193     typedef typename Graph::NodeIt NodeIt;
   194     ///\e
   195     typedef typename Graph::Edge Edge;
   196     ///\e
   197     typedef typename Graph::OutEdgeIt OutEdgeIt;
   198     
   199     ///The type of the length of the edges.
   200     typedef typename TR::LengthMap::Value Value;
   201     ///The type of the map that stores the edge lengths.
   202     typedef typename TR::LengthMap LengthMap;
   203     ///\brief The type of the map that stores the last
   204     ///edges of the shortest paths.
   205     typedef typename TR::PredMap PredMap;
   206 //     ///\brief The type of the map that stores the last but one
   207 //     ///nodes of the shortest paths.
   208 //     typedef typename TR::PredNodeMap PredNodeMap;
   209     ///The type of the map indicating if a node is processed.
   210     typedef typename TR::ProcessedMap ProcessedMap;
   211     ///The type of the map that stores the dists of the nodes.
   212     typedef typename TR::DistMap DistMap;
   213     ///The heap type used by the dijkstra algorithm.
   214     typedef typename TR::Heap Heap;
   215   private:
   216     /// Pointer to the underlying graph.
   217     const Graph *G;
   218     /// Pointer to the length map
   219     const LengthMap *length;
   220     ///Pointer to the map of predecessors edges.
   221     PredMap *_pred;
   222     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   223     bool local_pred;
   224 //     ///Pointer to the map of predecessors nodes.
   225 //     PredNodeMap *_predNode;
   226 //     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   227 //     bool local_predNode;
   228     ///Pointer to the map of distances.
   229     DistMap *_dist;
   230     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   231     bool local_dist;
   232     ///Pointer to the map of processed status of the nodes.
   233     ProcessedMap *_processed;
   234     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   235     bool local_processed;
   236 
   237 //     ///The source node of the last execution.
   238 //     Node source;
   239 
   240     ///Creates the maps if necessary.
   241     
   242     ///\todo Error if \c G or are \c NULL. What about \c length?
   243     ///\todo Better memory allocation (instead of new).
   244     void create_maps() 
   245     {
   246       if(!_pred) {
   247 	local_pred = true;
   248 	_pred = Traits::createPredMap(*G);
   249       }
   250 //       if(!_predNode) {
   251 // 	local_predNode = true;
   252 // 	_predNode = Traits::createPredNodeMap(*G);
   253 //       }
   254       if(!_dist) {
   255 	local_dist = true;
   256 	_dist = Traits::createDistMap(*G);
   257       }
   258       if(!_processed) {
   259 	local_processed = true;
   260 	_processed = Traits::createProcessedMap(*G);
   261       }
   262     }
   263     
   264   public :
   265  
   266     ///\name Named template parameters
   267 
   268     ///@{
   269 
   270     template <class T>
   271     struct DefPredMapTraits : public Traits {
   272       typedef T PredMap;
   273       static PredMap *createPredMap(const Graph &G) 
   274       {
   275 	throw UninitializedParameter();
   276       }
   277     };
   278     ///\ref named-templ-param "Named parameter" for setting PredMap type
   279 
   280     ///\ref named-templ-param "Named parameter" for setting PredMap type
   281     ///
   282     template <class T>
   283     class DefPredMap : public Dijkstra< Graph,
   284 					LengthMap,
   285 					DefPredMapTraits<T> > { };
   286     
   287 //     template <class T>
   288 //     struct DefPredNodeMapTraits : public Traits {
   289 //       typedef T PredNodeMap;
   290 //       static PredNodeMap *createPredNodeMap(const Graph &G) 
   291 //       {
   292 // 	throw UninitializedParameter();
   293 //       }
   294 //     };
   295 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   296 
   297 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   298 //     ///
   299 //     template <class T>
   300 //     class DefPredNodeMap : public Dijkstra< Graph,
   301 // 					    LengthMap,
   302 // 					    DefPredNodeMapTraits<T> > { };
   303     
   304     template <class T>
   305     struct DefDistMapTraits : public Traits {
   306       typedef T DistMap;
   307       static DistMap *createDistMap(const Graph &G) 
   308       {
   309 	throw UninitializedParameter();
   310       }
   311     };
   312     ///\ref named-templ-param "Named parameter" for setting DistMap type
   313 
   314     ///\ref named-templ-param "Named parameter" for setting DistMap type
   315     ///
   316     template <class T>
   317     class DefDistMap : public Dijkstra< Graph,
   318 					LengthMap,
   319 					DefDistMapTraits<T> > { };
   320     
   321     template <class T>
   322     struct DefProcessedMapTraits : public Traits {
   323       typedef T ProcessedMap;
   324       static ProcessedMap *createProcessedMap(const Graph &G) 
   325       {
   326 	throw UninitializedParameter();
   327       }
   328     };
   329     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   330 
   331     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   332     ///
   333     template <class T>
   334     class DefProcessedMap : public Dijkstra< Graph,
   335 					LengthMap,
   336 					DefProcessedMapTraits<T> > { };
   337     
   338     struct DefGraphProcessedMapTraits : public Traits {
   339       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   340       static ProcessedMap *createProcessedMap(const Graph &G) 
   341       {
   342 	return new ProcessedMap(G);
   343       }
   344     };
   345     ///\brief \ref named-templ-param "Named parameter"
   346     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   347     ///
   348     ///\ref named-templ-param "Named parameter"
   349     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   350     ///If you don't set it explicitely, it will be automatically allocated.
   351     template <class T>
   352     class DefProcessedMapToBeDefaultMap :
   353       public Dijkstra< Graph,
   354 		       LengthMap,
   355 		       DefGraphProcessedMapTraits> { };
   356     
   357     ///@}
   358 
   359 
   360   private:
   361     typename Graph::template NodeMap<int> _heap_map;
   362     Heap _heap;
   363   public:      
   364     
   365     ///Constructor.
   366     
   367     ///\param _G the graph the algorithm will run on.
   368     ///\param _length the length map used by the algorithm.
   369     Dijkstra(const Graph& _G, const LengthMap& _length) :
   370       G(&_G), length(&_length),
   371       _pred(NULL), local_pred(false),
   372 //       _predNode(NULL), local_predNode(false),
   373       _dist(NULL), local_dist(false),
   374       _processed(NULL), local_processed(false),
   375       _heap_map(*G,-1),_heap(_heap_map)
   376     { }
   377     
   378     ///Destructor.
   379     ~Dijkstra() 
   380     {
   381       if(local_pred) delete _pred;
   382 //       if(local_predNode) delete _predNode;
   383       if(local_dist) delete _dist;
   384       if(local_processed) delete _processed;
   385     }
   386 
   387     ///Sets the length map.
   388 
   389     ///Sets the length map.
   390     ///\return <tt> (*this) </tt>
   391     Dijkstra &lengthMap(const LengthMap &m) 
   392     {
   393       length = &m;
   394       return *this;
   395     }
   396 
   397     ///Sets the map storing the predecessor edges.
   398 
   399     ///Sets the map storing the predecessor edges.
   400     ///If you don't use this function before calling \ref run(),
   401     ///it will allocate one. The destuctor deallocates this
   402     ///automatically allocated map, of course.
   403     ///\return <tt> (*this) </tt>
   404     Dijkstra &predMap(PredMap &m) 
   405     {
   406       if(local_pred) {
   407 	delete _pred;
   408 	local_pred=false;
   409       }
   410       _pred = &m;
   411       return *this;
   412     }
   413 
   414 //     ///Sets the map storing the predecessor nodes.
   415 
   416 //     ///Sets the map storing the predecessor nodes.
   417 //     ///If you don't use this function before calling \ref run(),
   418 //     ///it will allocate one. The destuctor deallocates this
   419 //     ///automatically allocated map, of course.
   420 //     ///\return <tt> (*this) </tt>
   421 //     Dijkstra &predNodeMap(PredNodeMap &m) 
   422 //     {
   423 //       if(local_predNode) {
   424 // 	delete _predNode;
   425 // 	local_predNode=false;
   426 //       }
   427 //       _predNode = &m;
   428 //       return *this;
   429 //     }
   430 
   431     ///Sets the map storing the distances calculated by the algorithm.
   432 
   433     ///Sets the map storing the distances calculated by the algorithm.
   434     ///If you don't use this function before calling \ref run(),
   435     ///it will allocate one. The destuctor deallocates this
   436     ///automatically allocated map, of course.
   437     ///\return <tt> (*this) </tt>
   438     Dijkstra &distMap(DistMap &m) 
   439     {
   440       if(local_dist) {
   441 	delete _dist;
   442 	local_dist=false;
   443       }
   444       _dist = &m;
   445       return *this;
   446     }
   447 
   448   private:
   449     void finalizeNodeData(Node v,Value dst)
   450     {
   451       _processed->set(v,true);
   452       _dist->set(v, dst);
   453 //       if((*_pred)[v]!=INVALID)
   454 //       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
   455     }
   456 
   457   public:
   458     ///\name Execution control
   459     ///The simplest way to execute the algorithm is to use
   460     ///one of the member functions called \c run(...).
   461     ///\n
   462     ///If you need more control on the execution,
   463     ///first you must call \ref init(), then you can add several source nodes
   464     ///with \ref addSource().
   465     ///Finally \ref start() will perform the actual path
   466     ///computation.
   467 
   468     ///@{
   469 
   470     ///Initializes the internal data structures.
   471 
   472     ///Initializes the internal data structures.
   473     ///
   474     ///\todo _heap_map's type could also be in the traits class.
   475     void init()
   476     {
   477       create_maps();
   478       
   479       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   480 	_pred->set(u,INVALID);
   481 // 	_predNode->set(u,INVALID);
   482 	_processed->set(u,false);
   483 	_heap_map.set(u,Heap::PRE_HEAP);
   484       }
   485     }
   486     
   487     ///Adds a new source node.
   488 
   489     ///Adds a new source node to the priority heap.
   490     ///
   491     ///The optional second parameter is the initial distance of the node.
   492     ///
   493     ///It checks if the node has already been added to the heap and
   494     ///It is pushed to the heap only if either it was not in the heap
   495     ///or the shortest path found till then is longer then \c dst.
   496     void addSource(Node s,Value dst=0)
   497     {
   498 //       source = s;
   499       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   500       else if(_heap[s]<dst) {
   501 	_heap.push(s,dst);
   502 	_pred->set(s,INVALID);
   503       }
   504     }
   505     
   506     ///Processes the next node in the priority heap
   507 
   508     ///Processes the next node in the priority heap.
   509     ///
   510     ///\warning The priority heap must not be empty!
   511     void processNextNode()
   512     {
   513       Node v=_heap.top(); 
   514       Value oldvalue=_heap[v];
   515       _heap.pop();
   516       finalizeNodeData(v,oldvalue);
   517       
   518       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   519 	Node w=G->target(e); 
   520 	switch(_heap.state(w)) {
   521 	case Heap::PRE_HEAP:
   522 	  _heap.push(w,oldvalue+(*length)[e]); 
   523 	  _pred->set(w,e);
   524 //  	  _predNode->set(w,v);
   525 	  break;
   526 	case Heap::IN_HEAP:
   527 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   528 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   529 	    _pred->set(w,e);
   530 // 	    _predNode->set(w,v);
   531 	  }
   532 	  break;
   533 	case Heap::POST_HEAP:
   534 	  break;
   535 	}
   536       }
   537     }
   538 
   539     ///\brief Returns \c false if there are nodes
   540     ///to be processed in the priority heap
   541     ///
   542     ///Returns \c false if there are nodes
   543     ///to be processed in the priority heap
   544     bool emptyQueue() { return _heap.empty(); }
   545     ///Returns the number of the nodes to be processed in the priority heap
   546 
   547     ///Returns the number of the nodes to be processed in the priority heap
   548     ///
   549     int queueSize() { return _heap.size(); }
   550     
   551     ///Executes the algorithm.
   552 
   553     ///Executes the algorithm.
   554     ///
   555     ///\pre init() must be called and at least one node should be added
   556     ///with addSource() before using this function.
   557     ///
   558     ///This method runs the %Dijkstra algorithm from the root node(s)
   559     ///in order to
   560     ///compute the
   561     ///shortest path to each node. The algorithm computes
   562     ///- The shortest path tree.
   563     ///- The distance of each node from the root(s).
   564     ///
   565     void start()
   566     {
   567       while ( !_heap.empty() ) processNextNode();
   568     }
   569     
   570     ///Executes the algorithm until \c dest is reached.
   571 
   572     ///Executes the algorithm until \c dest is reached.
   573     ///
   574     ///\pre init() must be called and at least one node should be added
   575     ///with addSource() before using this function.
   576     ///
   577     ///This method runs the %Dijkstra algorithm from the root node(s)
   578     ///in order to
   579     ///compute the
   580     ///shortest path to \c dest. The algorithm computes
   581     ///- The shortest path to \c  dest.
   582     ///- The distance of \c dest from the root(s).
   583     ///
   584     void start(Node dest)
   585     {
   586       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   587       if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
   588     }
   589     
   590     ///Executes the algorithm until a condition is met.
   591 
   592     ///Executes the algorithm until a condition is met.
   593     ///
   594     ///\pre init() must be called and at least one node should be added
   595     ///with addSource() before using this function.
   596     ///
   597     ///\param nm must be a bool (or convertible) node map. The algorithm
   598     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   599     template<class NM>
   600     void start(const NM &nm)
   601     {
   602       while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   603       if ( !_heap.empty() ) finalizeNodeData(_heap.top());
   604     }
   605     
   606     ///Runs %Dijkstra algorithm from node \c s.
   607     
   608     ///This method runs the %Dijkstra algorithm from a root node \c s
   609     ///in order to
   610     ///compute the
   611     ///shortest path to each node. The algorithm computes
   612     ///- The shortest path tree.
   613     ///- The distance of each node from the root.
   614     ///
   615     ///\note d.run(s) is just a shortcut of the following code.
   616     ///\code
   617     ///  d.init();
   618     ///  d.addSource(s);
   619     ///  d.start();
   620     ///\endcode
   621     void run(Node s) {
   622       init();
   623       addSource(s);
   624       start();
   625     }
   626     
   627     ///Finds the shortest path between \c s and \c t.
   628     
   629     ///Finds the shortest path between \c s and \c t.
   630     ///
   631     ///\return The length of the shortest s---t path if there exists one,
   632     ///0 otherwise.
   633     ///\note Apart from the return value, d.run(s) is
   634     ///just a shortcut of the following code.
   635     ///\code
   636     ///  d.init();
   637     ///  d.addSource(s);
   638     ///  d.start(t);
   639     ///\endcode
   640     Value run(Node s,Node t) {
   641       init();
   642       addSource(s);
   643       start(t);
   644       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   645     }
   646     
   647     ///@}
   648 
   649     ///\name Query Functions
   650     ///The result of the %Dijkstra algorithm can be obtained using these
   651     ///functions.\n
   652     ///Before the use of these functions,
   653     ///either run() or start() must be called.
   654     
   655     ///@{
   656 
   657     ///The distance of a node from the root.
   658 
   659     ///Returns the distance of a node from the root.
   660     ///\pre \ref run() must be called before using this function.
   661     ///\warning If node \c v in unreachable from the root the return value
   662     ///of this funcion is undefined.
   663     Value dist(Node v) const { return (*_dist)[v]; }
   664 
   665     ///Returns the 'previous edge' of the shortest path tree.
   666 
   667     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   668     ///i.e. it returns the last edge of a shortest path from the root to \c
   669     ///v. It is \ref INVALID
   670     ///if \c v is unreachable from the root or if \c v=s. The
   671     ///shortest path tree used here is equal to the shortest path tree used in
   672     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   673     ///this function.
   674     ///\todo predEdge could be a better name.
   675     Edge pred(Node v) const { return (*_pred)[v]; }
   676 
   677     ///Returns the 'previous node' of the shortest path tree.
   678 
   679     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   680     ///i.e. it returns the last but one node from a shortest path from the
   681     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   682     ///\c v=s. The shortest path tree used here is equal to the shortest path
   683     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   684     ///using this function.
   685     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   686 				  G->source((*_pred)[v]); }
   687     
   688     ///Returns a reference to the NodeMap of distances.
   689 
   690     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   691     ///be called before using this function.
   692     const DistMap &distMap() const { return *_dist;}
   693  
   694     ///Returns a reference to the shortest path tree map.
   695 
   696     ///Returns a reference to the NodeMap of the edges of the
   697     ///shortest path tree.
   698     ///\pre \ref run() must be called before using this function.
   699     const PredMap &predMap() const { return *_pred;}
   700  
   701 //     ///Returns a reference to the map of nodes of shortest paths.
   702 
   703 //     ///Returns a reference to the NodeMap of the last but one nodes of the
   704 //     ///shortest path tree.
   705 //     ///\pre \ref run() must be called before using this function.
   706 //     const PredNodeMap &predNodeMap() const { return *_predNode;}
   707 
   708     ///Checks if a node is reachable from the root.
   709 
   710     ///Returns \c true if \c v is reachable from the root.
   711     ///\warning The source nodes are inditated as unreached.
   712     ///\pre \ref run() must be called before using this function.
   713     ///
   714     bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
   715     
   716     ///@}
   717   };
   718 
   719 
   720 
   721 
   722  
   723   ///Default traits class of Dijkstra function.
   724 
   725   ///Default traits class of Dijkstra function.
   726   ///\param GR Graph type.
   727   ///\param LM Type of length map.
   728   template<class GR, class LM>
   729   struct DijkstraWizardDefaultTraits
   730   {
   731     ///The graph type the algorithm runs on. 
   732     typedef GR Graph;
   733     ///The type of the map that stores the edge lengths.
   734 
   735     ///The type of the map that stores the edge lengths.
   736     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   737     typedef LM LengthMap;
   738     //The type of the length of the edges.
   739     typedef typename LM::Value Value;
   740     ///The heap type used by Dijkstra algorithm.
   741 
   742     ///The heap type used by Dijkstra algorithm.
   743     ///
   744     ///\sa BinHeap
   745     ///\sa Dijkstra
   746     typedef BinHeap<typename Graph::Node,
   747 		    typename LM::Value,
   748 		    typename GR::template NodeMap<int>,
   749 		    std::less<Value> > Heap;
   750 
   751     ///\brief The type of the map that stores the last
   752     ///edges of the shortest paths.
   753     /// 
   754     ///The type of the map that stores the last
   755     ///edges of the shortest paths.
   756     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   757     ///
   758     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   759     ///Instantiates a PredMap.
   760  
   761     ///This function instantiates a \ref PredMap. 
   762     ///\param G is the graph, to which we would like to define the PredMap.
   763     ///\todo The graph alone may be insufficient for the initialization
   764     static PredMap *createPredMap(const GR &G) 
   765     {
   766       return new PredMap();
   767     }
   768     ///The type of the map that stores whether a nodes is processed.
   769  
   770     ///The type of the map that stores whether a nodes is processed.
   771     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   772     ///By default it is a NullMap.
   773     ///\todo If it is set to a real map,
   774     ///Dijkstra::processed() should read this.
   775     ///\todo named parameter to set this type, function to read and write.
   776     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   777     ///Instantiates a ProcessedMap.
   778  
   779     ///This function instantiates a \ref ProcessedMap. 
   780     ///\param G is the graph, to which
   781     ///we would like to define the \ref ProcessedMap
   782     static ProcessedMap *createProcessedMap(const GR &G)
   783     {
   784       return new ProcessedMap();
   785     }
   786     ///The type of the map that stores the dists of the nodes.
   787  
   788     ///The type of the map that stores the dists of the nodes.
   789     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   790     ///
   791     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   792     ///Instantiates a DistMap.
   793  
   794     ///This function instantiates a \ref DistMap. 
   795     ///\param G is the graph, to which we would like to define the \ref DistMap
   796     static DistMap *createDistMap(const GR &G)
   797     {
   798       return new DistMap();
   799     }
   800   };
   801   
   802   /// Default traits used by \ref DijkstraWizard
   803 
   804   /// To make it easier to use Dijkstra algorithm
   805   ///we have created a wizard class.
   806   /// This \ref DijkstraWizard class needs default traits,
   807   ///as well as the \ref Dijkstra class.
   808   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   809   /// \ref DijkstraWizard class.
   810   /// \todo More named parameters are required...
   811   template<class GR,class LM>
   812   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   813   {
   814 
   815     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   816   protected:
   817     /// Type of the nodes in the graph.
   818     typedef typename Base::Graph::Node Node;
   819 
   820     /// Pointer to the underlying graph.
   821     void *_g;
   822     /// Pointer to the length map
   823     void *_length;
   824     ///Pointer to the map of predecessors edges.
   825     void *_pred;
   826 //     ///Pointer to the map of predecessors nodes.
   827 //     void *_predNode;
   828     ///Pointer to the map of distances.
   829     void *_dist;
   830     ///Pointer to the source node.
   831     Node _source;
   832 
   833     public:
   834     /// Constructor.
   835     
   836     /// This constructor does not require parameters, therefore it initiates
   837     /// all of the attributes to default values (0, INVALID).
   838     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   839 // 			   _predNode(0),
   840 			   _dist(0), _source(INVALID) {}
   841 
   842     /// Constructor.
   843     
   844     /// This constructor requires some parameters,
   845     /// listed in the parameters list.
   846     /// Others are initiated to 0.
   847     /// \param g is the initial value of  \ref _g
   848     /// \param l is the initial value of  \ref _length
   849     /// \param s is the initial value of  \ref _source
   850     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   851       _g((void *)&g), _length((void *)&l), _pred(0),
   852 //       _predNode(0),
   853       _dist(0), _source(s) {}
   854 
   855   };
   856   
   857   /// A class to make easier the usage of Dijkstra algorithm
   858 
   859   /// This class is created to make it easier to use Dijkstra algorithm.
   860   /// It uses the functions and features of the plain \ref Dijkstra,
   861   /// but it is much simpler to use it.
   862   ///
   863   /// Simplicity means that the way to change the types defined
   864   /// in the traits class is based on functions that returns the new class
   865   /// and not on templatable built-in classes.
   866   /// When using the plain \ref Dijkstra
   867   /// the new class with the modified type comes from
   868   /// the original class by using the ::
   869   /// operator. In the case of \ref DijkstraWizard only
   870   /// a function have to be called and it will
   871   /// return the needed class.
   872   ///
   873   /// It does not have own \ref run method. When its \ref run method is called
   874   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   875   /// method of it.
   876   template<class TR>
   877   class DijkstraWizard : public TR
   878   {
   879     typedef TR Base;
   880 
   881     ///The type of the underlying graph.
   882     typedef typename TR::Graph Graph;
   883     //\e
   884     typedef typename Graph::Node Node;
   885     //\e
   886     typedef typename Graph::NodeIt NodeIt;
   887     //\e
   888     typedef typename Graph::Edge Edge;
   889     //\e
   890     typedef typename Graph::OutEdgeIt OutEdgeIt;
   891     
   892     ///The type of the map that stores the edge lengths.
   893     typedef typename TR::LengthMap LengthMap;
   894     ///The type of the length of the edges.
   895     typedef typename LengthMap::Value Value;
   896     ///\brief The type of the map that stores the last
   897     ///edges of the shortest paths.
   898     typedef typename TR::PredMap PredMap;
   899 //     ///\brief The type of the map that stores the last but one
   900 //     ///nodes of the shortest paths.
   901 //     typedef typename TR::PredNodeMap PredNodeMap;
   902     ///The type of the map that stores the dists of the nodes.
   903     typedef typename TR::DistMap DistMap;
   904 
   905     ///The heap type used by the dijkstra algorithm.
   906     typedef typename TR::Heap Heap;
   907 public:
   908     /// Constructor.
   909     DijkstraWizard() : TR() {}
   910 
   911     /// Constructor that requires parameters.
   912 
   913     /// Constructor that requires parameters.
   914     /// These parameters will be the default values for the traits class.
   915     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   916       TR(g,l,s) {}
   917 
   918     ///Copy constructor
   919     DijkstraWizard(const TR &b) : TR(b) {}
   920 
   921     ~DijkstraWizard() {}
   922 
   923     ///Runs Dijkstra algorithm from a given node.
   924     
   925     ///Runs Dijkstra algorithm from a given node.
   926     ///The node can be given by the \ref source function.
   927     void run()
   928     {
   929       if(Base::_source==INVALID) throw UninitializedParameter();
   930       Dijkstra<Graph,LengthMap,TR> 
   931 	Dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   932       if(Base::_pred) Dij.predMap(*(PredMap*)Base::_pred);
   933 //       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   934       if(Base::_dist) Dij.distMap(*(DistMap*)Base::_dist);
   935       Dij.run(Base::_source);
   936     }
   937 
   938     ///Runs Dijkstra algorithm from the given node.
   939 
   940     ///Runs Dijkstra algorithm from the given node.
   941     ///\param s is the given source.
   942     void run(Node s)
   943     {
   944       Base::_source=s;
   945       run();
   946     }
   947 
   948     template<class T>
   949     struct DefPredMapBase : public Base {
   950       typedef T PredMap;
   951       static PredMap *createPredMap(const Graph &G) { return 0; };
   952       DefPredMapBase(const Base &b) : Base(b) {}
   953     };
   954     
   955     ///\brief \ref named-templ-param "Named parameter"
   956     ///function for setting PredMap type
   957     ///
   958     /// \ref named-templ-param "Named parameter"
   959     ///function for setting PredMap type
   960     ///
   961     template<class T>
   962     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   963     {
   964       Base::_pred=(void *)&t;
   965       return DijkstraWizard<DefPredMapBase<T> >(*this);
   966     }
   967     
   968 
   969 //     template<class T>
   970 //     struct DefPredNodeMapBase : public Base {
   971 //       typedef T PredNodeMap;
   972 //       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
   973 //       DefPredNodeMapBase(const Base &b) : Base(b) {}
   974 //     };
   975     
   976 //     ///\brief \ref named-templ-param "Named parameter"
   977 //     ///function for setting PredNodeMap type
   978 //     ///
   979 //     /// \ref named-templ-param "Named parameter"
   980 //     ///function for setting PredNodeMap type
   981 //     ///
   982 //     template<class T>
   983 //     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
   984 //     {
   985 //       Base::_predNode=(void *)&t;
   986 //       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
   987 //     }
   988    
   989     template<class T>
   990     struct DefDistMapBase : public Base {
   991       typedef T DistMap;
   992       static DistMap *createDistMap(const Graph &G) { return 0; };
   993       DefDistMapBase(const Base &b) : Base(b) {}
   994     };
   995     
   996     ///\brief \ref named-templ-param "Named parameter"
   997     ///function for setting DistMap type
   998     ///
   999     /// \ref named-templ-param "Named parameter"
  1000     ///function for setting DistMap type
  1001     ///
  1002     template<class T>
  1003     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1004     {
  1005       Base::_dist=(void *)&t;
  1006       return DijkstraWizard<DefDistMapBase<T> >(*this);
  1007     }
  1008     
  1009     /// Sets the source node, from which the Dijkstra algorithm runs.
  1010 
  1011     /// Sets the source node, from which the Dijkstra algorithm runs.
  1012     /// \param s is the source node.
  1013     DijkstraWizard<TR> &source(Node s) 
  1014     {
  1015       Base::_source=s;
  1016       return *this;
  1017     }
  1018     
  1019   };
  1020   
  1021   ///Function type interface for Dijkstra algorithm.
  1022 
  1023   /// \ingroup flowalgs
  1024   ///Function type interface for Dijkstra algorithm.
  1025   ///
  1026   ///This function also has several
  1027   ///\ref named-templ-func-param "named parameters",
  1028   ///they are declared as the members of class \ref DijkstraWizard.
  1029   ///The following
  1030   ///example shows how to use these parameters.
  1031   ///\code
  1032   ///  dijkstra(g,length,source).predMap(preds).run();
  1033   ///\endcode
  1034   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1035   ///to the end of the parameter list.
  1036   ///\sa DijkstraWizard
  1037   ///\sa Dijkstra
  1038   template<class GR, class LM>
  1039   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1040   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1041   {
  1042     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1043   }
  1044 
  1045 } //END OF NAMESPACE LEMON
  1046 
  1047 #endif
  1048