lemon/hypercube_graph.h
author alpar
Mon, 20 Feb 2006 06:32:15 +0000
changeset 1969 68c2c1176e9e
parent 1956 a055123339d5
child 1979 c2992fd74dad
permissions -rw-r--r--
One more step towards Undir -> U conversion...
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef HYPERCUBE_GRAPH_H
    20 #define HYPERCUBE_GRAPH_H
    21 
    22 #include <iostream>
    23 #include <vector>
    24 #include <lemon/invalid.h>
    25 #include <lemon/utility.h>
    26 #include <lemon/error.h>
    27 
    28 #include <lemon/bits/iterable_graph_extender.h>
    29 #include <lemon/bits/alteration_notifier.h>
    30 #include <lemon/bits/static_map.h>
    31 #include <lemon/bits/graph_extender.h>
    32 
    33 ///\ingroup graphs
    34 ///\file
    35 ///\brief HyperCubeGraph class.
    36 
    37 namespace lemon {
    38 
    39   /// \brief Base graph for HyperCubeGraph.
    40   ///
    41   /// Base graph for hyper-cube graph. It describes some member functions
    42   /// which can be used in the HyperCubeGraph.
    43   ///
    44   /// \warning Always use the HyperCubeGraph instead of this.
    45   /// \see HyperCubeGraph
    46   class HyperCubeGraphBase {
    47 
    48   public:
    49 
    50     typedef HyperCubeGraphBase Graph;
    51 
    52     class Node;
    53     class Edge;
    54 
    55   public:
    56 
    57     HyperCubeGraphBase() {}
    58 
    59   protected:
    60 
    61     /// \brief Creates a hypercube graph with the given size.
    62     ///
    63     /// Creates a hypercube graph with the given size.
    64     void construct(int dim) {
    65       _dim = dim;
    66       _nodeNum = 1 << dim;
    67     }
    68 
    69   public:
    70     
    71 
    72     typedef True NodeNumTag;
    73     typedef True EdgeNumTag;
    74 
    75     ///Number of nodes.
    76     int nodeNum() const { return _nodeNum; }
    77     ///Number of edges.
    78     int edgeNum() const { return _nodeNum * _dim; }
    79 
    80     /// Maximum node ID.
    81     
    82     /// Maximum node ID.
    83     ///\sa id(Node)
    84     int maxNodeId() const { return nodeNum() - 1; }
    85     /// Maximum edge ID.
    86     
    87     /// Maximum edge ID.
    88     ///\sa id(Edge)
    89     int maxEdgeId() const { return edgeNum() - 1; }
    90 
    91     /// \brief Gives back the source node of an edge.
    92     ///    
    93     /// Gives back the source node of an edge.
    94     Node source(Edge e) const {
    95       return e.id / _dim;
    96     }
    97 
    98     /// \brief Gives back the target node of an edge.
    99     ///    
   100     /// Gives back the target node of an edge.
   101     Node target(Edge e) const {
   102       return (e.id / _dim) ^ ( 1 << (e.id % _dim));
   103     }
   104 
   105     /// Node ID.
   106     
   107     /// The ID of a valid Node is a nonnegative integer not greater than
   108     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   109     /// and the greatest node ID can be actually less then \ref maxNodeId().
   110     ///
   111     /// The ID of the \ref INVALID node is -1.
   112     ///\return The ID of the node \c v. 
   113 
   114     static int id(Node v) { return v.id; }
   115     /// Edge ID.
   116     
   117     /// The ID of a valid Edge is a nonnegative integer not greater than
   118     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   119     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   120     ///
   121     /// The ID of the \ref INVALID edge is -1.
   122     ///\return The ID of the edge \c e. 
   123     static int id(Edge e) { return e.id; }
   124 
   125     static Node nodeFromId(int id) { return Node(id);}
   126     
   127     static Edge edgeFromId(int id) { return Edge(id);}
   128 
   129     class Node {
   130       friend class HyperCubeGraphBase;
   131 
   132     protected:
   133       int id;
   134       Node(int _id) { id = _id;}
   135     public:
   136       Node() {}
   137       Node (Invalid) { id = -1; }
   138       bool operator==(const Node node) const {return id == node.id;}
   139       bool operator!=(const Node node) const {return id != node.id;}
   140       bool operator<(const Node node) const {return id < node.id;}
   141     };
   142     
   143     class Edge {
   144       friend class HyperCubeGraphBase;
   145       
   146     protected:
   147       int id; 
   148 
   149       Edge(int _id) : id(_id) {}
   150 
   151     public:
   152       Edge() { }
   153       Edge (Invalid) { id = -1; }
   154       bool operator==(const Edge edge) const {return id == edge.id;}
   155       bool operator!=(const Edge edge) const {return id != edge.id;}
   156       bool operator<(const Edge edge) const {return id < edge.id;}
   157     };
   158 
   159     void first(Node& node) const {
   160       node.id = nodeNum() - 1;
   161     }
   162 
   163     static void next(Node& node) {
   164       --node.id;
   165     }
   166 
   167     void first(Edge& edge) const {
   168       edge.id = edgeNum() - 1;
   169     }
   170 
   171     static void next(Edge& edge) {
   172       --edge.id;
   173     }
   174 
   175     void firstOut(Edge& edge, const Node& node) const {
   176       edge.id = node.id * _dim;
   177     }
   178 
   179     void nextOut(Edge& edge) const {
   180       ++edge.id;
   181       if (edge.id % _dim == 0) edge.id = -1;
   182     }
   183 
   184     void firstIn(Edge& edge, const Node& node) const {
   185       edge.id = (node.id ^ 1) * _dim;
   186     }
   187     
   188     void nextIn(Edge& edge) const {
   189       int cnt = edge.id % _dim;
   190       if ((cnt + 1) % _dim == 0) {
   191 	edge.id = -1;
   192       } else {
   193 	edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1; 
   194       }
   195     }
   196 
   197     /// \brief Gives back the number of the dimensions.
   198     ///
   199     /// Gives back the number of the dimensions.
   200     int dimension() const {
   201       return _dim;
   202     }
   203 
   204     /// \brief Returns true if the n'th bit of the node is one.
   205     ///
   206     /// Returns true if the n'th bit of the node is one. 
   207     bool projection(Node node, int n) const {
   208       return (bool)(node.id & (1 << n));
   209     }
   210 
   211     /// \brief The dimension id of the edge.
   212     ///
   213     /// It returns the dimension id of the edge. It can
   214     /// be in the ${0, 1, dim-1}$ intervall.
   215     int dimension(Edge edge) const {
   216       return edge.id % _dim;
   217     }
   218 
   219     /// \brief Gives back the index of the node.
   220     ///
   221     /// Gives back the index of the node. The lower bits of the
   222     /// integer describe the node.
   223     int index(Node node) const {
   224       return node.id;
   225     }
   226 
   227     /// \brief Gives back the node by its index.
   228     ///
   229     ///  Gives back the node by its index.
   230     Node node(int index) const {
   231       return Node(index);
   232     }
   233     
   234   private:
   235     int _dim, _nodeNum;
   236   };
   237 
   238 
   239   typedef StaticMappableGraphExtender<
   240     IterableGraphExtender<
   241     AlterableGraphExtender<
   242     GraphExtender<
   243     HyperCubeGraphBase> > > > ExtendedHyperCubeGraphBase;
   244 
   245   /// \ingroup graphs
   246   ///
   247   /// \brief HyperCube graph class
   248   ///
   249   /// This class implements a special graph type. The nodes of the
   250   /// graph can be indiced with integers with at most \c dim binary length.
   251   /// Two nodes are connected in the graph if the indices differ only
   252   /// on one position in the binary form. 
   253   ///
   254   /// \note The type of the \c ids is chosen to \c int because efficiency
   255   /// reasons. This way the maximal dimension of this implementation
   256   /// is 26. 
   257   ///
   258   /// The graph type is fully conform to the \ref concept::StaticGraph
   259   /// concept but it does not conform to the \ref concept::UGraph.
   260   ///
   261   /// \see HyperCubeGraphBase
   262   /// \author Balazs Dezso
   263   class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
   264   public:
   265 
   266     /// \brief Construct a graph with \c dim dimension.
   267     ///
   268     /// Construct a graph with \c dim dimension.
   269     HyperCubeGraph(int dim) { construct(dim); }
   270 
   271     /// \brief Linear combination map.
   272     ///
   273     /// It makes possible to give back a linear combination
   274     /// for each node. This function works like the \c std::accumulate
   275     /// so it accumulates the \c bf binary function with the \c fv
   276     /// first value. The map accumulates only on that dimensions where
   277     /// the node's index is one. The accumulated values should be
   278     /// given by the \c begin and \c end iterators and this range's length
   279     /// should be the dimension number of the graph.
   280     /// 
   281     ///\code
   282     /// const int DIM = 3;
   283     /// HyperCubeGraph graph(DIM);
   284     /// xy<double> base[DIM];
   285     /// for (int k = 0; k < DIM; ++k) {
   286     ///   base[k].x = rand() / (RAND_MAX + 1.0);
   287     ///   base[k].y = rand() / (RAND_MAX + 1.0);
   288     /// } 
   289     /// HyperCubeGraph::HyperMap<xy<double> > 
   290     ///   pos(graph, base, base + DIM, xy<double>(0.0, 0.0));
   291     ///\endcode
   292     ///
   293     /// \see HyperCubeGraph
   294     template <typename T, typename BF = std::plus<T> >
   295     class HyperMap {
   296     public:
   297 
   298       typedef Node Key;
   299       typedef T Value;
   300     
   301       
   302       /// \brief Constructor for HyperMap. 
   303       ///
   304       /// Construct a HyperMap for the given graph. The accumulated values 
   305       /// should be given by the \c begin and \c end iterators and this 
   306       /// range's length should be the dimension number of the graph.
   307       ///
   308       /// This function accumulates the \c bf binary function with 
   309       /// the \c fv first value. The map accumulates only on that dimensions 
   310       /// where the node's index is one.           
   311       template <typename It>
   312       HyperMap(const Graph& graph, It begin, It end, 
   313 		   T fv = 0.0, const BF& bf = BF()) 
   314 	: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
   315 	LEMON_ASSERT(_values.size() == graph.dimension(), 
   316 		     "Wrong size of dimension");
   317       }
   318 
   319       /// \brief Gives back the partial accumulated value.
   320       ///
   321       /// Gives back the partial accumulated value.
   322       Value operator[](Key k) const {
   323 	Value val = _first_value;
   324 	int id = _graph.index(k); 
   325 	int n = 0;
   326 	while (id != 0) {
   327 	  if (id & 1) {
   328 	    val = _bin_func(_values[n], _first_value);
   329 	  }
   330 	  id >>= 1;
   331 	  ++n;
   332 	}
   333 	return val;
   334       }
   335       
   336     private:
   337       const Graph& _graph;
   338       std::vector<T> _values;
   339       T _first_value;
   340       BF _bin_func;
   341     };    
   342   };
   343 }
   344 #endif
   345