lemon/max_matching.h
author kpeter
Mon, 25 Feb 2008 12:35:06 +0000
changeset 2579 691ce54544c5
parent 2549 88b81ec599ed
child 2612 3d65053d01a3
permissions -rwxr-xr-x
Bug fixes in min cost flow files.
Use enum type instead of static constants in NetworkSimplex to avoid
linker errors.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAX_MATCHING_H
    20 #define LEMON_MAX_MATCHING_H
    21 
    22 #include <vector>
    23 #include <queue>
    24 #include <set>
    25 
    26 #include <lemon/bits/invalid.h>
    27 #include <lemon/unionfind.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/bin_heap.h>
    30 
    31 ///\ingroup matching
    32 ///\file
    33 ///\brief Maximum matching algorithms in undirected graph.
    34 
    35 namespace lemon {
    36 
    37   ///\ingroup matching
    38   ///
    39   ///\brief Edmonds' alternating forest maximum matching algorithm.
    40   ///
    41   ///This class provides Edmonds' alternating forest matching
    42   ///algorithm. The starting matching (if any) can be passed to the
    43   ///algorithm using some of init functions.
    44   ///
    45   ///The dual side of a matching is a map of the nodes to
    46   ///MaxMatching::DecompType, having values \c D, \c A and \c C
    47   ///showing the Gallai-Edmonds decomposition of the graph. The nodes
    48   ///in \c D induce a graph with factor-critical components, the nodes
    49   ///in \c A form the barrier, and the nodes in \c C induce a graph
    50   ///having a perfect matching. This decomposition can be attained by
    51   ///calling \c decomposition() after running the algorithm.
    52   ///
    53   ///\param Graph The undirected graph type the algorithm runs on.
    54   ///
    55   ///\author Jacint Szabo  
    56   template <typename Graph>
    57   class MaxMatching {
    58 
    59   protected:
    60 
    61     typedef typename Graph::Node Node;
    62     typedef typename Graph::Edge Edge;
    63     typedef typename Graph::UEdge UEdge;
    64     typedef typename Graph::UEdgeIt UEdgeIt;
    65     typedef typename Graph::NodeIt NodeIt;
    66     typedef typename Graph::IncEdgeIt IncEdgeIt;
    67 
    68     typedef typename Graph::template NodeMap<int> UFECrossRef;
    69     typedef UnionFindEnum<UFECrossRef> UFE;
    70     typedef std::vector<Node> NV;
    71 
    72     typedef typename Graph::template NodeMap<int> EFECrossRef;
    73     typedef ExtendFindEnum<EFECrossRef> EFE;
    74 
    75   public:
    76     
    77     ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
    78     ///
    79     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    80     ///shows an upper bound on the size of a maximum matching. The
    81     ///nodes with DecompType \c D induce a graph with factor-critical
    82     ///components, the nodes in \c A form the canonical barrier, and the
    83     ///nodes in \c C induce a graph having a perfect matching. 
    84     enum DecompType {
    85       D=0,
    86       A=1,
    87       C=2
    88     }; 
    89 
    90   protected:
    91 
    92     static const int HEUR_density=2;
    93     const Graph& g;
    94     typename Graph::template NodeMap<Node> _mate;
    95     typename Graph::template NodeMap<DecompType> position;
    96      
    97   public:
    98     
    99     MaxMatching(const Graph& _g) 
   100       : g(_g), _mate(_g), position(_g) {}
   101 
   102     ///\brief Sets the actual matching to the empty matching.
   103     ///
   104     ///Sets the actual matching to the empty matching.  
   105     ///
   106     void init() {
   107       for(NodeIt v(g); v!=INVALID; ++v) {
   108 	_mate.set(v,INVALID);      
   109 	position.set(v,C);
   110       }
   111     }
   112 
   113     ///\brief Finds a greedy matching for initial matching.
   114     ///
   115     ///For initial matchig it finds a maximal greedy matching.
   116     void greedyInit() {
   117       for(NodeIt v(g); v!=INVALID; ++v) {
   118 	_mate.set(v,INVALID);      
   119 	position.set(v,C);
   120       }
   121       for(NodeIt v(g); v!=INVALID; ++v)
   122 	if ( _mate[v]==INVALID ) {
   123 	  for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   124 	    Node y=g.runningNode(e);
   125 	    if ( _mate[y]==INVALID && y!=v ) {
   126 	      _mate.set(v,y);
   127 	      _mate.set(y,v);
   128 	      break;
   129 	    }
   130 	  }
   131 	} 
   132     }
   133 
   134     ///\brief Initialize the matching from each nodes' mate.
   135     ///
   136     ///Initialize the matching from a \c Node valued \c Node map. This
   137     ///map must be \e symmetric, i.e. if \c map[u]==v then \c
   138     ///map[v]==u must hold, and \c uv will be an edge of the initial
   139     ///matching.
   140     template <typename MateMap>
   141     void mateMapInit(MateMap& map) {
   142       for(NodeIt v(g); v!=INVALID; ++v) {
   143 	_mate.set(v,map[v]);
   144 	position.set(v,C);
   145       } 
   146     }
   147 
   148     ///\brief Initialize the matching from a node map with the
   149     ///incident matching edges.
   150     ///
   151     ///Initialize the matching from an \c UEdge valued \c Node map. \c
   152     ///map[v] must be an \c UEdge incident to \c v. This map must have
   153     ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
   154     ///g.oppositeNode(v,map[v])==u holds, and now some edge joining \c
   155     ///u to \c v will be an edge of the matching.
   156     template<typename MatchingMap>
   157     void matchingMapInit(MatchingMap& map) {
   158       for(NodeIt v(g); v!=INVALID; ++v) {
   159 	position.set(v,C);
   160 	UEdge e=map[v];
   161 	if ( e!=INVALID )
   162 	  _mate.set(v,g.oppositeNode(v,e));
   163 	else 
   164 	  _mate.set(v,INVALID);
   165       } 
   166     } 
   167 
   168     ///\brief Initialize the matching from the map containing the
   169     ///undirected matching edges.
   170     ///
   171     ///Initialize the matching from a \c bool valued \c UEdge map. This
   172     ///map must have the property that there are no two incident edges
   173     ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   174     ///map[e]==true form the matching.
   175     template <typename MatchingMap>
   176     void matchingInit(MatchingMap& map) {
   177       for(NodeIt v(g); v!=INVALID; ++v) {
   178 	_mate.set(v,INVALID);      
   179 	position.set(v,C);
   180       }
   181       for(UEdgeIt e(g); e!=INVALID; ++e) {
   182 	if ( map[e] ) {
   183 	  Node u=g.source(e);	  
   184 	  Node v=g.target(e);
   185 	  _mate.set(u,v);
   186 	  _mate.set(v,u);
   187 	} 
   188       } 
   189     }
   190 
   191 
   192     ///\brief Runs Edmonds' algorithm.
   193     ///
   194     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
   195     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   196     ///heuristic of postponing shrinks for dense graphs. 
   197     void run() {
   198       if (countUEdges(g) < HEUR_density * countNodes(g)) {
   199 	greedyInit();
   200 	startSparse();
   201       } else {
   202 	init();
   203 	startDense();
   204       }
   205     }
   206 
   207 
   208     ///\brief Starts Edmonds' algorithm.
   209     /// 
   210     ///If runs the original Edmonds' algorithm.  
   211     void startSparse() {
   212             
   213       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   214       //undefined for the base nodes of the blossoms (i.e. for the
   215       //representative elements of UFE blossom) and for the nodes in C 
   216       
   217       UFECrossRef blossom_base(g);
   218       UFE blossom(blossom_base);
   219       NV rep(countNodes(g));
   220 
   221       EFECrossRef tree_base(g);
   222       EFE tree(tree_base);
   223 
   224       //If these UFE's would be members of the class then also
   225       //blossom_base and tree_base should be a member.
   226       
   227       //We build only one tree and the other vertices uncovered by the
   228       //matching belong to C. (They can be considered as singleton
   229       //trees.) If this tree can be augmented or no more
   230       //grow/augmentation/shrink is possible then we return to this
   231       //"for" cycle.
   232       for(NodeIt v(g); v!=INVALID; ++v) {
   233 	if (position[v]==C && _mate[v]==INVALID) {
   234 	  rep[blossom.insert(v)] = v;
   235 	  tree.insert(v); 
   236 	  position.set(v,D);
   237 	  normShrink(v, ear, blossom, rep, tree);
   238 	}
   239       }
   240     }
   241 
   242     ///\brief Starts Edmonds' algorithm.
   243     /// 
   244     ///It runs Edmonds' algorithm with a heuristic of postponing
   245     ///shrinks, giving a faster algorithm for dense graphs.
   246     void startDense() {
   247             
   248       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   249       //undefined for the base nodes of the blossoms (i.e. for the
   250       //representative elements of UFE blossom) and for the nodes in C 
   251       
   252       UFECrossRef blossom_base(g);
   253       UFE blossom(blossom_base);
   254       NV rep(countNodes(g));
   255 
   256       EFECrossRef tree_base(g);
   257       EFE tree(tree_base);
   258 
   259       //If these UFE's would be members of the class then also
   260       //blossom_base and tree_base should be a member.
   261       
   262       //We build only one tree and the other vertices uncovered by the
   263       //matching belong to C. (They can be considered as singleton
   264       //trees.) If this tree can be augmented or no more
   265       //grow/augmentation/shrink is possible then we return to this
   266       //"for" cycle.
   267       for(NodeIt v(g); v!=INVALID; ++v) {
   268 	if ( position[v]==C && _mate[v]==INVALID ) {
   269 	  rep[blossom.insert(v)] = v;
   270 	  tree.insert(v); 
   271 	  position.set(v,D);
   272 	  lateShrink(v, ear, blossom, rep, tree);
   273 	}
   274       }
   275     }
   276 
   277 
   278 
   279     ///\brief Returns the size of the actual matching stored.
   280     ///
   281     ///Returns the size of the actual matching stored. After \ref
   282     ///run() it returns the size of a maximum matching in the graph.
   283     int size() const {
   284       int s=0;
   285       for(NodeIt v(g); v!=INVALID; ++v) {
   286 	if ( _mate[v]!=INVALID ) {
   287 	  ++s;
   288 	}
   289       }
   290       return s/2;
   291     }
   292 
   293 
   294     ///\brief Returns the mate of a node in the actual matching.
   295     ///
   296     ///Returns the mate of a \c node in the actual matching. 
   297     ///Returns INVALID if the \c node is not covered by the actual matching. 
   298     Node mate(const Node& node) const {
   299       return _mate[node];
   300     } 
   301 
   302     ///\brief Returns the matching edge incident to the given node.
   303     ///
   304     ///Returns the matching edge of a \c node in the actual matching. 
   305     ///Returns INVALID if the \c node is not covered by the actual matching. 
   306     UEdge matchingEdge(const Node& node) const {
   307       if (_mate[node] == INVALID) return INVALID;
   308       Node n = node < _mate[node] ? node : _mate[node];
   309       for (IncEdgeIt e(g, n); e != INVALID; ++e) {
   310 	if (g.oppositeNode(n, e) == _mate[n]) {
   311 	  return e;
   312 	}
   313       }
   314       return INVALID;
   315     } 
   316 
   317     /// \brief Returns the class of the node in the Edmonds-Gallai
   318     /// decomposition.
   319     ///
   320     /// Returns the class of the node in the Edmonds-Gallai
   321     /// decomposition.
   322     DecompType decomposition(const Node& n) {
   323       return position[n] == A;
   324     }
   325 
   326     /// \brief Returns true when the node is in the barrier.
   327     ///
   328     /// Returns true when the node is in the barrier.
   329     bool barrier(const Node& n) {
   330       return position[n] == A;
   331     }
   332     
   333     ///\brief Gives back the matching in a \c Node of mates.
   334     ///
   335     ///Writes the stored matching to a \c Node valued \c Node map. The
   336     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   337     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   338     template <typename MateMap>
   339     void mateMap(MateMap& map) const {
   340       for(NodeIt v(g); v!=INVALID; ++v) {
   341 	map.set(v,_mate[v]);   
   342       } 
   343     } 
   344     
   345     ///\brief Gives back the matching in an \c UEdge valued \c Node
   346     ///map.
   347     ///
   348     ///Writes the stored matching to an \c UEdge valued \c Node
   349     ///map. \c map[v] will be an \c UEdge incident to \c v. This
   350     ///map will have the property that if \c g.oppositeNode(u,map[u])
   351     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   352     ///of the matching.
   353     template <typename MatchingMap>
   354     void matchingMap(MatchingMap& map)  const {
   355       typename Graph::template NodeMap<bool> todo(g,true); 
   356       for(NodeIt v(g); v!=INVALID; ++v) {
   357 	if (_mate[v]!=INVALID && v < _mate[v]) {
   358 	  Node u=_mate[v];
   359 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   360 	    if ( g.runningNode(e) == u ) {
   361 	      map.set(u,e);
   362 	      map.set(v,e);
   363 	      todo.set(u,false);
   364 	      todo.set(v,false);
   365 	      break;
   366 	    }
   367 	  }
   368 	}
   369       } 
   370     }
   371 
   372 
   373     ///\brief Gives back the matching in a \c bool valued \c UEdge
   374     ///map.
   375     ///
   376     ///Writes the matching stored to a \c bool valued \c Edge
   377     ///map. This map will have the property that there are no two
   378     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   379     ///edges \c e with \c map[e]==true form the matching.
   380     template<typename MatchingMap>
   381     void matching(MatchingMap& map) const {
   382       for(UEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   383 
   384       typename Graph::template NodeMap<bool> todo(g,true); 
   385       for(NodeIt v(g); v!=INVALID; ++v) {
   386 	if ( todo[v] && _mate[v]!=INVALID ) {
   387 	  Node u=_mate[v];
   388 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   389 	    if ( g.runningNode(e) == u ) {
   390 	      map.set(e,true);
   391 	      todo.set(u,false);
   392 	      todo.set(v,false);
   393 	      break;
   394 	    }
   395 	  }
   396 	}
   397       } 
   398     }
   399 
   400 
   401     ///\brief Returns the canonical decomposition of the graph after running
   402     ///the algorithm.
   403     ///
   404     ///After calling any run methods of the class, it writes the
   405     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   406     ///must be a node map of \ref DecompType 's.
   407     template <typename DecompositionMap>
   408     void decomposition(DecompositionMap& map) const {
   409       for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
   410     }
   411 
   412     ///\brief Returns a barrier on the nodes.
   413     ///
   414     ///After calling any run methods of the class, it writes a
   415     ///canonical barrier on the nodes. The odd component number of the
   416     ///remaining graph minus the barrier size is a lower bound for the
   417     ///uncovered nodes in the graph. The \c map must be a node map of
   418     ///bools.
   419     template <typename BarrierMap>
   420     void barrier(BarrierMap& barrier) {
   421       for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);    
   422     }
   423 
   424   private: 
   425 
   426  
   427     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   428 		    UFE& blossom, NV& rep, EFE& tree) {
   429       //We have one tree which we grow, and also shrink but only if it
   430       //cannot be postponed. If we augment then we return to the "for"
   431       //cycle of runEdmonds().
   432 
   433       std::queue<Node> Q;   //queue of the totally unscanned nodes
   434       Q.push(v);  
   435       std::queue<Node> R;   
   436       //queue of the nodes which must be scanned for a possible shrink
   437       
   438       while ( !Q.empty() ) {
   439 	Node x=Q.front();
   440 	Q.pop();
   441 	for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   442 	  Node y=g.runningNode(e);
   443 	  //growOrAugment grows if y is covered by the matching and
   444 	  //augments if not. In this latter case it returns 1.
   445 	  if (position[y]==C && 
   446 	      growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   447 	}
   448 	R.push(x);
   449       }
   450       
   451       while ( !R.empty() ) {
   452 	Node x=R.front();
   453 	R.pop();
   454 	
   455 	for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   456 	  Node y=g.runningNode(e);
   457 
   458 	  if ( position[y] == D && blossom.find(x) != blossom.find(y) )  
   459 	    //Recall that we have only one tree.
   460 	    shrink( x, y, ear, blossom, rep, tree, Q);	
   461 	
   462 	  while ( !Q.empty() ) {
   463 	    Node z=Q.front();
   464 	    Q.pop();
   465 	    for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
   466 	      Node w=g.runningNode(f);
   467 	      //growOrAugment grows if y is covered by the matching and
   468 	      //augments if not. In this latter case it returns 1.
   469 	      if (position[w]==C && 
   470 		  growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
   471 	    }
   472 	    R.push(z);
   473 	  }
   474 	} //for e
   475       } // while ( !R.empty() )
   476     }
   477 
   478     void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   479 		    UFE& blossom, NV& rep, EFE& tree) {
   480       //We have one tree, which we grow and shrink. If we augment then we
   481       //return to the "for" cycle of runEdmonds().
   482     
   483       std::queue<Node> Q;   //queue of the unscanned nodes
   484       Q.push(v);  
   485       while ( !Q.empty() ) {
   486 
   487 	Node x=Q.front();
   488 	Q.pop();
   489 	
   490 	for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   491 	  Node y=g.runningNode(e);
   492 	      
   493 	  switch ( position[y] ) {
   494 	  case D:          //x and y must be in the same tree
   495 	    if ( blossom.find(x) != blossom.find(y))
   496 	      //x and y are in the same tree
   497 	      shrink(x, y, ear, blossom, rep, tree, Q);
   498 	    break;
   499 	  case C:
   500 	    //growOrAugment grows if y is covered by the matching and
   501 	    //augments if not. In this latter case it returns 1.
   502 	    if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   503 	    break;
   504 	  default: break;
   505 	  }
   506 	}
   507       }
   508     }
   509 
   510     void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,  
   511 		UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
   512       //x and y are the two adjacent vertices in two blossoms.
   513    
   514       typename Graph::template NodeMap<bool> path(g,false);
   515     
   516       Node b=rep[blossom.find(x)];
   517       path.set(b,true);
   518       b=_mate[b];
   519       while ( b!=INVALID ) { 
   520 	b=rep[blossom.find(ear[b])];
   521 	path.set(b,true);
   522 	b=_mate[b];
   523       } //we go until the root through bases of blossoms and odd vertices
   524     
   525       Node top=y;
   526       Node middle=rep[blossom.find(top)];
   527       Node bottom=x;
   528       while ( !path[middle] )
   529 	shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   530       //Until we arrive to a node on the path, we update blossom, tree
   531       //and the positions of the odd nodes.
   532     
   533       Node base=middle;
   534       top=x;
   535       middle=rep[blossom.find(top)];
   536       bottom=y;
   537       Node blossom_base=rep[blossom.find(base)];
   538       while ( middle!=blossom_base )
   539 	shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   540       //Until we arrive to a node on the path, we update blossom, tree
   541       //and the positions of the odd nodes.
   542     
   543       rep[blossom.find(base)] = base;
   544     }
   545 
   546     void shrinkStep(Node& top, Node& middle, Node& bottom,
   547 		    typename Graph::template NodeMap<Node>& ear,  
   548 		    UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
   549       //We traverse a blossom and update everything.
   550     
   551       ear.set(top,bottom);
   552       Node t=top;
   553       while ( t!=middle ) {
   554 	Node u=_mate[t];
   555 	t=ear[u];
   556 	ear.set(t,u);
   557       } 
   558       bottom=_mate[middle];
   559       position.set(bottom,D);
   560       Q.push(bottom);
   561       top=ear[bottom];		
   562       Node oldmiddle=middle;
   563       middle=rep[blossom.find(top)];
   564       tree.erase(bottom);
   565       tree.erase(oldmiddle);
   566       blossom.insert(bottom);
   567       blossom.join(bottom, oldmiddle);
   568       blossom.join(top, oldmiddle);
   569     }
   570 
   571 
   572 
   573     bool growOrAugment(Node& y, Node& x, typename Graph::template 
   574 		       NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree, 
   575 		       std::queue<Node>& Q) {
   576       //x is in a blossom in the tree, y is outside. If y is covered by
   577       //the matching we grow, otherwise we augment. In this case we
   578       //return 1.
   579     
   580       if ( _mate[y]!=INVALID ) {       //grow
   581 	ear.set(y,x);
   582 	Node w=_mate[y];
   583 	rep[blossom.insert(w)] = w;
   584 	position.set(y,A);
   585 	position.set(w,D);
   586 	int t = tree.find(rep[blossom.find(x)]);
   587 	tree.insert(y,t);  
   588 	tree.insert(w,t);  
   589 	Q.push(w);
   590       } else {                      //augment 
   591 	augment(x, ear, blossom, rep, tree);
   592 	_mate.set(x,y);
   593 	_mate.set(y,x);
   594 	return true;
   595       }
   596       return false;
   597     }
   598 
   599     void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
   600 		 UFE& blossom, NV& rep, EFE& tree) {
   601       Node v=_mate[x];
   602       while ( v!=INVALID ) {
   603 	
   604 	Node u=ear[v];
   605 	_mate.set(v,u);
   606 	Node tmp=v;
   607 	v=_mate[u];
   608 	_mate.set(u,tmp);
   609       }
   610       int y = tree.find(rep[blossom.find(x)]);
   611       for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {   
   612 	if ( position[tit] == D ) {
   613 	  int b = blossom.find(tit);
   614 	  for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) { 
   615 	    position.set(bit, C);
   616 	  }
   617 	  blossom.eraseClass(b);
   618 	} else position.set(tit, C);
   619       }
   620       tree.eraseClass(y);
   621 
   622     }
   623 
   624   };
   625 
   626   /// \ingroup matching
   627   ///
   628   /// \brief Weighted matching in general undirected graphs
   629   ///
   630   /// This class provides an efficient implementation of Edmond's
   631   /// maximum weighted matching algorithm. The implementation is based
   632   /// on extensive use of priority queues and provides
   633   /// \f$O(nm\log(n))\f$ time complexity.
   634   ///
   635   /// The maximum weighted matching problem is to find undirected
   636   /// edges in the graph with maximum overall weight and no two of
   637   /// them shares their endpoints. The problem can be formulated with
   638   /// the next linear program: 
   639   /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   640   ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] 
   641   /// \f[x_e \ge 0\quad \forall e\in E\f]
   642   /// \f[\max \sum_{e\in E}x_ew_e\f]
   643   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
   644   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in
   645   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
   646   /// the nodes.
   647   ///
   648   /// The algorithm calculates an optimal matching and a proof of the
   649   /// optimality. The solution of the dual problem can be used to check
   650   /// the result of the algorithm. The dual linear problem is the next:
   651   /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
   652   /// \f[y_u \ge 0 \quad \forall u \in V\f]
   653   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   654   /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
   655   ///
   656   /// The algorithm can be executed with \c run() or the \c init() and
   657   /// then the \c start() member functions. After it the matching can
   658   /// be asked with \c matching() or mate() functions. The dual
   659   /// solution can be get with \c nodeValue(), \c blossomNum() and \c
   660   /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
   661   /// "BlossomIt" nested class which is able to iterate on the nodes
   662   /// of a blossom. If the value type is integral then the dual
   663   /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
   664   ///
   665   /// \author Balazs Dezso
   666   template <typename _UGraph, 
   667 	    typename _WeightMap = typename _UGraph::template UEdgeMap<int> >
   668   class MaxWeightedMatching {
   669   public:
   670 
   671     typedef _UGraph UGraph;
   672     typedef _WeightMap WeightMap;
   673     typedef typename WeightMap::Value Value;
   674 
   675     /// \brief Scaling factor for dual solution
   676     ///
   677     /// Scaling factor for dual solution, it is equal to 4 or 1
   678     /// according to the value type.
   679     static const int dualScale = 
   680       std::numeric_limits<Value>::is_integer ? 4 : 1;
   681 
   682     typedef typename UGraph::template NodeMap<typename UGraph::Edge> 
   683     MatchingMap;
   684     
   685   private:
   686 
   687     UGRAPH_TYPEDEFS(typename UGraph);
   688 
   689     typedef typename UGraph::template NodeMap<Value> NodePotential;
   690     typedef std::vector<Node> BlossomNodeList;
   691 
   692     struct BlossomVariable {
   693       int begin, end;
   694       Value value;
   695       
   696       BlossomVariable(int _begin, int _end, Value _value)
   697         : begin(_begin), end(_end), value(_value) {}
   698 
   699     };
   700 
   701     typedef std::vector<BlossomVariable> BlossomPotential;
   702 
   703     const UGraph& _ugraph;
   704     const WeightMap& _weight;
   705 
   706     MatchingMap* _matching;
   707 
   708     NodePotential* _node_potential;
   709 
   710     BlossomPotential _blossom_potential;
   711     BlossomNodeList _blossom_node_list;
   712 
   713     int _node_num;
   714     int _blossom_num;
   715 
   716     typedef typename UGraph::template NodeMap<int> NodeIntMap;
   717     typedef typename UGraph::template EdgeMap<int> EdgeIntMap;
   718     typedef typename UGraph::template UEdgeMap<int> UEdgeIntMap;
   719     typedef IntegerMap<int> IntIntMap;
   720 
   721     enum Status {
   722       EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   723     };
   724 
   725     typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
   726     struct BlossomData {
   727       int tree;
   728       Status status;
   729       Edge pred, next;
   730       Value pot, offset;
   731       Node base;
   732     };
   733 
   734     NodeIntMap *_blossom_index;
   735     BlossomSet *_blossom_set;
   736     IntegerMap<BlossomData>* _blossom_data;
   737 
   738     NodeIntMap *_node_index;
   739     EdgeIntMap *_node_heap_index;
   740 
   741     struct NodeData {
   742       
   743       NodeData(EdgeIntMap& node_heap_index) 
   744 	: heap(node_heap_index) {}
   745       
   746       int blossom;
   747       Value pot;
   748       BinHeap<Value, EdgeIntMap> heap;
   749       std::map<int, Edge> heap_index;
   750       
   751       int tree;
   752     };
   753 
   754     IntegerMap<NodeData>* _node_data;
   755 
   756     typedef ExtendFindEnum<IntIntMap> TreeSet;
   757 
   758     IntIntMap *_tree_set_index;
   759     TreeSet *_tree_set;
   760 
   761     NodeIntMap *_delta1_index;
   762     BinHeap<Value, NodeIntMap> *_delta1;
   763 
   764     IntIntMap *_delta2_index;
   765     BinHeap<Value, IntIntMap> *_delta2;
   766     
   767     UEdgeIntMap *_delta3_index;
   768     BinHeap<Value, UEdgeIntMap> *_delta3;
   769 
   770     IntIntMap *_delta4_index;
   771     BinHeap<Value, IntIntMap> *_delta4;
   772 
   773     Value _delta_sum;
   774 
   775     void createStructures() {
   776       _node_num = countNodes(_ugraph); 
   777       _blossom_num = _node_num * 3 / 2;
   778 
   779       if (!_matching) {
   780 	_matching = new MatchingMap(_ugraph);
   781       }
   782       if (!_node_potential) {
   783 	_node_potential = new NodePotential(_ugraph);
   784       }
   785       if (!_blossom_set) {
   786 	_blossom_index = new NodeIntMap(_ugraph);
   787 	_blossom_set = new BlossomSet(*_blossom_index);
   788 	_blossom_data = new IntegerMap<BlossomData>(_blossom_num);
   789       }
   790 
   791       if (!_node_index) {
   792 	_node_index = new NodeIntMap(_ugraph);
   793 	_node_heap_index = new EdgeIntMap(_ugraph);
   794 	_node_data = new IntegerMap<NodeData>(_node_num, 
   795 					      NodeData(*_node_heap_index));
   796       }
   797 
   798       if (!_tree_set) {
   799 	_tree_set_index = new IntIntMap(_blossom_num);
   800 	_tree_set = new TreeSet(*_tree_set_index);
   801       }
   802       if (!_delta1) {
   803 	_delta1_index = new NodeIntMap(_ugraph);
   804 	_delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
   805       }
   806       if (!_delta2) {
   807 	_delta2_index = new IntIntMap(_blossom_num);
   808 	_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   809       }
   810       if (!_delta3) {
   811 	_delta3_index = new UEdgeIntMap(_ugraph);
   812 	_delta3 = new BinHeap<Value, UEdgeIntMap>(*_delta3_index);
   813       }
   814       if (!_delta4) {
   815 	_delta4_index = new IntIntMap(_blossom_num);
   816 	_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   817       }
   818     }
   819 
   820     void destroyStructures() {
   821       _node_num = countNodes(_ugraph); 
   822       _blossom_num = _node_num * 3 / 2;
   823 
   824       if (_matching) {
   825 	delete _matching;
   826       }
   827       if (_node_potential) {
   828 	delete _node_potential;
   829       }
   830       if (_blossom_set) {
   831 	delete _blossom_index;
   832 	delete _blossom_set;
   833 	delete _blossom_data;
   834       }
   835 
   836       if (_node_index) {
   837 	delete _node_index;
   838 	delete _node_heap_index;
   839 	delete _node_data;			      
   840       }
   841 
   842       if (_tree_set) {
   843 	delete _tree_set_index;
   844 	delete _tree_set;
   845       }
   846       if (_delta1) {
   847 	delete _delta1_index;
   848 	delete _delta1;
   849       }
   850       if (_delta2) {
   851 	delete _delta2_index;
   852 	delete _delta2;
   853       }
   854       if (_delta3) {
   855 	delete _delta3_index;
   856 	delete _delta3;
   857       }
   858       if (_delta4) {
   859 	delete _delta4_index;
   860 	delete _delta4;
   861       }
   862     }
   863 
   864     void matchedToEven(int blossom, int tree) {
   865       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   866 	_delta2->erase(blossom);
   867       }
   868 
   869       if (!_blossom_set->trivial(blossom)) {
   870 	(*_blossom_data)[blossom].pot -= 
   871 	  2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   872       }
   873 
   874       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
   875 	   n != INVALID; ++n) {
   876 
   877 	_blossom_set->increase(n, std::numeric_limits<Value>::max());
   878 	int ni = (*_node_index)[n];
   879 
   880 	(*_node_data)[ni].heap.clear();
   881 	(*_node_data)[ni].heap_index.clear();
   882 
   883 	(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   884 
   885 	_delta1->push(n, (*_node_data)[ni].pot);
   886 
   887 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   888 	  Node v = _ugraph.source(e);
   889 	  int vb = _blossom_set->find(v);
   890 	  int vi = (*_node_index)[v];
   891 
   892 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   893 	    dualScale * _weight[e];
   894 
   895 	  if ((*_blossom_data)[vb].status == EVEN) {
   896 	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   897 	      _delta3->push(e, rw / 2);
   898 	    }
   899 	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   900 	    if (_delta3->state(e) != _delta3->IN_HEAP) {
   901 	      _delta3->push(e, rw);
   902 	    }	    
   903 	  } else {
   904 	    typename std::map<int, Edge>::iterator it = 
   905 	      (*_node_data)[vi].heap_index.find(tree);	  
   906 
   907 	    if (it != (*_node_data)[vi].heap_index.end()) {
   908 	      if ((*_node_data)[vi].heap[it->second] > rw) {
   909 		(*_node_data)[vi].heap.replace(it->second, e);
   910 		(*_node_data)[vi].heap.decrease(e, rw);
   911 		it->second = e;
   912 	      }
   913 	    } else {
   914 	      (*_node_data)[vi].heap.push(e, rw);
   915 	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   916 	    }
   917 
   918 	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   919 	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   920 
   921 	      if ((*_blossom_data)[vb].status == MATCHED) {
   922 		if (_delta2->state(vb) != _delta2->IN_HEAP) {
   923 		  _delta2->push(vb, _blossom_set->classPrio(vb) -
   924 			       (*_blossom_data)[vb].offset);
   925 		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   926 			   (*_blossom_data)[vb].offset){
   927 		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   928 				   (*_blossom_data)[vb].offset);
   929 		}
   930 	      }
   931 	    }
   932 	  }
   933 	}
   934       }
   935       (*_blossom_data)[blossom].offset = 0;
   936     }
   937 
   938     void matchedToOdd(int blossom) {
   939       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   940 	_delta2->erase(blossom);
   941       }
   942       (*_blossom_data)[blossom].offset += _delta_sum;
   943       if (!_blossom_set->trivial(blossom)) {
   944 	_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + 
   945 		     (*_blossom_data)[blossom].offset);
   946       }
   947     }
   948 
   949     void evenToMatched(int blossom, int tree) {
   950       if (!_blossom_set->trivial(blossom)) {
   951 	(*_blossom_data)[blossom].pot += 2 * _delta_sum;
   952       }
   953 
   954       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   955 	   n != INVALID; ++n) {
   956 	int ni = (*_node_index)[n];
   957 	(*_node_data)[ni].pot -= _delta_sum;
   958 
   959 	_delta1->erase(n);
   960 
   961 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   962 	  Node v = _ugraph.source(e);
   963 	  int vb = _blossom_set->find(v);
   964 	  int vi = (*_node_index)[v];
   965 
   966 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   967 	    dualScale * _weight[e];
   968 
   969 	  if (vb == blossom) {
   970 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   971 	      _delta3->erase(e);
   972 	    }
   973 	  } else if ((*_blossom_data)[vb].status == EVEN) {
   974 
   975 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   976 	      _delta3->erase(e);
   977 	    }
   978 
   979 	    int vt = _tree_set->find(vb);
   980 	    
   981 	    if (vt != tree) {
   982 
   983 	      Edge r = _ugraph.oppositeEdge(e);
   984 
   985 	      typename std::map<int, Edge>::iterator it = 
   986 		(*_node_data)[ni].heap_index.find(vt);	  
   987 
   988 	      if (it != (*_node_data)[ni].heap_index.end()) {
   989 		if ((*_node_data)[ni].heap[it->second] > rw) {
   990 		  (*_node_data)[ni].heap.replace(it->second, r);
   991 		  (*_node_data)[ni].heap.decrease(r, rw);
   992 		  it->second = r;
   993 		}
   994 	      } else {
   995 		(*_node_data)[ni].heap.push(r, rw);
   996 		(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   997 	      }
   998 	      
   999 	      if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1000 		_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1001 		
  1002 		if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1003 		  _delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  1004 			       (*_blossom_data)[blossom].offset);
  1005 		} else if ((*_delta2)[blossom] > 
  1006 			   _blossom_set->classPrio(blossom) - 
  1007 			   (*_blossom_data)[blossom].offset){
  1008 		  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1009 				   (*_blossom_data)[blossom].offset);
  1010 		}
  1011 	      }
  1012 	    }
  1013 	    
  1014 	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1015 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1016 	      _delta3->erase(e);
  1017 	    }
  1018 	  } else {
  1019 	  
  1020 	    typename std::map<int, Edge>::iterator it = 
  1021 	      (*_node_data)[vi].heap_index.find(tree);
  1022 
  1023 	    if (it != (*_node_data)[vi].heap_index.end()) {
  1024 	      (*_node_data)[vi].heap.erase(it->second);
  1025 	      (*_node_data)[vi].heap_index.erase(it);
  1026 	      if ((*_node_data)[vi].heap.empty()) {
  1027 		_blossom_set->increase(v, std::numeric_limits<Value>::max());
  1028 	      } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1029 		_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1030 	      }
  1031 	      
  1032 	      if ((*_blossom_data)[vb].status == MATCHED) {
  1033 		if (_blossom_set->classPrio(vb) == 
  1034 		    std::numeric_limits<Value>::max()) {
  1035 		  _delta2->erase(vb);
  1036 		} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1037 			   (*_blossom_data)[vb].offset) {
  1038 		  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1039 				   (*_blossom_data)[vb].offset);
  1040 		}
  1041 	      }	
  1042 	    }	
  1043 	  }
  1044 	}
  1045       }
  1046     }
  1047 
  1048     void oddToMatched(int blossom) {
  1049       (*_blossom_data)[blossom].offset -= _delta_sum;
  1050 
  1051       if (_blossom_set->classPrio(blossom) != 
  1052 	  std::numeric_limits<Value>::max()) {
  1053 	_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  1054 		       (*_blossom_data)[blossom].offset);
  1055       }
  1056 
  1057       if (!_blossom_set->trivial(blossom)) {
  1058 	_delta4->erase(blossom);
  1059       }
  1060     }
  1061 
  1062     void oddToEven(int blossom, int tree) {
  1063       if (!_blossom_set->trivial(blossom)) {
  1064 	_delta4->erase(blossom);
  1065 	(*_blossom_data)[blossom].pot -= 
  1066 	  2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1067       }
  1068 
  1069       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  1070 	   n != INVALID; ++n) {
  1071 	int ni = (*_node_index)[n];
  1072 
  1073 	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  1074 
  1075 	(*_node_data)[ni].heap.clear();
  1076 	(*_node_data)[ni].heap_index.clear();
  1077 	(*_node_data)[ni].pot += 
  1078 	  2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1079 
  1080 	_delta1->push(n, (*_node_data)[ni].pot);
  1081 
  1082 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1083 	  Node v = _ugraph.source(e);
  1084 	  int vb = _blossom_set->find(v);
  1085 	  int vi = (*_node_index)[v];
  1086 
  1087 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1088 	    dualScale * _weight[e];
  1089 
  1090 	  if ((*_blossom_data)[vb].status == EVEN) {
  1091 	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1092 	      _delta3->push(e, rw / 2);
  1093 	    }
  1094 	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1095 	    if (_delta3->state(e) != _delta3->IN_HEAP) {
  1096 	      _delta3->push(e, rw);
  1097 	    }
  1098 	  } else {
  1099 	  
  1100 	    typename std::map<int, Edge>::iterator it = 
  1101 	      (*_node_data)[vi].heap_index.find(tree);	  
  1102 
  1103 	    if (it != (*_node_data)[vi].heap_index.end()) {
  1104 	      if ((*_node_data)[vi].heap[it->second] > rw) {
  1105 		(*_node_data)[vi].heap.replace(it->second, e);
  1106 		(*_node_data)[vi].heap.decrease(e, rw);
  1107 		it->second = e;
  1108 	      }
  1109 	    } else {
  1110 	      (*_node_data)[vi].heap.push(e, rw);
  1111 	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1112 	    }
  1113 
  1114 	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1115 	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1116 
  1117 	      if ((*_blossom_data)[vb].status == MATCHED) {
  1118 		if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1119 		  _delta2->push(vb, _blossom_set->classPrio(vb) - 
  1120 			       (*_blossom_data)[vb].offset);
  1121 		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - 
  1122 			   (*_blossom_data)[vb].offset) {
  1123 		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1124 				   (*_blossom_data)[vb].offset);
  1125 		}
  1126 	      }
  1127 	    }
  1128 	  }
  1129 	}
  1130       }
  1131       (*_blossom_data)[blossom].offset = 0;
  1132     }
  1133 
  1134 
  1135     void matchedToUnmatched(int blossom) {
  1136       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1137 	_delta2->erase(blossom);
  1138       }
  1139 
  1140       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  1141 	   n != INVALID; ++n) {
  1142 	int ni = (*_node_index)[n];
  1143 
  1144 	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  1145 
  1146 	(*_node_data)[ni].heap.clear();
  1147 	(*_node_data)[ni].heap_index.clear();
  1148 
  1149 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1150 	  Node v = _ugraph.target(e);
  1151 	  int vb = _blossom_set->find(v);
  1152 	  int vi = (*_node_index)[v];
  1153 
  1154 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1155 	    dualScale * _weight[e];
  1156 
  1157 	  if ((*_blossom_data)[vb].status == EVEN) {
  1158 	    if (_delta3->state(e) != _delta3->IN_HEAP) {
  1159 	      _delta3->push(e, rw);
  1160 	    }
  1161 	  }
  1162 	}
  1163       }
  1164     }
  1165 
  1166     void unmatchedToMatched(int blossom) {
  1167       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1168 	   n != INVALID; ++n) {
  1169 	int ni = (*_node_index)[n];
  1170 
  1171 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1172 	  Node v = _ugraph.source(e);
  1173 	  int vb = _blossom_set->find(v);
  1174 	  int vi = (*_node_index)[v];
  1175 
  1176 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1177 	    dualScale * _weight[e];
  1178 
  1179 	  if (vb == blossom) {
  1180 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1181 	      _delta3->erase(e);
  1182 	    }
  1183 	  } else if ((*_blossom_data)[vb].status == EVEN) {
  1184 
  1185 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1186 	      _delta3->erase(e);
  1187 	    }
  1188 
  1189 	    int vt = _tree_set->find(vb);
  1190 	    
  1191 	    Edge r = _ugraph.oppositeEdge(e);
  1192 	    
  1193 	    typename std::map<int, Edge>::iterator it = 
  1194 	      (*_node_data)[ni].heap_index.find(vt);	  
  1195 	    
  1196 	    if (it != (*_node_data)[ni].heap_index.end()) {
  1197 	      if ((*_node_data)[ni].heap[it->second] > rw) {
  1198 		(*_node_data)[ni].heap.replace(it->second, r);
  1199 		(*_node_data)[ni].heap.decrease(r, rw);
  1200 		it->second = r;
  1201 	      }
  1202 	    } else {
  1203 	      (*_node_data)[ni].heap.push(r, rw);
  1204 	      (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1205 	    }
  1206 	      
  1207 	    if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1208 	      _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1209 	      
  1210 	      if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1211 		_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  1212 			     (*_blossom_data)[blossom].offset);
  1213 	      } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  1214 			 (*_blossom_data)[blossom].offset){
  1215 		_delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1216 				 (*_blossom_data)[blossom].offset);
  1217 	      }
  1218 	    }
  1219 	    
  1220 	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1221 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1222 	      _delta3->erase(e);
  1223 	    }
  1224 	  }
  1225 	}
  1226       }
  1227     }
  1228 
  1229     void alternatePath(int even, int tree) {
  1230       int odd;
  1231 
  1232       evenToMatched(even, tree);
  1233       (*_blossom_data)[even].status = MATCHED;
  1234 
  1235       while ((*_blossom_data)[even].pred != INVALID) {
  1236 	odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred));
  1237 	(*_blossom_data)[odd].status = MATCHED;
  1238 	oddToMatched(odd);
  1239 	(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1240       
  1241 	even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred));
  1242 	(*_blossom_data)[even].status = MATCHED;
  1243 	evenToMatched(even, tree);
  1244 	(*_blossom_data)[even].next = 
  1245 	  _ugraph.oppositeEdge((*_blossom_data)[odd].pred);
  1246       }
  1247       
  1248     }
  1249 
  1250     void destroyTree(int tree) {
  1251       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1252 	if ((*_blossom_data)[b].status == EVEN) {
  1253 	  (*_blossom_data)[b].status = MATCHED;
  1254 	  evenToMatched(b, tree);
  1255 	} else if ((*_blossom_data)[b].status == ODD) {
  1256 	  (*_blossom_data)[b].status = MATCHED;
  1257 	  oddToMatched(b);
  1258 	}
  1259       }
  1260       _tree_set->eraseClass(tree);
  1261     }
  1262     
  1263 
  1264     void unmatchNode(const Node& node) {
  1265       int blossom = _blossom_set->find(node);
  1266       int tree = _tree_set->find(blossom);
  1267 
  1268       alternatePath(blossom, tree);
  1269       destroyTree(tree);
  1270 
  1271       (*_blossom_data)[blossom].status = UNMATCHED;
  1272       (*_blossom_data)[blossom].base = node;
  1273       matchedToUnmatched(blossom);
  1274     }
  1275 
  1276 
  1277     void augmentOnEdge(const UEdge& edge) {
  1278       
  1279       int left = _blossom_set->find(_ugraph.source(edge));
  1280       int right = _blossom_set->find(_ugraph.target(edge));
  1281 
  1282       if ((*_blossom_data)[left].status == EVEN) {
  1283 	int left_tree = _tree_set->find(left);
  1284 	alternatePath(left, left_tree);
  1285 	destroyTree(left_tree);
  1286       } else {
  1287 	(*_blossom_data)[left].status = MATCHED;
  1288 	unmatchedToMatched(left);
  1289       }
  1290 
  1291       if ((*_blossom_data)[right].status == EVEN) {
  1292 	int right_tree = _tree_set->find(right);
  1293 	alternatePath(right, right_tree);
  1294 	destroyTree(right_tree);
  1295       } else {
  1296 	(*_blossom_data)[right].status = MATCHED;
  1297 	unmatchedToMatched(right);
  1298       }
  1299 
  1300       (*_blossom_data)[left].next = _ugraph.direct(edge, true);
  1301       (*_blossom_data)[right].next = _ugraph.direct(edge, false);
  1302     }
  1303 
  1304     void extendOnEdge(const Edge& edge) {
  1305       int base = _blossom_set->find(_ugraph.target(edge));
  1306       int tree = _tree_set->find(base);
  1307       
  1308       int odd = _blossom_set->find(_ugraph.source(edge));
  1309       _tree_set->insert(odd, tree);
  1310       (*_blossom_data)[odd].status = ODD;
  1311       matchedToOdd(odd);
  1312       (*_blossom_data)[odd].pred = edge;
  1313 
  1314       int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next));
  1315       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1316       _tree_set->insert(even, tree);
  1317       (*_blossom_data)[even].status = EVEN;
  1318       matchedToEven(even, tree);
  1319     }
  1320     
  1321     void shrinkOnEdge(const UEdge& uedge, int tree) {
  1322       int nca = -1;
  1323       std::vector<int> left_path, right_path;
  1324 
  1325       {
  1326 	std::set<int> left_set, right_set;
  1327 	int left = _blossom_set->find(_ugraph.source(uedge));
  1328 	left_path.push_back(left);
  1329 	left_set.insert(left);
  1330 
  1331 	int right = _blossom_set->find(_ugraph.target(uedge));
  1332 	right_path.push_back(right);
  1333 	right_set.insert(right);
  1334 
  1335 	while (true) {
  1336 
  1337 	  if ((*_blossom_data)[left].pred == INVALID) break;
  1338 
  1339 	  left = 
  1340 	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  1341 	  left_path.push_back(left);
  1342 	  left = 
  1343 	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  1344 	  left_path.push_back(left);
  1345 
  1346 	  left_set.insert(left);
  1347 
  1348 	  if (right_set.find(left) != right_set.end()) {
  1349 	    nca = left;
  1350 	    break;
  1351 	  }
  1352 
  1353 	  if ((*_blossom_data)[right].pred == INVALID) break;
  1354 
  1355 	  right = 
  1356 	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  1357 	  right_path.push_back(right);
  1358 	  right = 
  1359 	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  1360 	  right_path.push_back(right);
  1361 
  1362 	  right_set.insert(right);
  1363  
  1364 	  if (left_set.find(right) != left_set.end()) {
  1365 	    nca = right;
  1366 	    break;
  1367 	  }
  1368 
  1369 	}
  1370 
  1371 	if (nca == -1) {
  1372 	  if ((*_blossom_data)[left].pred == INVALID) {
  1373 	    nca = right;
  1374 	    while (left_set.find(nca) == left_set.end()) {
  1375 	      nca = 
  1376 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1377 	      right_path.push_back(nca);
  1378 	      nca = 
  1379 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1380 	      right_path.push_back(nca);
  1381 	    }
  1382 	  } else {
  1383 	    nca = left;
  1384 	    while (right_set.find(nca) == right_set.end()) {
  1385 	      nca = 
  1386 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1387 	      left_path.push_back(nca);
  1388 	      nca = 
  1389 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1390 	      left_path.push_back(nca);
  1391 	    }
  1392 	  }
  1393 	}
  1394       }
  1395 
  1396       std::vector<int> subblossoms;
  1397       Edge prev;
  1398 
  1399       prev = _ugraph.direct(uedge, true);
  1400       for (int i = 0; left_path[i] != nca; i += 2) {
  1401 	subblossoms.push_back(left_path[i]);
  1402 	(*_blossom_data)[left_path[i]].next = prev;
  1403 	_tree_set->erase(left_path[i]);
  1404 
  1405 	subblossoms.push_back(left_path[i + 1]);
  1406 	(*_blossom_data)[left_path[i + 1]].status = EVEN;
  1407 	oddToEven(left_path[i + 1], tree);
  1408 	_tree_set->erase(left_path[i + 1]);
  1409 	prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred);
  1410       }
  1411 
  1412       int k = 0;
  1413       while (right_path[k] != nca) ++k;
  1414 
  1415       subblossoms.push_back(nca);
  1416       (*_blossom_data)[nca].next = prev;
  1417       
  1418       for (int i = k - 2; i >= 0; i -= 2) {
  1419 	subblossoms.push_back(right_path[i + 1]);
  1420 	(*_blossom_data)[right_path[i + 1]].status = EVEN;
  1421 	oddToEven(right_path[i + 1], tree);
  1422 	_tree_set->erase(right_path[i + 1]);
  1423 
  1424 	(*_blossom_data)[right_path[i + 1]].next = 
  1425 	  (*_blossom_data)[right_path[i + 1]].pred;
  1426 
  1427 	subblossoms.push_back(right_path[i]);
  1428 	_tree_set->erase(right_path[i]);
  1429       }
  1430 
  1431       int surface = 
  1432 	_blossom_set->join(subblossoms.begin(), subblossoms.end());
  1433 
  1434       for (int i = 0; i < int(subblossoms.size()); ++i) {
  1435 	if (!_blossom_set->trivial(subblossoms[i])) {
  1436 	  (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1437 	}
  1438 	(*_blossom_data)[subblossoms[i]].status = MATCHED;
  1439       }
  1440 
  1441       (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1442       (*_blossom_data)[surface].offset = 0;
  1443       (*_blossom_data)[surface].status = EVEN;
  1444       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1445       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1446 
  1447       _tree_set->insert(surface, tree);
  1448       _tree_set->erase(nca);
  1449     }
  1450 
  1451     void splitBlossom(int blossom) {
  1452       Edge next = (*_blossom_data)[blossom].next; 
  1453       Edge pred = (*_blossom_data)[blossom].pred;
  1454 
  1455       int tree = _tree_set->find(blossom);
  1456 
  1457       (*_blossom_data)[blossom].status = MATCHED;
  1458       oddToMatched(blossom);
  1459       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1460 	_delta2->erase(blossom);
  1461       }
  1462 
  1463       std::vector<int> subblossoms;
  1464       _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1465 
  1466       Value offset = (*_blossom_data)[blossom].offset;
  1467       int b = _blossom_set->find(_ugraph.source(pred));
  1468       int d = _blossom_set->find(_ugraph.source(next));
  1469       
  1470       int ib = -1, id = -1;
  1471       for (int i = 0; i < int(subblossoms.size()); ++i) {
  1472 	if (subblossoms[i] == b) ib = i;
  1473 	if (subblossoms[i] == d) id = i;
  1474 
  1475 	(*_blossom_data)[subblossoms[i]].offset = offset;
  1476 	if (!_blossom_set->trivial(subblossoms[i])) {
  1477 	  (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1478 	}
  1479 	if (_blossom_set->classPrio(subblossoms[i]) != 
  1480 	    std::numeric_limits<Value>::max()) {
  1481 	  _delta2->push(subblossoms[i], 
  1482 			_blossom_set->classPrio(subblossoms[i]) - 
  1483 			(*_blossom_data)[subblossoms[i]].offset);
  1484 	}
  1485       }
  1486       
  1487       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1488 	for (int i = (id + 1) % subblossoms.size(); 
  1489 	     i != ib; i = (i + 2) % subblossoms.size()) {
  1490 	  int sb = subblossoms[i];
  1491 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1492 	  (*_blossom_data)[sb].next = 
  1493 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1494 	}
  1495 
  1496 	for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1497 	  int sb = subblossoms[i];
  1498 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1499 	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  1500 
  1501 	  (*_blossom_data)[sb].status = ODD;
  1502 	  matchedToOdd(sb);
  1503 	  _tree_set->insert(sb, tree);
  1504 	  (*_blossom_data)[sb].pred = pred;
  1505 	  (*_blossom_data)[sb].next = 
  1506 			   _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1507 	  
  1508 	  pred = (*_blossom_data)[ub].next;
  1509       
  1510 	  (*_blossom_data)[tb].status = EVEN;
  1511 	  matchedToEven(tb, tree);
  1512 	  _tree_set->insert(tb, tree);
  1513 	  (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1514 	}
  1515       
  1516 	(*_blossom_data)[subblossoms[id]].status = ODD;
  1517 	matchedToOdd(subblossoms[id]);
  1518 	_tree_set->insert(subblossoms[id], tree);
  1519 	(*_blossom_data)[subblossoms[id]].next = next;
  1520 	(*_blossom_data)[subblossoms[id]].pred = pred;
  1521       
  1522       } else {
  1523 
  1524 	for (int i = (ib + 1) % subblossoms.size(); 
  1525 	     i != id; i = (i + 2) % subblossoms.size()) {
  1526 	  int sb = subblossoms[i];
  1527 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1528 	  (*_blossom_data)[sb].next = 
  1529 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1530 	}	
  1531 
  1532 	for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1533 	  int sb = subblossoms[i];
  1534 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1535 	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  1536 
  1537 	  (*_blossom_data)[sb].status = ODD;
  1538 	  matchedToOdd(sb);
  1539 	  _tree_set->insert(sb, tree);
  1540 	  (*_blossom_data)[sb].next = next; 
  1541 	  (*_blossom_data)[sb].pred =
  1542 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1543 
  1544 	  (*_blossom_data)[tb].status = EVEN;
  1545 	  matchedToEven(tb, tree);
  1546 	  _tree_set->insert(tb, tree);
  1547 	  (*_blossom_data)[tb].pred =
  1548 	    (*_blossom_data)[tb].next = 
  1549 	    _ugraph.oppositeEdge((*_blossom_data)[ub].next);
  1550 	  next = (*_blossom_data)[ub].next;
  1551 	}
  1552 
  1553 	(*_blossom_data)[subblossoms[ib]].status = ODD;
  1554 	matchedToOdd(subblossoms[ib]);
  1555 	_tree_set->insert(subblossoms[ib], tree);
  1556 	(*_blossom_data)[subblossoms[ib]].next = next;
  1557 	(*_blossom_data)[subblossoms[ib]].pred = pred;
  1558       }
  1559       _tree_set->erase(blossom);
  1560     }
  1561 
  1562     void extractBlossom(int blossom, const Node& base, const Edge& matching) {
  1563       if (_blossom_set->trivial(blossom)) {
  1564 	int bi = (*_node_index)[base];
  1565 	Value pot = (*_node_data)[bi].pot;
  1566 
  1567 	_matching->set(base, matching);
  1568 	_blossom_node_list.push_back(base);
  1569 	_node_potential->set(base, pot);
  1570       } else {
  1571 
  1572 	Value pot = (*_blossom_data)[blossom].pot;
  1573 	int bn = _blossom_node_list.size();
  1574 	
  1575 	std::vector<int> subblossoms;
  1576 	_blossom_set->split(blossom, std::back_inserter(subblossoms));
  1577 	int b = _blossom_set->find(base);
  1578 	int ib = -1;
  1579 	for (int i = 0; i < int(subblossoms.size()); ++i) {
  1580 	  if (subblossoms[i] == b) { ib = i; break; }
  1581 	}
  1582 	
  1583 	for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1584 	  int sb = subblossoms[(ib + i) % subblossoms.size()];
  1585 	  int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1586 	  
  1587 	  Edge m = (*_blossom_data)[tb].next;
  1588 	  extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m));
  1589 	  extractBlossom(tb, _ugraph.source(m), m);
  1590 	}
  1591 	extractBlossom(subblossoms[ib], base, matching);      
  1592 	
  1593 	int en = _blossom_node_list.size();
  1594 	
  1595 	_blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1596       }
  1597     }
  1598 
  1599     void extractMatching() {
  1600       std::vector<int> blossoms;
  1601       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1602 	blossoms.push_back(c);
  1603       }
  1604 
  1605       for (int i = 0; i < int(blossoms.size()); ++i) {
  1606 	if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  1607 
  1608 	  Value offset = (*_blossom_data)[blossoms[i]].offset;
  1609 	  (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1610 	  for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); 
  1611 	       n != INVALID; ++n) {
  1612 	    (*_node_data)[(*_node_index)[n]].pot -= offset;
  1613 	  }
  1614 
  1615 	  Edge matching = (*_blossom_data)[blossoms[i]].next;
  1616 	  Node base = _ugraph.source(matching);
  1617 	  extractBlossom(blossoms[i], base, matching);
  1618 	} else {
  1619 	  Node base = (*_blossom_data)[blossoms[i]].base;	  
  1620 	  extractBlossom(blossoms[i], base, INVALID);
  1621 	}
  1622       }
  1623     }
  1624     
  1625   public:
  1626 
  1627     /// \brief Constructor
  1628     ///
  1629     /// Constructor.
  1630     MaxWeightedMatching(const UGraph& ugraph, const WeightMap& weight)
  1631       : _ugraph(ugraph), _weight(weight), _matching(0),
  1632 	_node_potential(0), _blossom_potential(), _blossom_node_list(),
  1633 	_node_num(0), _blossom_num(0),
  1634 
  1635 	_blossom_index(0), _blossom_set(0), _blossom_data(0),
  1636 	_node_index(0), _node_heap_index(0), _node_data(0),
  1637 	_tree_set_index(0), _tree_set(0),
  1638 
  1639 	_delta1_index(0), _delta1(0),
  1640 	_delta2_index(0), _delta2(0),
  1641 	_delta3_index(0), _delta3(0), 
  1642 	_delta4_index(0), _delta4(0),
  1643 
  1644 	_delta_sum() {}
  1645 
  1646     ~MaxWeightedMatching() {
  1647       destroyStructures();
  1648     }
  1649 
  1650     /// \name Execution control 
  1651     /// The simplest way to execute the algorithm is to use the member
  1652     /// \c run() member function.
  1653 
  1654     ///@{
  1655 
  1656     /// \brief Initialize the algorithm
  1657     ///
  1658     /// Initialize the algorithm
  1659     void init() {
  1660       createStructures();
  1661 
  1662       for (EdgeIt e(_ugraph); e != INVALID; ++e) {
  1663 	_node_heap_index->set(e, BinHeap<Value, EdgeIntMap>::PRE_HEAP);
  1664       }
  1665       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1666 	_delta1_index->set(n, _delta1->PRE_HEAP);
  1667       }
  1668       for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1669 	_delta3_index->set(e, _delta3->PRE_HEAP);
  1670       }
  1671       for (int i = 0; i < _blossom_num; ++i) {
  1672 	_delta2_index->set(i, _delta2->PRE_HEAP);
  1673 	_delta4_index->set(i, _delta4->PRE_HEAP);
  1674       }
  1675 
  1676       int index = 0;
  1677       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1678 	Value max = 0;
  1679 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1680 	  if (_ugraph.target(e) == n) continue;
  1681 	  if ((dualScale * _weight[e]) / 2 > max) {
  1682 	    max = (dualScale * _weight[e]) / 2;
  1683 	  }
  1684 	}
  1685 	_node_index->set(n, index);
  1686 	(*_node_data)[index].pot = max;
  1687 	_delta1->push(n, max);
  1688 	int blossom = 
  1689 	  _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1690 
  1691 	_tree_set->insert(blossom);
  1692 
  1693 	(*_blossom_data)[blossom].status = EVEN;
  1694 	(*_blossom_data)[blossom].pred = INVALID;
  1695 	(*_blossom_data)[blossom].next = INVALID;
  1696 	(*_blossom_data)[blossom].pot = 0;
  1697 	(*_blossom_data)[blossom].offset = 0;
  1698 	++index;
  1699       }
  1700       for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1701 	int si = (*_node_index)[_ugraph.source(e)];
  1702 	int ti = (*_node_index)[_ugraph.target(e)];
  1703 	if (_ugraph.source(e) != _ugraph.target(e)) {
  1704 	  _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - 
  1705 			    dualScale * _weight[e]) / 2);
  1706 	}
  1707       }
  1708     }
  1709 
  1710     /// \brief Starts the algorithm
  1711     ///
  1712     /// Starts the algorithm
  1713     void start() {
  1714       enum OpType {
  1715 	D1, D2, D3, D4
  1716       };
  1717 
  1718       int unmatched = _node_num;
  1719       while (unmatched > 0) {
  1720 	Value d1 = !_delta1->empty() ? 
  1721 	  _delta1->prio() : std::numeric_limits<Value>::max();
  1722 
  1723 	Value d2 = !_delta2->empty() ? 
  1724 	  _delta2->prio() : std::numeric_limits<Value>::max();
  1725 
  1726 	Value d3 = !_delta3->empty() ? 
  1727 	  _delta3->prio() : std::numeric_limits<Value>::max();
  1728 
  1729 	Value d4 = !_delta4->empty() ? 
  1730 	  _delta4->prio() : std::numeric_limits<Value>::max();
  1731 
  1732 	_delta_sum = d1; OpType ot = D1;
  1733 	if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1734 	if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1735 	if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1736 
  1737 	
  1738 	switch (ot) {
  1739 	case D1:
  1740 	  {
  1741 	    Node n = _delta1->top();
  1742 	    unmatchNode(n);
  1743 	    --unmatched;
  1744 	  }
  1745 	  break;
  1746 	case D2:
  1747 	  {
  1748 	    int blossom = _delta2->top();
  1749 	    Node n = _blossom_set->classTop(blossom);
  1750 	    Edge e = (*_node_data)[(*_node_index)[n]].heap.top();
  1751 	    extendOnEdge(e);
  1752 	  }
  1753 	  break;
  1754 	case D3:
  1755 	  {
  1756 	    UEdge e = _delta3->top();
  1757 	    
  1758 	    int left_blossom = _blossom_set->find(_ugraph.source(e));
  1759 	    int right_blossom = _blossom_set->find(_ugraph.target(e));
  1760 	  
  1761 	    if (left_blossom == right_blossom) {
  1762 	      _delta3->pop();
  1763 	    } else {
  1764 	      int left_tree;
  1765 	      if ((*_blossom_data)[left_blossom].status == EVEN) {
  1766 		left_tree = _tree_set->find(left_blossom);
  1767 	      } else {
  1768 		left_tree = -1;
  1769 		++unmatched;
  1770 	      }
  1771 	      int right_tree;
  1772 	      if ((*_blossom_data)[right_blossom].status == EVEN) {
  1773 		right_tree = _tree_set->find(right_blossom);
  1774 	      } else {
  1775 		right_tree = -1;
  1776 		++unmatched;
  1777 	      }
  1778 	    
  1779 	      if (left_tree == right_tree) {
  1780 		shrinkOnEdge(e, left_tree);
  1781 	      } else {
  1782 		augmentOnEdge(e);
  1783 		unmatched -= 2;
  1784 	      }
  1785 	    }
  1786 	  } break;
  1787 	case D4:
  1788 	  splitBlossom(_delta4->top());
  1789 	  break;
  1790 	}
  1791       }
  1792       extractMatching();
  1793     }
  1794 
  1795     /// \brief Runs %MaxWeightedMatching algorithm.
  1796     ///
  1797     /// This method runs the %MaxWeightedMatching algorithm.
  1798     ///
  1799     /// \note mwm.run() is just a shortcut of the following code.
  1800     /// \code
  1801     ///   mwm.init();
  1802     ///   mwm.start();
  1803     /// \endcode
  1804     void run() {
  1805       init();
  1806       start();
  1807     }
  1808 
  1809     /// @}
  1810 
  1811     /// \name Primal solution
  1812     /// Functions for get the primal solution, ie. the matching.
  1813     
  1814     /// @{
  1815 
  1816     /// \brief Returns the matching value.
  1817     ///
  1818     /// Returns the matching value.
  1819     Value matchingValue() const {
  1820       Value sum = 0;
  1821       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1822 	if ((*_matching)[n] != INVALID) {
  1823 	  sum += _weight[(*_matching)[n]];
  1824 	}
  1825       }
  1826       return sum /= 2;
  1827     }
  1828 
  1829     /// \brief Returns true when the edge is in the matching.
  1830     ///
  1831     /// Returns true when the edge is in the matching.
  1832     bool matching(const UEdge& edge) const {
  1833       return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true);
  1834     }
  1835 
  1836     /// \brief Returns the incident matching edge.
  1837     ///
  1838     /// Returns the incident matching edge from given node. If the
  1839     /// node is not matched then it gives back \c INVALID.
  1840     Edge matching(const Node& node) const {
  1841       return (*_matching)[node];
  1842     }
  1843 
  1844     /// \brief Returns the mate of the node.
  1845     ///
  1846     /// Returns the adjancent node in a mathcing edge. If the node is
  1847     /// not matched then it gives back \c INVALID.
  1848     Node mate(const Node& node) const {
  1849       return (*_matching)[node] != INVALID ?
  1850 	_ugraph.target((*_matching)[node]) : INVALID;
  1851     }
  1852 
  1853     /// @}
  1854 
  1855     /// \name Dual solution
  1856     /// Functions for get the dual solution.
  1857     
  1858     /// @{
  1859 
  1860     /// \brief Returns the value of the dual solution.
  1861     ///
  1862     /// Returns the value of the dual solution. It should be equal to
  1863     /// the primal value scaled by \ref dualScale "dual scale".
  1864     Value dualValue() const {
  1865       Value sum = 0;
  1866       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1867 	sum += nodeValue(n);
  1868       }
  1869       for (int i = 0; i < blossomNum(); ++i) {
  1870         sum += blossomValue(i) * (blossomSize(i) / 2);
  1871       }
  1872       return sum;
  1873     }
  1874 
  1875     /// \brief Returns the value of the node.
  1876     ///
  1877     /// Returns the the value of the node.
  1878     Value nodeValue(const Node& n) const {
  1879       return (*_node_potential)[n];
  1880     }
  1881 
  1882     /// \brief Returns the number of the blossoms in the basis.
  1883     ///
  1884     /// Returns the number of the blossoms in the basis.
  1885     /// \see BlossomIt
  1886     int blossomNum() const {
  1887       return _blossom_potential.size();
  1888     }
  1889 
  1890 
  1891     /// \brief Returns the number of the nodes in the blossom.
  1892     ///
  1893     /// Returns the number of the nodes in the blossom.
  1894     int blossomSize(int k) const {
  1895       return _blossom_potential[k].end - _blossom_potential[k].begin;
  1896     }
  1897 
  1898     /// \brief Returns the value of the blossom.
  1899     ///
  1900     /// Returns the the value of the blossom.
  1901     /// \see BlossomIt
  1902     Value blossomValue(int k) const {
  1903       return _blossom_potential[k].value;
  1904     }
  1905 
  1906     /// \brief Lemon iterator for get the items of the blossom.
  1907     ///
  1908     /// Lemon iterator for get the nodes of the blossom. This class
  1909     /// provides a common style lemon iterator which gives back a
  1910     /// subset of the nodes.
  1911     class BlossomIt {
  1912     public:
  1913 
  1914       /// \brief Constructor.
  1915       ///
  1916       /// Constructor for get the nodes of the variable. 
  1917       BlossomIt(const MaxWeightedMatching& algorithm, int variable) 
  1918         : _algorithm(&algorithm)
  1919       {
  1920         _index = _algorithm->_blossom_potential[variable].begin;
  1921         _last = _algorithm->_blossom_potential[variable].end;
  1922       }
  1923 
  1924       /// \brief Invalid constructor.
  1925       ///
  1926       /// Invalid constructor.
  1927       BlossomIt(Invalid) : _index(-1) {}
  1928 
  1929       /// \brief Conversion to node.
  1930       ///
  1931       /// Conversion to node.
  1932       operator Node() const { 
  1933         return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  1934       }
  1935 
  1936       /// \brief Increment operator.
  1937       ///
  1938       /// Increment operator.
  1939       BlossomIt& operator++() {
  1940         ++_index;
  1941         if (_index == _last) {
  1942           _index = -1;
  1943         }
  1944         return *this; 
  1945       }
  1946 
  1947       bool operator==(const BlossomIt& it) const { 
  1948         return _index == it._index; 
  1949       }
  1950       bool operator!=(const BlossomIt& it) const { 
  1951         return _index != it._index;
  1952       }
  1953 
  1954     private:
  1955       const MaxWeightedMatching* _algorithm;
  1956       int _last;
  1957       int _index;
  1958     };
  1959 
  1960     /// @}
  1961     
  1962   };
  1963 
  1964   /// \ingroup matching
  1965   ///
  1966   /// \brief Weighted perfect matching in general undirected graphs
  1967   ///
  1968   /// This class provides an efficient implementation of Edmond's
  1969   /// maximum weighted perfecr matching algorithm. The implementation
  1970   /// is based on extensive use of priority queues and provides
  1971   /// \f$O(nm\log(n))\f$ time complexity.
  1972   ///
  1973   /// The maximum weighted matching problem is to find undirected
  1974   /// edges in the graph with maximum overall weight and no two of
  1975   /// them shares their endpoints and covers all nodes. The problem
  1976   /// can be formulated with the next linear program:
  1977   /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  1978   ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] 
  1979   /// \f[x_e \ge 0\quad \forall e\in E\f]
  1980   /// \f[\max \sum_{e\in E}x_ew_e\f]
  1981   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  1982   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in
  1983   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
  1984   /// the nodes.
  1985   ///
  1986   /// The algorithm calculates an optimal matching and a proof of the
  1987   /// optimality. The solution of the dual problem can be used to check
  1988   /// the result of the algorithm. The dual linear problem is the next:
  1989   /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
  1990   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  1991   /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
  1992   ///
  1993   /// The algorithm can be executed with \c run() or the \c init() and
  1994   /// then the \c start() member functions. After it the matching can
  1995   /// be asked with \c matching() or mate() functions. The dual
  1996   /// solution can be get with \c nodeValue(), \c blossomNum() and \c
  1997   /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
  1998   /// "BlossomIt" nested class which is able to iterate on the nodes
  1999   /// of a blossom. If the value type is integral then the dual
  2000   /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
  2001   ///
  2002   /// \author Balazs Dezso
  2003   template <typename _UGraph, 
  2004 	    typename _WeightMap = typename _UGraph::template UEdgeMap<int> >
  2005   class MaxWeightedPerfectMatching {
  2006   public:
  2007 
  2008     typedef _UGraph UGraph;
  2009     typedef _WeightMap WeightMap;
  2010     typedef typename WeightMap::Value Value;
  2011 
  2012     /// \brief Scaling factor for dual solution
  2013     ///
  2014     /// Scaling factor for dual solution, it is equal to 4 or 1
  2015     /// according to the value type.
  2016     static const int dualScale = 
  2017       std::numeric_limits<Value>::is_integer ? 4 : 1;
  2018 
  2019     typedef typename UGraph::template NodeMap<typename UGraph::Edge> 
  2020     MatchingMap;
  2021     
  2022   private:
  2023 
  2024     UGRAPH_TYPEDEFS(typename UGraph);
  2025 
  2026     typedef typename UGraph::template NodeMap<Value> NodePotential;
  2027     typedef std::vector<Node> BlossomNodeList;
  2028 
  2029     struct BlossomVariable {
  2030       int begin, end;
  2031       Value value;
  2032       
  2033       BlossomVariable(int _begin, int _end, Value _value)
  2034         : begin(_begin), end(_end), value(_value) {}
  2035 
  2036     };
  2037 
  2038     typedef std::vector<BlossomVariable> BlossomPotential;
  2039 
  2040     const UGraph& _ugraph;
  2041     const WeightMap& _weight;
  2042 
  2043     MatchingMap* _matching;
  2044 
  2045     NodePotential* _node_potential;
  2046 
  2047     BlossomPotential _blossom_potential;
  2048     BlossomNodeList _blossom_node_list;
  2049 
  2050     int _node_num;
  2051     int _blossom_num;
  2052 
  2053     typedef typename UGraph::template NodeMap<int> NodeIntMap;
  2054     typedef typename UGraph::template EdgeMap<int> EdgeIntMap;
  2055     typedef typename UGraph::template UEdgeMap<int> UEdgeIntMap;
  2056     typedef IntegerMap<int> IntIntMap;
  2057 
  2058     enum Status {
  2059       EVEN = -1, MATCHED = 0, ODD = 1
  2060     };
  2061 
  2062     typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
  2063     struct BlossomData {
  2064       int tree;
  2065       Status status;
  2066       Edge pred, next;
  2067       Value pot, offset;
  2068     };
  2069 
  2070     NodeIntMap *_blossom_index;
  2071     BlossomSet *_blossom_set;
  2072     IntegerMap<BlossomData>* _blossom_data;
  2073 
  2074     NodeIntMap *_node_index;
  2075     EdgeIntMap *_node_heap_index;
  2076 
  2077     struct NodeData {
  2078       
  2079       NodeData(EdgeIntMap& node_heap_index) 
  2080 	: heap(node_heap_index) {}
  2081       
  2082       int blossom;
  2083       Value pot;
  2084       BinHeap<Value, EdgeIntMap> heap;
  2085       std::map<int, Edge> heap_index;
  2086       
  2087       int tree;
  2088     };
  2089 
  2090     IntegerMap<NodeData>* _node_data;
  2091 
  2092     typedef ExtendFindEnum<IntIntMap> TreeSet;
  2093 
  2094     IntIntMap *_tree_set_index;
  2095     TreeSet *_tree_set;
  2096 
  2097     IntIntMap *_delta2_index;
  2098     BinHeap<Value, IntIntMap> *_delta2;
  2099     
  2100     UEdgeIntMap *_delta3_index;
  2101     BinHeap<Value, UEdgeIntMap> *_delta3;
  2102 
  2103     IntIntMap *_delta4_index;
  2104     BinHeap<Value, IntIntMap> *_delta4;
  2105 
  2106     Value _delta_sum;
  2107 
  2108     void createStructures() {
  2109       _node_num = countNodes(_ugraph); 
  2110       _blossom_num = _node_num * 3 / 2;
  2111 
  2112       if (!_matching) {
  2113 	_matching = new MatchingMap(_ugraph);
  2114       }
  2115       if (!_node_potential) {
  2116 	_node_potential = new NodePotential(_ugraph);
  2117       }
  2118       if (!_blossom_set) {
  2119 	_blossom_index = new NodeIntMap(_ugraph);
  2120 	_blossom_set = new BlossomSet(*_blossom_index);
  2121 	_blossom_data = new IntegerMap<BlossomData>(_blossom_num);
  2122       }
  2123 
  2124       if (!_node_index) {
  2125 	_node_index = new NodeIntMap(_ugraph);
  2126 	_node_heap_index = new EdgeIntMap(_ugraph);
  2127 	_node_data = new IntegerMap<NodeData>(_node_num, 
  2128 					      NodeData(*_node_heap_index));
  2129       }
  2130 
  2131       if (!_tree_set) {
  2132 	_tree_set_index = new IntIntMap(_blossom_num);
  2133 	_tree_set = new TreeSet(*_tree_set_index);
  2134       }
  2135       if (!_delta2) {
  2136 	_delta2_index = new IntIntMap(_blossom_num);
  2137 	_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  2138       }
  2139       if (!_delta3) {
  2140 	_delta3_index = new UEdgeIntMap(_ugraph);
  2141 	_delta3 = new BinHeap<Value, UEdgeIntMap>(*_delta3_index);
  2142       }
  2143       if (!_delta4) {
  2144 	_delta4_index = new IntIntMap(_blossom_num);
  2145 	_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  2146       }
  2147     }
  2148 
  2149     void destroyStructures() {
  2150       _node_num = countNodes(_ugraph); 
  2151       _blossom_num = _node_num * 3 / 2;
  2152 
  2153       if (_matching) {
  2154 	delete _matching;
  2155       }
  2156       if (_node_potential) {
  2157 	delete _node_potential;
  2158       }
  2159       if (_blossom_set) {
  2160 	delete _blossom_index;
  2161 	delete _blossom_set;
  2162 	delete _blossom_data;
  2163       }
  2164 
  2165       if (_node_index) {
  2166 	delete _node_index;
  2167 	delete _node_heap_index;
  2168 	delete _node_data;			      
  2169       }
  2170 
  2171       if (_tree_set) {
  2172 	delete _tree_set_index;
  2173 	delete _tree_set;
  2174       }
  2175       if (_delta2) {
  2176 	delete _delta2_index;
  2177 	delete _delta2;
  2178       }
  2179       if (_delta3) {
  2180 	delete _delta3_index;
  2181 	delete _delta3;
  2182       }
  2183       if (_delta4) {
  2184 	delete _delta4_index;
  2185 	delete _delta4;
  2186       }
  2187     }
  2188 
  2189     void matchedToEven(int blossom, int tree) {
  2190       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2191 	_delta2->erase(blossom);
  2192       }
  2193 
  2194       if (!_blossom_set->trivial(blossom)) {
  2195 	(*_blossom_data)[blossom].pot -= 
  2196 	  2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  2197       }
  2198 
  2199       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  2200 	   n != INVALID; ++n) {
  2201 
  2202 	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  2203 	int ni = (*_node_index)[n];
  2204 
  2205 	(*_node_data)[ni].heap.clear();
  2206 	(*_node_data)[ni].heap_index.clear();
  2207 
  2208 	(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  2209 
  2210 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2211 	  Node v = _ugraph.source(e);
  2212 	  int vb = _blossom_set->find(v);
  2213 	  int vi = (*_node_index)[v];
  2214 
  2215 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  2216 	    dualScale * _weight[e];
  2217 
  2218 	  if ((*_blossom_data)[vb].status == EVEN) {
  2219 	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2220 	      _delta3->push(e, rw / 2);
  2221 	    }
  2222 	  } else {
  2223 	    typename std::map<int, Edge>::iterator it = 
  2224 	      (*_node_data)[vi].heap_index.find(tree);	  
  2225 
  2226 	    if (it != (*_node_data)[vi].heap_index.end()) {
  2227 	      if ((*_node_data)[vi].heap[it->second] > rw) {
  2228 		(*_node_data)[vi].heap.replace(it->second, e);
  2229 		(*_node_data)[vi].heap.decrease(e, rw);
  2230 		it->second = e;
  2231 	      }
  2232 	    } else {
  2233 	      (*_node_data)[vi].heap.push(e, rw);
  2234 	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2235 	    }
  2236 
  2237 	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2238 	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2239 
  2240 	      if ((*_blossom_data)[vb].status == MATCHED) {
  2241 		if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2242 		  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2243 			       (*_blossom_data)[vb].offset);
  2244 		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2245 			   (*_blossom_data)[vb].offset){
  2246 		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2247 				   (*_blossom_data)[vb].offset);
  2248 		}
  2249 	      }
  2250 	    }
  2251 	  }
  2252 	}
  2253       }
  2254       (*_blossom_data)[blossom].offset = 0;
  2255     }
  2256 
  2257     void matchedToOdd(int blossom) {
  2258       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2259 	_delta2->erase(blossom);
  2260       }
  2261       (*_blossom_data)[blossom].offset += _delta_sum;
  2262       if (!_blossom_set->trivial(blossom)) {
  2263 	_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + 
  2264 		     (*_blossom_data)[blossom].offset);
  2265       }
  2266     }
  2267 
  2268     void evenToMatched(int blossom, int tree) {
  2269       if (!_blossom_set->trivial(blossom)) {
  2270 	(*_blossom_data)[blossom].pot += 2 * _delta_sum;
  2271       }
  2272 
  2273       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2274 	   n != INVALID; ++n) {
  2275 	int ni = (*_node_index)[n];
  2276 	(*_node_data)[ni].pot -= _delta_sum;
  2277 
  2278 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2279 	  Node v = _ugraph.source(e);
  2280 	  int vb = _blossom_set->find(v);
  2281 	  int vi = (*_node_index)[v];
  2282 
  2283 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  2284 	    dualScale * _weight[e];
  2285 
  2286 	  if (vb == blossom) {
  2287 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  2288 	      _delta3->erase(e);
  2289 	    }
  2290 	  } else if ((*_blossom_data)[vb].status == EVEN) {
  2291 
  2292 	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  2293 	      _delta3->erase(e);
  2294 	    }
  2295 
  2296 	    int vt = _tree_set->find(vb);
  2297 	    
  2298 	    if (vt != tree) {
  2299 
  2300 	      Edge r = _ugraph.oppositeEdge(e);
  2301 
  2302 	      typename std::map<int, Edge>::iterator it = 
  2303 		(*_node_data)[ni].heap_index.find(vt);	  
  2304 
  2305 	      if (it != (*_node_data)[ni].heap_index.end()) {
  2306 		if ((*_node_data)[ni].heap[it->second] > rw) {
  2307 		  (*_node_data)[ni].heap.replace(it->second, r);
  2308 		  (*_node_data)[ni].heap.decrease(r, rw);
  2309 		  it->second = r;
  2310 		}
  2311 	      } else {
  2312 		(*_node_data)[ni].heap.push(r, rw);
  2313 		(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2314 	      }
  2315 	      
  2316 	      if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2317 		_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2318 		
  2319 		if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2320 		  _delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  2321 			       (*_blossom_data)[blossom].offset);
  2322 		} else if ((*_delta2)[blossom] > 
  2323 			   _blossom_set->classPrio(blossom) - 
  2324 			   (*_blossom_data)[blossom].offset){
  2325 		  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2326 				   (*_blossom_data)[blossom].offset);
  2327 		}
  2328 	      }
  2329 	    }
  2330 	  } else {
  2331 	  
  2332 	    typename std::map<int, Edge>::iterator it = 
  2333 	      (*_node_data)[vi].heap_index.find(tree);
  2334 
  2335 	    if (it != (*_node_data)[vi].heap_index.end()) {
  2336 	      (*_node_data)[vi].heap.erase(it->second);
  2337 	      (*_node_data)[vi].heap_index.erase(it);
  2338 	      if ((*_node_data)[vi].heap.empty()) {
  2339 		_blossom_set->increase(v, std::numeric_limits<Value>::max());
  2340 	      } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2341 		_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2342 	      }
  2343 	      
  2344 	      if ((*_blossom_data)[vb].status == MATCHED) {
  2345 		if (_blossom_set->classPrio(vb) == 
  2346 		    std::numeric_limits<Value>::max()) {
  2347 		  _delta2->erase(vb);
  2348 		} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2349 			   (*_blossom_data)[vb].offset) {
  2350 		  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2351 				   (*_blossom_data)[vb].offset);
  2352 		}
  2353 	      }	
  2354 	    }	
  2355 	  }
  2356 	}
  2357       }
  2358     }
  2359 
  2360     void oddToMatched(int blossom) {
  2361       (*_blossom_data)[blossom].offset -= _delta_sum;
  2362 
  2363       if (_blossom_set->classPrio(blossom) != 
  2364 	  std::numeric_limits<Value>::max()) {
  2365 	_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  2366 		       (*_blossom_data)[blossom].offset);
  2367       }
  2368 
  2369       if (!_blossom_set->trivial(blossom)) {
  2370 	_delta4->erase(blossom);
  2371       }
  2372     }
  2373 
  2374     void oddToEven(int blossom, int tree) {
  2375       if (!_blossom_set->trivial(blossom)) {
  2376 	_delta4->erase(blossom);
  2377 	(*_blossom_data)[blossom].pot -= 
  2378 	  2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2379       }
  2380 
  2381       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  2382 	   n != INVALID; ++n) {
  2383 	int ni = (*_node_index)[n];
  2384 
  2385 	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  2386 
  2387 	(*_node_data)[ni].heap.clear();
  2388 	(*_node_data)[ni].heap_index.clear();
  2389 	(*_node_data)[ni].pot += 
  2390 	  2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2391 
  2392 	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2393 	  Node v = _ugraph.source(e);
  2394 	  int vb = _blossom_set->find(v);
  2395 	  int vi = (*_node_index)[v];
  2396 
  2397 	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  2398 	    dualScale * _weight[e];
  2399 
  2400 	  if ((*_blossom_data)[vb].status == EVEN) {
  2401 	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2402 	      _delta3->push(e, rw / 2);
  2403 	    }
  2404 	  } else {
  2405 	  
  2406 	    typename std::map<int, Edge>::iterator it = 
  2407 	      (*_node_data)[vi].heap_index.find(tree);	  
  2408 
  2409 	    if (it != (*_node_data)[vi].heap_index.end()) {
  2410 	      if ((*_node_data)[vi].heap[it->second] > rw) {
  2411 		(*_node_data)[vi].heap.replace(it->second, e);
  2412 		(*_node_data)[vi].heap.decrease(e, rw);
  2413 		it->second = e;
  2414 	      }
  2415 	    } else {
  2416 	      (*_node_data)[vi].heap.push(e, rw);
  2417 	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2418 	    }
  2419 
  2420 	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2421 	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2422 
  2423 	      if ((*_blossom_data)[vb].status == MATCHED) {
  2424 		if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2425 		  _delta2->push(vb, _blossom_set->classPrio(vb) - 
  2426 			       (*_blossom_data)[vb].offset);
  2427 		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - 
  2428 			   (*_blossom_data)[vb].offset) {
  2429 		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2430 				   (*_blossom_data)[vb].offset);
  2431 		}
  2432 	      }
  2433 	    }
  2434 	  }
  2435 	}
  2436       }
  2437       (*_blossom_data)[blossom].offset = 0;
  2438     }
  2439     
  2440     void alternatePath(int even, int tree) {
  2441       int odd;
  2442 
  2443       evenToMatched(even, tree);
  2444       (*_blossom_data)[even].status = MATCHED;
  2445 
  2446       while ((*_blossom_data)[even].pred != INVALID) {
  2447 	odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred));
  2448 	(*_blossom_data)[odd].status = MATCHED;
  2449 	oddToMatched(odd);
  2450 	(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2451       
  2452 	even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred));
  2453 	(*_blossom_data)[even].status = MATCHED;
  2454 	evenToMatched(even, tree);
  2455 	(*_blossom_data)[even].next = 
  2456 	  _ugraph.oppositeEdge((*_blossom_data)[odd].pred);
  2457       }
  2458       
  2459     }
  2460 
  2461     void destroyTree(int tree) {
  2462       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2463 	if ((*_blossom_data)[b].status == EVEN) {
  2464 	  (*_blossom_data)[b].status = MATCHED;
  2465 	  evenToMatched(b, tree);
  2466 	} else if ((*_blossom_data)[b].status == ODD) {
  2467 	  (*_blossom_data)[b].status = MATCHED;
  2468 	  oddToMatched(b);
  2469 	}
  2470       }
  2471       _tree_set->eraseClass(tree);
  2472     }
  2473 
  2474     void augmentOnEdge(const UEdge& edge) {
  2475       
  2476       int left = _blossom_set->find(_ugraph.source(edge));
  2477       int right = _blossom_set->find(_ugraph.target(edge));
  2478 
  2479       int left_tree = _tree_set->find(left);
  2480       alternatePath(left, left_tree);
  2481       destroyTree(left_tree);
  2482 
  2483       int right_tree = _tree_set->find(right);
  2484       alternatePath(right, right_tree);
  2485       destroyTree(right_tree);
  2486 
  2487       (*_blossom_data)[left].next = _ugraph.direct(edge, true);
  2488       (*_blossom_data)[right].next = _ugraph.direct(edge, false);
  2489     }
  2490 
  2491     void extendOnEdge(const Edge& edge) {
  2492       int base = _blossom_set->find(_ugraph.target(edge));
  2493       int tree = _tree_set->find(base);
  2494       
  2495       int odd = _blossom_set->find(_ugraph.source(edge));
  2496       _tree_set->insert(odd, tree);
  2497       (*_blossom_data)[odd].status = ODD;
  2498       matchedToOdd(odd);
  2499       (*_blossom_data)[odd].pred = edge;
  2500 
  2501       int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next));
  2502       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2503       _tree_set->insert(even, tree);
  2504       (*_blossom_data)[even].status = EVEN;
  2505       matchedToEven(even, tree);
  2506     }
  2507     
  2508     void shrinkOnEdge(const UEdge& uedge, int tree) {
  2509       int nca = -1;
  2510       std::vector<int> left_path, right_path;
  2511 
  2512       {
  2513 	std::set<int> left_set, right_set;
  2514 	int left = _blossom_set->find(_ugraph.source(uedge));
  2515 	left_path.push_back(left);
  2516 	left_set.insert(left);
  2517 
  2518 	int right = _blossom_set->find(_ugraph.target(uedge));
  2519 	right_path.push_back(right);
  2520 	right_set.insert(right);
  2521 
  2522 	while (true) {
  2523 
  2524 	  if ((*_blossom_data)[left].pred == INVALID) break;
  2525 
  2526 	  left = 
  2527 	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  2528 	  left_path.push_back(left);
  2529 	  left = 
  2530 	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  2531 	  left_path.push_back(left);
  2532 
  2533 	  left_set.insert(left);
  2534 
  2535 	  if (right_set.find(left) != right_set.end()) {
  2536 	    nca = left;
  2537 	    break;
  2538 	  }
  2539 
  2540 	  if ((*_blossom_data)[right].pred == INVALID) break;
  2541 
  2542 	  right = 
  2543 	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  2544 	  right_path.push_back(right);
  2545 	  right = 
  2546 	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  2547 	  right_path.push_back(right);
  2548 
  2549 	  right_set.insert(right);
  2550  
  2551 	  if (left_set.find(right) != left_set.end()) {
  2552 	    nca = right;
  2553 	    break;
  2554 	  }
  2555 
  2556 	}
  2557 
  2558 	if (nca == -1) {
  2559 	  if ((*_blossom_data)[left].pred == INVALID) {
  2560 	    nca = right;
  2561 	    while (left_set.find(nca) == left_set.end()) {
  2562 	      nca = 
  2563 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  2564 	      right_path.push_back(nca);
  2565 	      nca = 
  2566 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  2567 	      right_path.push_back(nca);
  2568 	    }
  2569 	  } else {
  2570 	    nca = left;
  2571 	    while (right_set.find(nca) == right_set.end()) {
  2572 	      nca = 
  2573 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  2574 	      left_path.push_back(nca);
  2575 	      nca = 
  2576 		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  2577 	      left_path.push_back(nca);
  2578 	    }
  2579 	  }
  2580 	}
  2581       }
  2582 
  2583       std::vector<int> subblossoms;
  2584       Edge prev;
  2585 
  2586       prev = _ugraph.direct(uedge, true);
  2587       for (int i = 0; left_path[i] != nca; i += 2) {
  2588 	subblossoms.push_back(left_path[i]);
  2589 	(*_blossom_data)[left_path[i]].next = prev;
  2590 	_tree_set->erase(left_path[i]);
  2591 
  2592 	subblossoms.push_back(left_path[i + 1]);
  2593 	(*_blossom_data)[left_path[i + 1]].status = EVEN;
  2594 	oddToEven(left_path[i + 1], tree);
  2595 	_tree_set->erase(left_path[i + 1]);
  2596 	prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred);
  2597       }
  2598 
  2599       int k = 0;
  2600       while (right_path[k] != nca) ++k;
  2601 
  2602       subblossoms.push_back(nca);
  2603       (*_blossom_data)[nca].next = prev;
  2604       
  2605       for (int i = k - 2; i >= 0; i -= 2) {
  2606 	subblossoms.push_back(right_path[i + 1]);
  2607 	(*_blossom_data)[right_path[i + 1]].status = EVEN;
  2608 	oddToEven(right_path[i + 1], tree);
  2609 	_tree_set->erase(right_path[i + 1]);
  2610 
  2611 	(*_blossom_data)[right_path[i + 1]].next = 
  2612 	  (*_blossom_data)[right_path[i + 1]].pred;
  2613 
  2614 	subblossoms.push_back(right_path[i]);
  2615 	_tree_set->erase(right_path[i]);
  2616       }
  2617 
  2618       int surface = 
  2619 	_blossom_set->join(subblossoms.begin(), subblossoms.end());
  2620 
  2621       for (int i = 0; i < int(subblossoms.size()); ++i) {
  2622 	if (!_blossom_set->trivial(subblossoms[i])) {
  2623 	  (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2624 	}
  2625 	(*_blossom_data)[subblossoms[i]].status = MATCHED;
  2626       }
  2627 
  2628       (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2629       (*_blossom_data)[surface].offset = 0;
  2630       (*_blossom_data)[surface].status = EVEN;
  2631       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2632       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2633 
  2634       _tree_set->insert(surface, tree);
  2635       _tree_set->erase(nca);
  2636     }
  2637 
  2638     void splitBlossom(int blossom) {
  2639       Edge next = (*_blossom_data)[blossom].next; 
  2640       Edge pred = (*_blossom_data)[blossom].pred;
  2641 
  2642       int tree = _tree_set->find(blossom);
  2643 
  2644       (*_blossom_data)[blossom].status = MATCHED;
  2645       oddToMatched(blossom);
  2646       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2647 	_delta2->erase(blossom);
  2648       }
  2649 
  2650       std::vector<int> subblossoms;
  2651       _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2652 
  2653       Value offset = (*_blossom_data)[blossom].offset;
  2654       int b = _blossom_set->find(_ugraph.source(pred));
  2655       int d = _blossom_set->find(_ugraph.source(next));
  2656       
  2657       int ib = -1, id = -1;
  2658       for (int i = 0; i < int(subblossoms.size()); ++i) {
  2659 	if (subblossoms[i] == b) ib = i;
  2660 	if (subblossoms[i] == d) id = i;
  2661 
  2662 	(*_blossom_data)[subblossoms[i]].offset = offset;
  2663 	if (!_blossom_set->trivial(subblossoms[i])) {
  2664 	  (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2665 	}
  2666 	if (_blossom_set->classPrio(subblossoms[i]) != 
  2667 	    std::numeric_limits<Value>::max()) {
  2668 	  _delta2->push(subblossoms[i], 
  2669 			_blossom_set->classPrio(subblossoms[i]) - 
  2670 			(*_blossom_data)[subblossoms[i]].offset);
  2671 	}
  2672       }
  2673       
  2674       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2675 	for (int i = (id + 1) % subblossoms.size(); 
  2676 	     i != ib; i = (i + 2) % subblossoms.size()) {
  2677 	  int sb = subblossoms[i];
  2678 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  2679 	  (*_blossom_data)[sb].next = 
  2680 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  2681 	}
  2682 
  2683 	for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2684 	  int sb = subblossoms[i];
  2685 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  2686 	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  2687 
  2688 	  (*_blossom_data)[sb].status = ODD;
  2689 	  matchedToOdd(sb);
  2690 	  _tree_set->insert(sb, tree);
  2691 	  (*_blossom_data)[sb].pred = pred;
  2692 	  (*_blossom_data)[sb].next = 
  2693 			   _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  2694 	  
  2695 	  pred = (*_blossom_data)[ub].next;
  2696       
  2697 	  (*_blossom_data)[tb].status = EVEN;
  2698 	  matchedToEven(tb, tree);
  2699 	  _tree_set->insert(tb, tree);
  2700 	  (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2701 	}
  2702       
  2703 	(*_blossom_data)[subblossoms[id]].status = ODD;
  2704 	matchedToOdd(subblossoms[id]);
  2705 	_tree_set->insert(subblossoms[id], tree);
  2706 	(*_blossom_data)[subblossoms[id]].next = next;
  2707 	(*_blossom_data)[subblossoms[id]].pred = pred;
  2708       
  2709       } else {
  2710 
  2711 	for (int i = (ib + 1) % subblossoms.size(); 
  2712 	     i != id; i = (i + 2) % subblossoms.size()) {
  2713 	  int sb = subblossoms[i];
  2714 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  2715 	  (*_blossom_data)[sb].next = 
  2716 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  2717 	}	
  2718 
  2719 	for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2720 	  int sb = subblossoms[i];
  2721 	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  2722 	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  2723 
  2724 	  (*_blossom_data)[sb].status = ODD;
  2725 	  matchedToOdd(sb);
  2726 	  _tree_set->insert(sb, tree);
  2727 	  (*_blossom_data)[sb].next = next; 
  2728 	  (*_blossom_data)[sb].pred =
  2729 	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  2730 
  2731 	  (*_blossom_data)[tb].status = EVEN;
  2732 	  matchedToEven(tb, tree);
  2733 	  _tree_set->insert(tb, tree);
  2734 	  (*_blossom_data)[tb].pred =
  2735 	    (*_blossom_data)[tb].next = 
  2736 	    _ugraph.oppositeEdge((*_blossom_data)[ub].next);
  2737 	  next = (*_blossom_data)[ub].next;
  2738 	}
  2739 
  2740 	(*_blossom_data)[subblossoms[ib]].status = ODD;
  2741 	matchedToOdd(subblossoms[ib]);
  2742 	_tree_set->insert(subblossoms[ib], tree);
  2743 	(*_blossom_data)[subblossoms[ib]].next = next;
  2744 	(*_blossom_data)[subblossoms[ib]].pred = pred;
  2745       }
  2746       _tree_set->erase(blossom);
  2747     }
  2748 
  2749     void extractBlossom(int blossom, const Node& base, const Edge& matching) {
  2750       if (_blossom_set->trivial(blossom)) {
  2751 	int bi = (*_node_index)[base];
  2752 	Value pot = (*_node_data)[bi].pot;
  2753 
  2754 	_matching->set(base, matching);
  2755 	_blossom_node_list.push_back(base);
  2756 	_node_potential->set(base, pot);
  2757       } else {
  2758 
  2759 	Value pot = (*_blossom_data)[blossom].pot;
  2760 	int bn = _blossom_node_list.size();
  2761 	
  2762 	std::vector<int> subblossoms;
  2763 	_blossom_set->split(blossom, std::back_inserter(subblossoms));
  2764 	int b = _blossom_set->find(base);
  2765 	int ib = -1;
  2766 	for (int i = 0; i < int(subblossoms.size()); ++i) {
  2767 	  if (subblossoms[i] == b) { ib = i; break; }
  2768 	}
  2769 	
  2770 	for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2771 	  int sb = subblossoms[(ib + i) % subblossoms.size()];
  2772 	  int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2773 	  
  2774 	  Edge m = (*_blossom_data)[tb].next;
  2775 	  extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m));
  2776 	  extractBlossom(tb, _ugraph.source(m), m);
  2777 	}
  2778 	extractBlossom(subblossoms[ib], base, matching);      
  2779 	
  2780 	int en = _blossom_node_list.size();
  2781 	
  2782 	_blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2783       }
  2784     }
  2785 
  2786     void extractMatching() {
  2787       std::vector<int> blossoms;
  2788       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2789 	blossoms.push_back(c);
  2790       }
  2791 
  2792       for (int i = 0; i < int(blossoms.size()); ++i) {
  2793 
  2794 	Value offset = (*_blossom_data)[blossoms[i]].offset;
  2795 	(*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2796 	for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); 
  2797 	     n != INVALID; ++n) {
  2798 	  (*_node_data)[(*_node_index)[n]].pot -= offset;
  2799 	}
  2800 	
  2801 	Edge matching = (*_blossom_data)[blossoms[i]].next;
  2802 	Node base = _ugraph.source(matching);
  2803 	extractBlossom(blossoms[i], base, matching);
  2804       }
  2805     }
  2806     
  2807   public:
  2808 
  2809     /// \brief Constructor
  2810     ///
  2811     /// Constructor.
  2812     MaxWeightedPerfectMatching(const UGraph& ugraph, const WeightMap& weight)
  2813       : _ugraph(ugraph), _weight(weight), _matching(0),
  2814 	_node_potential(0), _blossom_potential(), _blossom_node_list(),
  2815 	_node_num(0), _blossom_num(0),
  2816 
  2817 	_blossom_index(0), _blossom_set(0), _blossom_data(0),
  2818 	_node_index(0), _node_heap_index(0), _node_data(0),
  2819 	_tree_set_index(0), _tree_set(0),
  2820 
  2821 	_delta2_index(0), _delta2(0),
  2822 	_delta3_index(0), _delta3(0), 
  2823 	_delta4_index(0), _delta4(0),
  2824 
  2825 	_delta_sum() {}
  2826 
  2827     ~MaxWeightedPerfectMatching() {
  2828       destroyStructures();
  2829     }
  2830 
  2831     /// \name Execution control 
  2832     /// The simplest way to execute the algorithm is to use the member
  2833     /// \c run() member function.
  2834 
  2835     ///@{
  2836 
  2837     /// \brief Initialize the algorithm
  2838     ///
  2839     /// Initialize the algorithm
  2840     void init() {
  2841       createStructures();
  2842 
  2843       for (EdgeIt e(_ugraph); e != INVALID; ++e) {
  2844 	_node_heap_index->set(e, BinHeap<Value, EdgeIntMap>::PRE_HEAP);
  2845       }
  2846       for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2847 	_delta3_index->set(e, _delta3->PRE_HEAP);
  2848       }
  2849       for (int i = 0; i < _blossom_num; ++i) {
  2850 	_delta2_index->set(i, _delta2->PRE_HEAP);
  2851 	_delta4_index->set(i, _delta4->PRE_HEAP);
  2852       }
  2853 
  2854       int index = 0;
  2855       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2856 	Value max = std::numeric_limits<Value>::min();
  2857 	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  2858 	  if (_ugraph.target(e) == n) continue;
  2859 	  if ((dualScale * _weight[e]) / 2 > max) {
  2860 	    max = (dualScale * _weight[e]) / 2;
  2861 	  }
  2862 	}
  2863 	_node_index->set(n, index);
  2864 	(*_node_data)[index].pot = max;
  2865 	int blossom = 
  2866 	  _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2867 
  2868 	_tree_set->insert(blossom);
  2869 
  2870 	(*_blossom_data)[blossom].status = EVEN;
  2871 	(*_blossom_data)[blossom].pred = INVALID;
  2872 	(*_blossom_data)[blossom].next = INVALID;
  2873 	(*_blossom_data)[blossom].pot = 0;
  2874 	(*_blossom_data)[blossom].offset = 0;
  2875 	++index;
  2876       }
  2877       for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  2878 	int si = (*_node_index)[_ugraph.source(e)];
  2879 	int ti = (*_node_index)[_ugraph.target(e)];
  2880 	if (_ugraph.source(e) != _ugraph.target(e)) {
  2881 	  _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - 
  2882 			    dualScale * _weight[e]) / 2);
  2883 	}
  2884       }
  2885     }
  2886 
  2887     /// \brief Starts the algorithm
  2888     ///
  2889     /// Starts the algorithm
  2890     bool start() {
  2891       enum OpType {
  2892 	D2, D3, D4
  2893       };
  2894 
  2895       int unmatched = _node_num;
  2896       while (unmatched > 0) {
  2897 	Value d2 = !_delta2->empty() ? 
  2898 	  _delta2->prio() : std::numeric_limits<Value>::max();
  2899 
  2900 	Value d3 = !_delta3->empty() ? 
  2901 	  _delta3->prio() : std::numeric_limits<Value>::max();
  2902 
  2903 	Value d4 = !_delta4->empty() ? 
  2904 	  _delta4->prio() : std::numeric_limits<Value>::max();
  2905 
  2906 	_delta_sum = d2; OpType ot = D2;
  2907 	if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  2908 	if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  2909 
  2910 	if (_delta_sum == std::numeric_limits<Value>::max()) {
  2911 	  return false;
  2912 	}
  2913 	
  2914 	switch (ot) {
  2915 	case D2:
  2916 	  {
  2917 	    int blossom = _delta2->top();
  2918 	    Node n = _blossom_set->classTop(blossom);
  2919 	    Edge e = (*_node_data)[(*_node_index)[n]].heap.top();
  2920 	    extendOnEdge(e);
  2921 	  }
  2922 	  break;
  2923 	case D3:
  2924 	  {
  2925 	    UEdge e = _delta3->top();
  2926 	    
  2927 	    int left_blossom = _blossom_set->find(_ugraph.source(e));
  2928 	    int right_blossom = _blossom_set->find(_ugraph.target(e));
  2929 	  
  2930 	    if (left_blossom == right_blossom) {
  2931 	      _delta3->pop();
  2932 	    } else {
  2933 	      int left_tree = _tree_set->find(left_blossom);
  2934 	      int right_tree = _tree_set->find(right_blossom);
  2935 	    
  2936 	      if (left_tree == right_tree) {
  2937 		shrinkOnEdge(e, left_tree);
  2938 	      } else {
  2939 		augmentOnEdge(e);
  2940 		unmatched -= 2;
  2941 	      }
  2942 	    }
  2943 	  } break;
  2944 	case D4:
  2945 	  splitBlossom(_delta4->top());
  2946 	  break;
  2947 	}
  2948       }
  2949       extractMatching();
  2950       return true;
  2951     }
  2952 
  2953     /// \brief Runs %MaxWeightedPerfectMatching algorithm.
  2954     ///
  2955     /// This method runs the %MaxWeightedPerfectMatching algorithm.
  2956     ///
  2957     /// \note mwm.run() is just a shortcut of the following code.
  2958     /// \code
  2959     ///   mwm.init();
  2960     ///   mwm.start();
  2961     /// \endcode
  2962     bool run() {
  2963       init();
  2964       return start();
  2965     }
  2966 
  2967     /// @}
  2968 
  2969     /// \name Primal solution
  2970     /// Functions for get the primal solution, ie. the matching.
  2971     
  2972     /// @{
  2973 
  2974     /// \brief Returns the matching value.
  2975     ///
  2976     /// Returns the matching value.
  2977     Value matchingValue() const {
  2978       Value sum = 0;
  2979       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  2980 	if ((*_matching)[n] != INVALID) {
  2981 	  sum += _weight[(*_matching)[n]];
  2982 	}
  2983       }
  2984       return sum /= 2;
  2985     }
  2986 
  2987     /// \brief Returns true when the edge is in the matching.
  2988     ///
  2989     /// Returns true when the edge is in the matching.
  2990     bool matching(const UEdge& edge) const {
  2991       return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true);
  2992     }
  2993 
  2994     /// \brief Returns the incident matching edge.
  2995     ///
  2996     /// Returns the incident matching edge from given node.
  2997     Edge matching(const Node& node) const {
  2998       return (*_matching)[node];
  2999     }
  3000 
  3001     /// \brief Returns the mate of the node.
  3002     ///
  3003     /// Returns the adjancent node in a mathcing edge.
  3004     Node mate(const Node& node) const {
  3005       return _ugraph.target((*_matching)[node]);
  3006     }
  3007 
  3008     /// @}
  3009 
  3010     /// \name Dual solution
  3011     /// Functions for get the dual solution.
  3012     
  3013     /// @{
  3014 
  3015     /// \brief Returns the value of the dual solution.
  3016     ///
  3017     /// Returns the value of the dual solution. It should be equal to
  3018     /// the primal value scaled by \ref dualScale "dual scale".
  3019     Value dualValue() const {
  3020       Value sum = 0;
  3021       for (NodeIt n(_ugraph); n != INVALID; ++n) {
  3022 	sum += nodeValue(n);
  3023       }
  3024       for (int i = 0; i < blossomNum(); ++i) {
  3025         sum += blossomValue(i) * (blossomSize(i) / 2);
  3026       }
  3027       return sum;
  3028     }
  3029 
  3030     /// \brief Returns the value of the node.
  3031     ///
  3032     /// Returns the the value of the node.
  3033     Value nodeValue(const Node& n) const {
  3034       return (*_node_potential)[n];
  3035     }
  3036 
  3037     /// \brief Returns the number of the blossoms in the basis.
  3038     ///
  3039     /// Returns the number of the blossoms in the basis.
  3040     /// \see BlossomIt
  3041     int blossomNum() const {
  3042       return _blossom_potential.size();
  3043     }
  3044 
  3045 
  3046     /// \brief Returns the number of the nodes in the blossom.
  3047     ///
  3048     /// Returns the number of the nodes in the blossom.
  3049     int blossomSize(int k) const {
  3050       return _blossom_potential[k].end - _blossom_potential[k].begin;
  3051     }
  3052 
  3053     /// \brief Returns the value of the blossom.
  3054     ///
  3055     /// Returns the the value of the blossom.
  3056     /// \see BlossomIt
  3057     Value blossomValue(int k) const {
  3058       return _blossom_potential[k].value;
  3059     }
  3060 
  3061     /// \brief Lemon iterator for get the items of the blossom.
  3062     ///
  3063     /// Lemon iterator for get the nodes of the blossom. This class
  3064     /// provides a common style lemon iterator which gives back a
  3065     /// subset of the nodes.
  3066     class BlossomIt {
  3067     public:
  3068 
  3069       /// \brief Constructor.
  3070       ///
  3071       /// Constructor for get the nodes of the variable. 
  3072       BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) 
  3073         : _algorithm(&algorithm)
  3074       {
  3075         _index = _algorithm->_blossom_potential[variable].begin;
  3076         _last = _algorithm->_blossom_potential[variable].end;
  3077       }
  3078 
  3079       /// \brief Invalid constructor.
  3080       ///
  3081       /// Invalid constructor.
  3082       BlossomIt(Invalid) : _index(-1) {}
  3083 
  3084       /// \brief Conversion to node.
  3085       ///
  3086       /// Conversion to node.
  3087       operator Node() const { 
  3088         return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  3089       }
  3090 
  3091       /// \brief Increment operator.
  3092       ///
  3093       /// Increment operator.
  3094       BlossomIt& operator++() {
  3095         ++_index;
  3096         if (_index == _last) {
  3097           _index = -1;
  3098         }
  3099         return *this; 
  3100       }
  3101 
  3102       bool operator==(const BlossomIt& it) const { 
  3103         return _index == it._index; 
  3104       }
  3105       bool operator!=(const BlossomIt& it) const { 
  3106         return _index != it._index;
  3107       }
  3108 
  3109     private:
  3110       const MaxWeightedPerfectMatching* _algorithm;
  3111       int _last;
  3112       int _index;
  3113     };
  3114 
  3115     /// @}
  3116     
  3117   };
  3118 
  3119   
  3120 } //END OF NAMESPACE LEMON
  3121 
  3122 #endif //LEMON_MAX_MATCHING_H