lemon/prim.h
author ladanyi
Sun, 29 Jan 2006 23:46:05 +0000
changeset 1926 6a30ef4d10f1
child 1953 d4f411003580
permissions -rw-r--r--
Do not rely on the autodetection of cplex and glpk.
     1 /* -*- C++ -*-
     2  * lemon/prim.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_PRIM_H
    18 #define LEMON_PRIM_H
    19 
    20 ///\ingroup spantree
    21 ///\file
    22 ///\brief Prim algorithm to compute minimum spanning tree.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/bin_heap.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 #include <lemon/traits.h>
    30 
    31 #include <lemon/concept/ugraph.h>
    32 
    33 namespace lemon {
    34 
    35   ///Default traits class of Prim class.
    36 
    37   ///Default traits class of Prim class.
    38   ///\param GR Graph type.
    39   ///\param LM Type of cost map.
    40   template<class GR, class LM>
    41   struct PrimDefaultTraits{
    42     ///The graph type the algorithm runs on. 
    43     typedef GR UGraph;
    44     ///The type of the map that stores the edge costs.
    45 
    46     ///The type of the map that stores the edge costs.
    47     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    48     typedef LM CostMap;
    49     //The type of the cost of the edges.
    50     typedef typename LM::Value Value;
    51     /// The cross reference type used by heap.
    52 
    53     /// The cross reference type used by heap.
    54     /// Usually it is \c UGraph::NodeMap<int>.
    55     typedef typename UGraph::template NodeMap<int> HeapCrossRef;
    56     ///Instantiates a HeapCrossRef.
    57 
    58     ///This function instantiates a \ref HeapCrossRef. 
    59     /// \param G is the graph, to which we would like to define the 
    60     /// HeapCrossRef.
    61     static HeapCrossRef *createHeapCrossRef(const GR &_graph){
    62       return new HeapCrossRef(_graph);
    63     }
    64     
    65     ///The heap type used by Prim algorithm.
    66 
    67     ///The heap type used by Prim algorithm.
    68     ///
    69     ///\sa BinHeap
    70     ///\sa Prim
    71     typedef BinHeap<typename UGraph::Node, typename LM::Value,
    72 		    HeapCrossRef, std::less<Value> > Heap;
    73 
    74     static Heap *createHeap(HeapCrossRef& _ref){
    75       return new Heap(_ref);
    76     }
    77 
    78     ///\brief The type of the map that stores the last
    79     ///edges of the minimum spanning tree.
    80     /// 
    81     ///The type of the map that stores the last
    82     ///edges of the minimum spanning tree.
    83     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    84     ///
    85     typedef typename UGraph::template NodeMap<typename GR::UEdge> PredMap;
    86     ///Instantiates a PredMap.
    87  
    88     ///This function instantiates a \ref PredMap. 
    89     ///\param G is the graph, to which we would like to define the PredMap.
    90     static PredMap *createPredMap(const GR &_graph){
    91       return new PredMap(_graph);
    92     }
    93 
    94     ///The type of the map that stores whether an edge is in the
    95     ///spanning tree or not.
    96 
    97     ///The type of the map that stores whether an edge is in the
    98     ///spanning tree or not.
    99     ///By default it is a NullMap.
   100     typedef NullMap<typename UGraph::UEdge,bool> TreeMap;
   101     ///Instantiates a TreeMap.
   102 
   103     ///This function instantiates a \ref TreeMap.
   104     ///\param g is the graph, to which
   105     ///we would like to define the \ref TreeMap
   106     static TreeMap *createTreeMap(const GR &){
   107       return new TreeMap();
   108     }
   109 
   110     ///The type of the map that stores whether a nodes is processed.
   111  
   112     ///The type of the map that stores whether a nodes is processed.
   113     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   114     ///By default it is a NodeMap<bool>.
   115     typedef NullMap<typename UGraph::Node,bool> ProcessedMap;
   116     ///Instantiates a ProcessedMap.
   117  
   118     ///This function instantiates a \ref ProcessedMap. 
   119     ///\param g is the graph, to which
   120     ///we would like to define the \ref ProcessedMap
   121 #ifdef DOXYGEN
   122     static ProcessedMap *createProcessedMap(const GR &_graph)
   123 #else
   124     static ProcessedMap *createProcessedMap(const GR &)
   125 #endif
   126     {
   127       return new ProcessedMap();
   128     }
   129   };
   130   
   131   ///%Prim algorithm class to find a minimum spanning tree.
   132   
   133   /// \ingroup spantree
   134   ///This class provides an efficient implementation of %Prim algorithm.
   135   ///
   136   ///The running time is O(e*log n) where e is the number of edges and
   137   ///n is the number of nodes in the graph.
   138   ///
   139   ///The edge costs are passed to the algorithm using a
   140   ///\ref concept::ReadMap "ReadMap",
   141   ///so it is easy to change it to any kind of cost.
   142   ///
   143   ///The type of the cost is determined by the
   144   ///\ref concept::ReadMap::Value "Value" of the cost map.
   145   ///
   146   ///It is also possible to change the underlying priority heap.
   147   ///
   148   ///\param GR The graph type the algorithm runs on. The default value
   149   ///is \ref ListUGraph. The value of GR is not used directly by
   150   ///Prim, it is only passed to \ref PrimDefaultTraits.
   151   ///
   152   ///\param LM This read-only UEdgeMap determines the costs of the
   153   ///edges. It is read once for each edge, so the map may involve in
   154   ///relatively time consuming process to compute the edge cost if
   155   ///it is necessary. The default map type is \ref
   156   ///concept::UGraph::UEdgeMap "UGraph::UEdgeMap<int>".  The value
   157   ///of LM is not used directly by Prim, it is only passed to \ref
   158   ///PrimDefaultTraits.
   159   ///
   160   ///\param TR Traits class to set
   161   ///various data types used by the algorithm.  The default traits
   162   ///class is \ref PrimDefaultTraits
   163   ///"PrimDefaultTraits<GR,LM>".  See \ref
   164   ///PrimDefaultTraits for the documentation of a Prim traits
   165   ///class.
   166   ///
   167   ///\author Balazs Attila Mihaly
   168 
   169 #ifdef DOXYGEN
   170   template <typename GR,
   171 	    typename LM,
   172 	    typename TR>
   173 #else
   174   template <typename GR=ListUGraph,
   175 	    typename LM=typename GR::template UEdgeMap<int>,
   176 	    typename TR=PrimDefaultTraits<GR,LM> >
   177 #endif
   178   class Prim {
   179   public:
   180     /**
   181      * \brief \ref Exception for uninitialized parameters.
   182      *
   183      * This error represents problems in the initialization
   184      * of the parameters of the algorithms.
   185      */
   186     class UninitializedParameter : public lemon::UninitializedParameter {
   187     public:
   188       virtual const char* exceptionName() const {
   189 	return "lemon::Prim::UninitializedParameter";
   190       }
   191     };
   192 
   193     typedef TR Traits;
   194     ///The type of the underlying graph.
   195     typedef typename TR::UGraph UGraph;
   196     ///\e
   197     typedef typename UGraph::Node Node;
   198     ///\e
   199     typedef typename UGraph::NodeIt NodeIt;
   200     ///\e
   201     typedef typename UGraph::UEdge UEdge;
   202     ///\e
   203     typedef typename UGraph::IncEdgeIt IncEdgeIt;
   204     
   205     ///The type of the cost of the edges.
   206     typedef typename TR::CostMap::Value Value;
   207     ///The type of the map that stores the edge costs.
   208     typedef typename TR::CostMap CostMap;
   209     ///\brief The type of the map that stores the last
   210     ///predecessor edges of the spanning tree.
   211     typedef typename TR::PredMap PredMap;
   212     ///Edges of the spanning tree.
   213     typedef typename TR::TreeMap TreeMap;
   214     ///The type of the map indicating if a node is processed.
   215     typedef typename TR::ProcessedMap ProcessedMap;
   216     ///The cross reference type used for the current heap.
   217     typedef typename TR::HeapCrossRef HeapCrossRef;
   218     ///The heap type used by the prim algorithm.
   219     typedef typename TR::Heap Heap;
   220   private:
   221     /// Pointer to the underlying graph.
   222     const UGraph *graph;
   223     /// Pointer to the cost map
   224     const CostMap *cost;
   225     ///Pointer to the map of predecessors edges.
   226     PredMap *_pred;
   227     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   228     bool local_pred;
   229     ///Pointer to the map of tree edges.
   230     TreeMap *_tree;
   231     ///Indicates if \ref _tree is locally allocated (\c true) or not.
   232     bool local_tree;
   233     ///Pointer to the map of processed status of the nodes.
   234     ProcessedMap *_processed;
   235     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   236     bool local_processed;
   237     ///Pointer to the heap cross references.
   238     HeapCrossRef *_heap_cross_ref;
   239     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   240     bool local_heap_cross_ref;
   241     ///Pointer to the heap.
   242     Heap *_heap;
   243     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   244     bool local_heap;
   245 
   246     ///Creates the maps if necessary.
   247     void create_maps(){
   248       if(!_pred) {
   249 	local_pred = true;
   250 	_pred = Traits::createPredMap(*graph);
   251       }
   252       if(!_tree) {
   253 	local_tree = true;
   254 	_tree = Traits::createTreeMap(*graph);
   255       }
   256       if(!_processed) {
   257 	local_processed = true;
   258 	_processed = Traits::createProcessedMap(*graph);
   259       }
   260       if (!_heap_cross_ref) {
   261 	local_heap_cross_ref = true;
   262 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   263       }
   264       if (!_heap) {
   265 	local_heap = true;
   266 	_heap = Traits::createHeap(*_heap_cross_ref);
   267       }
   268     }
   269     
   270   public :
   271 
   272     typedef Prim Create;
   273  
   274     ///\name Named template parameters
   275 
   276     ///@{
   277 
   278     template <class T>
   279     struct DefPredMapTraits : public Traits {
   280       typedef T PredMap;
   281       static PredMap *createPredMap(const UGraph &_graph){
   282 	throw UninitializedParameter();
   283       }
   284     };
   285     ///\ref named-templ-param "Named parameter" for setting PredMap type
   286 
   287     ///\ref named-templ-param "Named parameter" for setting PredMap type
   288     ///
   289     template <class T>
   290     struct DefPredMap 
   291       : public Prim< UGraph, CostMap, DefPredMapTraits<T> > {
   292       typedef Prim< UGraph, CostMap, DefPredMapTraits<T> > Create;
   293     };
   294     
   295     template <class T>
   296     struct DefProcessedMapTraits : public Traits {
   297       typedef T ProcessedMap;
   298       static ProcessedMap *createProcessedMap(const UGraph &_graph){
   299 	throw UninitializedParameter();
   300       }
   301     };
   302     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   303 
   304     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   305     ///
   306     template <class T>
   307     struct DefProcessedMap 
   308       : public Prim< UGraph, CostMap, DefProcessedMapTraits<T> > { 
   309       typedef Prim< UGraph, CostMap, DefProcessedMapTraits<T> > Create;
   310     };
   311     
   312     struct DefGraphProcessedMapTraits : public Traits {
   313       typedef typename UGraph::template NodeMap<bool> ProcessedMap;
   314       static ProcessedMap *createProcessedMap(const UGraph &_graph){
   315 	return new ProcessedMap(_graph);
   316       }
   317     };
   318 
   319 
   320     template <class H, class CR>
   321     struct DefHeapTraits : public Traits {
   322       typedef CR HeapCrossRef;
   323       typedef H Heap;
   324       static HeapCrossRef *createHeapCrossRef(const UGraph &) {
   325 	throw UninitializedParameter();
   326       }
   327       static Heap *createHeap(HeapCrossRef &){
   328 	return UninitializedParameter();
   329       }
   330     };
   331     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   332     ///reference type
   333 
   334     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   335     ///reference type
   336     ///
   337     template <class H, class CR = typename UGraph::template NodeMap<int> >
   338     struct DefHeap
   339       : public Prim< UGraph, CostMap, DefHeapTraits<H, CR> > {
   340       typedef Prim< UGraph, CostMap, DefHeapTraits<H, CR> > Create;
   341     };
   342 
   343     template <class H, class CR>
   344     struct DefStandardHeapTraits : public Traits {
   345       typedef CR HeapCrossRef;
   346       typedef H Heap;
   347       static HeapCrossRef *createHeapCrossRef(const UGraph &_graph) {
   348 	return new HeapCrossRef(_graph);
   349       }
   350       static Heap *createHeap(HeapCrossRef &ref){
   351 	return new Heap(ref);
   352       }
   353     };
   354     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   355     ///reference type with automatic allocation
   356 
   357     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   358     ///reference type. It can allocate the heap and the cross reference 
   359     ///object if the cross reference's constructor waits for the graph as 
   360     ///parameter and the heap's constructor waits for the cross reference.
   361     template <class H, class CR = typename UGraph::template NodeMap<int> >
   362     struct DefStandardHeap
   363       : public Prim< UGraph, CostMap, DefStandardHeapTraits<H, CR> > { 
   364       typedef Prim< UGraph, CostMap, DefStandardHeapTraits<H, CR> > 
   365       Create;
   366     };
   367 
   368     template <class TM>
   369     struct DefTreeMapTraits : public Traits {
   370       typedef TM TreeMap;
   371       static TreeMap *createTreeMap(const UGraph &) {
   372         throw UninitializedParameter();
   373       }
   374     };
   375     ///\ref named-templ-param "Named parameter" for setting TreeMap
   376 
   377     ///\ref named-templ-param "Named parameter" for setting TreeMap
   378     ///
   379     template <class TM>
   380     struct DefTreeMap
   381       : public Prim< UGraph, CostMap, DefTreeMapTraits<TM> > {
   382       typedef Prim< UGraph, CostMap, DefTreeMapTraits<TM> > Create;
   383     };    
   384 
   385     struct DefGraphTreeMapTraits : public Traits {
   386       typedef typename UGraph::template NodeMap<bool> TreeMap;
   387       static TreeMap *createTreeMap(const UGraph &_graph){
   388 	return new TreeMap(_graph);
   389       }
   390     };
   391 
   392     ///@}
   393 
   394 
   395   protected:
   396 
   397     Prim() {}
   398 
   399   public:      
   400     
   401     ///Constructor.
   402     
   403     ///\param _graph the graph the algorithm will run on.
   404     ///\param _cost the cost map used by the algorithm.
   405     Prim(const UGraph& _graph, const CostMap& _cost) :
   406       graph(&_graph), cost(&_cost),
   407       _pred(NULL), local_pred(false),
   408       _tree(NULL), local_tree(false),
   409       _processed(NULL), local_processed(false),
   410       _heap_cross_ref(NULL), local_heap_cross_ref(false),
   411       _heap(NULL), local_heap(false)
   412     {
   413       checkConcept<concept::UGraph, UGraph>();
   414     }
   415     
   416     ///Destructor.
   417     ~Prim(){
   418       if(local_pred) delete _pred;
   419       if(local_tree) delete _tree;
   420       if(local_processed) delete _processed;
   421       if(local_heap_cross_ref) delete _heap_cross_ref;
   422       if(local_heap) delete _heap;
   423     }
   424 
   425     ///\brief Sets the cost map.
   426 
   427     ///Sets the cost map.
   428     ///\return <tt> (*this) </tt>
   429     Prim &costMap(const CostMap &m){
   430       cost = &m;
   431       return *this;
   432     }
   433 
   434     ///\brief Sets the map storing the predecessor edges.
   435 
   436     ///Sets the map storing the predecessor edges.
   437     ///If you don't use this function before calling \ref run(),
   438     ///it will allocate one. The destuctor deallocates this
   439     ///automatically allocated map, of course.
   440     ///\return <tt> (*this) </tt>
   441     Prim &predMap(PredMap &m){
   442       if(local_pred) {
   443 	delete _pred;
   444 	local_pred=false;
   445       }
   446       _pred = &m;
   447       return *this;
   448     }
   449 
   450     ///\brief Sets the map storing the tree edges.
   451 
   452     ///Sets the map storing the tree edges.
   453     ///If you don't use this function before calling \ref run(),
   454     ///it will allocate one. The destuctor deallocates this
   455     ///automatically allocated map, of course.
   456     ///By default this is a NullMap.
   457     ///\return <tt> (*this) </tt>
   458     Prim &treeMap(TreeMap &m){
   459       if(local_tree) {
   460 	delete _tree;
   461 	local_tree=false;
   462       }
   463       _tree = &m;
   464       return *this;
   465     }
   466 
   467     ///\brief Sets the heap and the cross reference used by algorithm.
   468 
   469     ///Sets the heap and the cross reference used by algorithm.
   470     ///If you don't use this function before calling \ref run(),
   471     ///it will allocate one. The destuctor deallocates this
   472     ///automatically allocated map, of course.
   473     ///\return <tt> (*this) </tt>
   474     Prim &heap(Heap& heap, HeapCrossRef &crossRef){
   475       if(local_heap_cross_ref) {
   476 	delete _heap_cross_ref;
   477 	local_heap_cross_ref=false;
   478       }
   479       _heap_cross_ref = &crossRef;
   480       if(local_heap) {
   481 	delete _heap;
   482 	local_heap=false;
   483       }
   484       _heap = &heap;
   485       return *this;
   486     }
   487 
   488   public:
   489     ///\name Execution control
   490     ///The simplest way to execute the algorithm is to use
   491     ///one of the member functions called \c run(...).
   492     ///\n
   493     ///If you need more control on the execution,
   494     ///first you must call \ref init(), then you can add several source nodes
   495     ///with \ref addSource().
   496     ///Finally \ref start() will perform the actual path
   497     ///computation.
   498 
   499     ///@{
   500 
   501     ///\brief Initializes the internal data structures.
   502 
   503     ///Initializes the internal data structures.
   504     ///
   505     void init(){
   506       create_maps();
   507       _heap->clear();
   508       for ( NodeIt u(*graph) ; u!=INVALID ; ++u ) {
   509 	_pred->set(u,INVALID);
   510 	_processed->set(u,false);
   511 	_heap_cross_ref->set(u,Heap::PRE_HEAP);
   512       }
   513     }
   514     
   515     ///\brief Adds a new source node.
   516 
   517     ///Adds a new source node to the priority heap.
   518     ///
   519     ///It checks if the node has already been added to the heap and
   520     ///it is pushed to the heap only if it was not in the heap.
   521     void addSource(Node s){
   522       if(_heap->state(s) != Heap::IN_HEAP) {
   523 	_heap->push(s,Value());
   524       }
   525     }
   526     ///\brief Processes the next node in the priority heap
   527 
   528     ///Processes the next node in the priority heap.
   529     ///
   530     ///\return The processed node.
   531     ///
   532     ///\warning The priority heap must not be empty!
   533     Node processNextNode(){
   534       Node v=_heap->top(); 
   535       _heap->pop();
   536       _processed->set(v,true);
   537       
   538       for(IncEdgeIt e(*graph,v); e!=INVALID; ++e) {
   539 	Node w=graph->oppositeNode(v,e);
   540 	switch(_heap->state(w)) {
   541 	case Heap::PRE_HEAP:
   542 	  _heap->push(w,(*cost)[e]);
   543 	  _pred->set(w,e);
   544 	  break;
   545 	case Heap::IN_HEAP:
   546 	  if ( (*cost)[e] < (*_heap)[w] ) {
   547 	    _heap->decrease(w,(*cost)[e]); 
   548 	    _pred->set(w,e);
   549 	  }
   550 	  break;
   551 	case Heap::POST_HEAP:
   552 	  break;
   553 	}
   554       }
   555       if ((*_pred)[v]!=INVALID)_tree->set((*_pred)[v],true);
   556       return v;
   557     }
   558 
   559     ///\brief Next node to be processed.
   560     
   561     ///Next node to be processed.
   562     ///
   563     ///\return The next node to be processed or INVALID if the priority heap
   564     /// is empty.
   565     Node nextNode(){ 
   566       return _heap->empty()?_heap->top():INVALID;
   567     }
   568  
   569     ///\brief Returns \c false if there are nodes to be processed in the priority heap
   570     ///
   571     ///Returns \c false if there are nodes
   572     ///to be processed in the priority heap
   573     bool emptyQueue() { return _heap->empty(); }
   574     ///\brief Returns the number of the nodes to be processed in the priority heap
   575 
   576     ///Returns the number of the nodes to be processed in the priority heap
   577     ///
   578     int queueSize() { return _heap->size(); }
   579     
   580     ///\brief Executes the algorithm.
   581 
   582     ///Executes the algorithm.
   583     ///
   584     ///\pre init() must be called and at least one node should be added
   585     ///with addSource() before using this function.
   586     ///
   587     ///This method runs the %Prim algorithm from the node(s)
   588     ///in order to compute the
   589     ///minimum spanning tree.
   590     ///
   591     void start(){
   592       while ( !_heap->empty() ) processNextNode();
   593     }
   594     
   595     ///\brief Executes the algorithm until a condition is met.
   596 
   597     ///Executes the algorithm until a condition is met.
   598     ///
   599     ///\pre init() must be called and at least one node should be added
   600     ///with addSource() before using this function.
   601     ///
   602     ///\param nm must be a bool (or convertible) node map. The algorithm
   603     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   604     template<class NodeBoolMap>
   605     void start(const NodeBoolMap &nm){
   606       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   607       if ( !_heap->empty() ) _processed->set(_heap->top(),true);
   608     }
   609     
   610     ///\brief Runs %Prim algorithm.
   611     
   612     ///This method runs the %Prim algorithm
   613     ///in order to compute the
   614     ///minimum spanning tree (or minimum spanning forest).
   615     ///The method also works on graphs that has more than one components.
   616     ///In this case it computes the minimum spanning forest.
   617     void run() {
   618       init();
   619       for(NodeIt it(*graph);it!=INVALID;++it){
   620 	if(!processed(it)){
   621 	  addSource(it);
   622 	  start();
   623 	}
   624       }
   625     }
   626 
   627     ///\brief Runs %Prim algorithm from node \c s.
   628     
   629     ///This method runs the %Prim algorithm from node \c s
   630     ///in order to
   631     ///compute the
   632     ///minimun spanning tree
   633     ///
   634     ///\note d.run(s) is just a shortcut of the following code.
   635     ///\code
   636     ///  d.init();
   637     ///  d.addSource(s);
   638     ///  d.start();
   639     ///\endcode
   640     ///\note If the graph has more than one components, the method
   641     ///will compute the minimun spanning tree for only one component.
   642     ///
   643     ///See \ref run() if you want to compute the minimal spanning forest.
   644     void run(Node s){
   645       init();
   646       addSource(s);
   647       start();
   648     }
   649     
   650     ///@}
   651 
   652     ///\name Query Functions
   653     ///The result of the %Prim algorithm can be obtained using these
   654     ///functions.\n
   655     ///Before the use of these functions,
   656     ///either run() or start() must be called.
   657     
   658     ///@{
   659 
   660     ///\brief Returns the 'previous edge' of the minimum spanning tree.
   661 
   662     ///For a node \c v it returns the 'previous edge' of the minimum spanning tree,
   663     ///i.e. it returns the edge from where \c v was reached. For a source node
   664     ///or an unreachable node it is \ref INVALID.
   665     ///The minimum spanning tree used here is equal to the minimum spanning tree used
   666     ///in \ref predNode().  \pre \ref run() or \ref start() must be called before
   667     ///using this function.
   668     UEdge predEdge(Node v) const { return (*_pred)[v]; }
   669 
   670     ///\brief Returns the 'previous node' of the minimum spanning tree.
   671 
   672     ///For a node \c v it returns the 'previous node' of the minimum spanning tree,
   673     ///i.e. it returns the node from where \c v was reached. For a source node
   674     ///or an unreachable node it is \ref INVALID.
   675     //The minimum spanning tree used here is equal to the minimum spanning
   676     ///tree used in \ref predEdge().  \pre \ref run() or \ref start() must be called
   677     ///before using this function.
   678     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   679 				  graph->source((*_pred)[v]); }
   680     
   681     ///\brief Returns a reference to the NodeMap of the edges of the minimum spanning tree.
   682 
   683     ///Returns a reference to the NodeMap of the edges of the
   684     ///minimum spanning tree.
   685     ///\pre \ref run() or \ref start() must be called before using this function.
   686     const PredMap &predMap() const { return *_pred;}
   687  
   688     ///\brief Returns a reference to the tree edges map.
   689 
   690     ///Returns a reference to the TreeEdgeMap of the edges of the
   691     ///minimum spanning tree. The value of the map is \c true only if the edge is in
   692     ///the minimum spanning tree.
   693     ///\warning By default, the TreeEdgeMap is a NullMap.
   694     ///
   695     ///If it is not set before the execution of the algorithm, use the \ref
   696     ///treeMap(TreeMap&) function (after the execution) to set an UEdgeMap with the
   697     ///edges of the minimum spanning tree in O(n) time where n is the number of
   698     ///nodes in the graph.
   699     ///\pre \ref run() or \ref start() must be called before using this function.
   700     const TreeMap &treeMap() const { return *_tree;}
   701  
   702     ///\brief Sets the tree edges map.
   703 
   704     ///Sets the TreeMap of the edges of the minimum spanning tree.
   705     ///The map values belonging to the edges of the minimum
   706     ///spanning tree are set to \param tree_edge_value or \c true by default,
   707     ///the other map values remain untouched.
   708     ///
   709     ///\pre \ref run() or \ref start() must be called before using this function.
   710 
   711     template<class TreeMap>
   712     void quickTreeEdges(
   713         TreeMap& tree,
   714         const typename TreeMap::Value& tree_edge_value=true) const {
   715       for(NodeIt i(*graph);i!=INVALID;++i){
   716         if((*_pred)[i]!=INVALID) tree.set((*_pred)[i],tree_edge_value);
   717       }
   718     }
   719 
   720     ///\brief Sets the tree edges map.
   721 
   722     ///Sets the TreeMap of the edges of the minimum spanning tree.
   723     ///The map values belonging to the edges of the minimum
   724     ///spanning tree are set to \param tree_edge_value or \c true by default while
   725     ///the edge values not belonging to the minimum spanning tree are set to
   726     ///\param tree_default_value or \c false by default.
   727     ///
   728     ///\pre \ref run() or \ref start() must be called before using this function.
   729 
   730     template<class TreeMap>
   731     void treeEdges(
   732         TreeMap& tree,
   733         const typename TreeMap::Value& tree_edge_value=true,
   734         const typename TreeMap::Value& tree_default_value=false) const {
   735       for(typename ItemSetTraits<UGraph,UEdge>::ItemIt i(*graph);i!=INVALID;++i)
   736 	tree.set(i,tree_default_value);
   737       for(NodeIt i(*graph);i!=INVALID;++i){
   738         if((*_pred)[i]!=INVALID) tree.set((*_pred)[i],tree_edge_value);
   739       }
   740     }
   741 
   742     ///\brief Checks if a node is reachable from the starting node.
   743 
   744     ///Returns \c true if \c v is reachable from the starting node.
   745     ///\warning The source nodes are inditated as unreached.
   746     ///\pre \ref run() or \ref start() must be called before using this function.
   747     ///
   748     bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
   749 
   750     ///\brief Checks if a node is processed.
   751 
   752     ///Returns \c true if \c v is processed, i.e. \c v is already connencted to the
   753     ///minimum spanning tree.
   754     ///\pre \ref run() or \ref start() must be called before using this function.
   755     ///
   756     bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
   757     
   758 
   759     ///\brief Checks if an edge is in the spanning tree or not.
   760 
   761     ///Checks if an edge is in the spanning tree or not.
   762     ///\param e is the edge that will be checked
   763     ///\return \c true if e is in the spanning tree, \c false otherwise
   764     bool tree(UEdge e){
   765       return (*_pred)[*graph.source(e)]==e || (*_pred)[*graph.target(e)]==e;
   766     }
   767     ///@}
   768   };
   769 
   770 
   771   /// \ingroup spantree
   772   ///
   773   /// \brief Function type interface for Prim algorithm.
   774   ///
   775   /// Function type interface for Prim algorithm.
   776   /// \param graph the UGraph that the algorithm runs on
   777   /// \param cost the CostMap of the edges
   778   /// \retval tree the EdgeMap that contains whether an edge is in 
   779   /// the spanning tree or not
   780   ///
   781   ///\sa Prim
   782   template<class Graph,class CostMap,class TreeMap>
   783   void prim(const Graph& graph, const CostMap& cost,TreeMap& tree){
   784     typename Prim<Graph,CostMap>::template DefTreeMap<TreeMap>::
   785       Create prm(graph,cost);
   786     prm.treeMap(tree);
   787     prm.run();
   788   };
   789 
   790 } //END OF NAMESPACE LEMON
   791 
   792 #endif