src/work/akos/simann.h
author alpar
Tue, 11 Jan 2005 09:05:24 +0000
changeset 1070 6aa1520a0f2f
parent 1018 68beae6758a7
child 1096 1cfb25ef14d2
permissions -rw-r--r--
ShiftMap and ScaleMap added
     1 #ifndef LEMON_SIMANN_H
     2 #define LEMON_SIMANN_H
     3 
     4 #include <cstdlib>
     5 #include <cmath>
     6 #include <lemon/time_measure.h>
     7 
     8 namespace lemon {
     9 
    10   const double INFTY = 1e24;
    11 
    12   class SimAnnBase {
    13   public:
    14     class Controller;
    15   private:
    16     Controller *controller;
    17   protected:
    18     double curr_cost;
    19     double best_cost;
    20     double prev_cost;
    21     double prev_prev_cost;
    22 
    23     virtual void mutate() = 0;
    24     virtual void revert() = 0;
    25     virtual void saveAsBest() = 0;
    26   public:
    27     SimAnnBase() {
    28       best_cost = prev_cost = prev_prev_cost = INFTY;
    29     }
    30     void setController(Controller &_controller) {
    31       controller = &_controller;
    32       controller->setBase(this);
    33     }
    34     double getCurrCost() const { return curr_cost; }
    35     double getPrevCost() const { return prev_cost; }
    36     double getBestCost() const { return best_cost; }
    37     void run() {
    38       controller->init();
    39       do {
    40         mutate();
    41         if (controller->accept()) {
    42           controller->acceptEvent();
    43           if (curr_cost < best_cost) {
    44             saveAsBest();
    45             controller->improveEvent();
    46           }
    47         }
    48         else {
    49           revert();
    50           controller->rejectEvent();
    51         }
    52       } while (controller->next());
    53     }
    54 
    55     /*! \brief A base class for controllers. */
    56     class Controller {
    57     public:
    58       SimAnnBase *base;
    59       virtual void init() {}
    60       /*! \brief This is called when a neighbouring state gets accepted. */
    61       virtual void acceptEvent() {}
    62       /*! \brief This is called when the accepted neighbouring state's cost is
    63        *  less than the best found one's.
    64        */
    65       virtual void improveEvent() {}
    66       /*! \brief This is called when a neighbouring state gets rejected. */
    67       virtual void rejectEvent() {}
    68       virtual void setBase(SimAnnBase *_base) { base = _base; }
    69       /*! */
    70       virtual bool next() = 0;
    71       /*! */
    72       virtual bool accept() = 0;
    73     };
    74   };
    75 
    76   template <typename E>
    77   class SimAnn : public SimAnnBase {
    78   private:
    79     E *curr_ent;
    80     E *best_ent;
    81   public:
    82     SimAnn() : SimAnnBase() {}
    83     void setEntity(E &ent) {
    84       curr_ent = new E(ent);
    85       best_ent = new E(ent);
    86       curr_cost = curr_ent->getCost();
    87     }
    88     E getBestEntity() { return *best_ent; }
    89     void mutate() {
    90       prev_prev_cost = prev_cost;
    91       prev_cost = curr_cost;
    92       curr_ent->mutate();
    93       curr_cost = curr_ent->getCost();
    94     }
    95     void revert() {
    96       curr_ent->revert();
    97       curr_cost = prev_cost;
    98       prev_cost = prev_prev_cost;
    99     }
   100     void saveAsBest() {
   101       *best_ent = *curr_ent;
   102       best_cost = curr_cost;
   103     }
   104   };
   105 
   106   class EntitySkeleton {
   107   public:
   108     /*! \return the cost of the entity */
   109     double getCost() { return 0.0; }
   110     /*! \brief Makes a minor change to the entity. */
   111     void mutate() {}
   112     /*! \brief Restores the entity to its previous state i.e. reverts the
   113      *  effects of the last mutate.
   114      */
   115     void revert() {}
   116   };
   117 
   118   /*! \brief A simple controller for the simulated annealing class.
   119    *  \todo Find a way to set the various parameters.
   120    */
   121   class SimpleController : public SimAnnBase::Controller {
   122   public:
   123     long iter, last_impr, max_iter, max_no_impr;
   124     double temp, ann_fact;
   125     /*! \param _max_iter maximum number of iterations
   126      *  \param _max_no_impr maximum number of consecutive iterations which do
   127      *         not yield a better solution
   128      *  \param _temp initial temperature
   129      *  \param _ann_fact annealing factor
   130      */
   131     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   132     double _temp = 1000, double _ann_fact = 0.9999) : iter(0), last_impr(0),
   133     max_iter(_max_iter), max_no_impr(_max_no_impr), temp(_temp),
   134     ann_fact(_ann_fact) {}
   135     void acceptEvent() {
   136       iter++;
   137     }
   138     void improveEvent() {
   139       last_impr = iter;
   140     }
   141     void rejectEvent() {
   142       iter++;
   143     }
   144     bool next() {
   145       temp *= ann_fact;
   146       bool quit = (iter > max_iter) || (iter - last_impr > max_no_impr);
   147       return !quit;
   148     }
   149     bool accept() {
   150       double cost_diff = base->getPrevCost() - base->getCurrCost();
   151       if (cost_diff < 0.0) {
   152         return (drand48() <= exp(cost_diff / temp));
   153       }
   154       else {
   155         return true;
   156       }
   157     }
   158   };
   159 
   160   /*! \brief A controller with preset running time for the simulated annealing
   161    *  class.
   162    *  \todo Find a better name.
   163    */
   164   class AdvancedController : public SimAnnBase::Controller {
   165   private:
   166     Timer timer;
   167     /*! \param time the elapsed time in seconds */
   168     virtual double threshold(double time) {
   169       // this is the function 1 / log(x) scaled and offset
   170       static double xm = 5.0 / end_time;
   171       static double ym = start_threshold / (1 / log(1.2) - 1 / log(5.0 + 1.2));
   172       return ym * (1 / log(xm * time + 1.2) - 1 / log(5.0 + 1.2));
   173     }
   174   public:
   175     double alpha, beta, gamma;
   176     double end_time, start_time;
   177     double start_threshold;
   178     double avg_cost;
   179     double temp, ann_fact;
   180     bool warmup;
   181     /*! \param _end_time running time in seconds
   182      *  \param _alpha parameter used to calculate the running average
   183      *  \param _beta parameter used to decrease the annealing factor
   184      *  \param _gamma parameter used to increase the temperature
   185      */
   186     AdvancedController(double _end_time, double _alpha = 0.2,
   187     double _beta = 0.9, double _gamma = 1.2) : alpha(_alpha), beta(_beta),
   188     gamma(_gamma), end_time(_end_time), ann_fact(0.9999), warmup(true) {}
   189     void init() {
   190       avg_cost = base->getCurrCost();
   191     }
   192     void acceptEvent() {
   193       avg_cost = alpha * base->getCurrCost() + (1.0 - alpha) * avg_cost;
   194       if (warmup) {
   195         static double max_cost_diff = 0.0;
   196         static int incr_cnt = 0;
   197         double cost_diff = base->getCurrCost() - base->getPrevCost();
   198         if (cost_diff > 0.0) {
   199           incr_cnt++;
   200           if (cost_diff > max_cost_diff) {
   201             max_cost_diff = cost_diff;
   202           }
   203         }
   204         if (incr_cnt >= 100) {
   205           // calculate starting threshold and starting temperature
   206           start_threshold = fabs(base->getBestCost() - avg_cost);
   207           temp = max_cost_diff / log(0.5);
   208           warmup = false;
   209           timer.reset();
   210         }
   211       }
   212     }
   213     void improveEvent() {
   214     }
   215     void rejectEvent() {
   216     }
   217     bool next() {
   218       if (warmup) {
   219         return true;
   220       }
   221       else {
   222         double elapsed_time = timer.getRealTime();
   223         if (fabs(avg_cost - base->getBestCost()) > threshold(elapsed_time)) {
   224           // decrease the annealing factor
   225           ann_fact *= beta;
   226         }
   227         else {
   228           // increase the temperature
   229           temp *= gamma;
   230         }
   231         temp *= ann_fact;
   232         return elapsed_time < end_time;
   233       }
   234     }
   235     bool accept() {
   236       if (warmup) {
   237         // we accept eveything during the "warm up" phase
   238         return true;
   239       }
   240       else {
   241         double cost_diff = base->getPrevCost() - base->getCurrCost();
   242         if (cost_diff < 0.0) {
   243           return (drand48() <= exp(cost_diff / temp));
   244         }
   245         else {
   246           return true;
   247         }
   248       }
   249     }
   250   };
   251 
   252 }
   253 
   254 #endif