Gettext is needed for bootstrapping.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/base_extender.h>
27 #include <lemon/bits/graph_extender.h>
29 #include <lemon/error.h>
40 int first_in, first_out;
46 int prev_in, prev_out;
47 int next_in, next_out;
50 std::vector<NodeT> nodes;
56 std::vector<EdgeT> edges;
62 typedef ListGraphBase Graph;
65 friend class ListGraphBase;
69 explicit Node(int pid) { id = pid;}
73 Node (Invalid) { id = -1; }
74 bool operator==(const Node& node) const {return id == node.id;}
75 bool operator!=(const Node& node) const {return id != node.id;}
76 bool operator<(const Node& node) const {return id < node.id;}
80 friend class ListGraphBase;
84 explicit Edge(int pid) { id = pid;}
88 Edge (Invalid) { id = -1; }
89 bool operator==(const Edge& edge) const {return id == edge.id;}
90 bool operator!=(const Edge& edge) const {return id != edge.id;}
91 bool operator<(const Edge& edge) const {return id < edge.id;}
97 : nodes(), first_node(-1),
98 first_free_node(-1), edges(), first_free_edge(-1) {}
105 int maxNodeId() const { return nodes.size()-1; }
111 int maxEdgeId() const { return edges.size()-1; }
113 Node source(Edge e) const { return Node(edges[e.id].source); }
114 Node target(Edge e) const { return Node(edges[e.id].target); }
117 void first(Node& node) const {
118 node.id = first_node;
121 void next(Node& node) const {
122 node.id = nodes[node.id].next;
126 void first(Edge& e) const {
129 n!=-1 && nodes[n].first_in == -1;
131 e.id = (n == -1) ? -1 : nodes[n].first_in;
134 void next(Edge& edge) const {
135 if (edges[edge.id].next_in != -1) {
136 edge.id = edges[edge.id].next_in;
139 for(n = nodes[edges[edge.id].target].next;
140 n!=-1 && nodes[n].first_in == -1;
142 edge.id = (n == -1) ? -1 : nodes[n].first_in;
146 void firstOut(Edge &e, const Node& v) const {
147 e.id = nodes[v.id].first_out;
149 void nextOut(Edge &e) const {
150 e.id=edges[e.id].next_out;
153 void firstIn(Edge &e, const Node& v) const {
154 e.id = nodes[v.id].first_in;
156 void nextIn(Edge &e) const {
157 e.id=edges[e.id].next_in;
161 static int id(Node v) { return v.id; }
162 static int id(Edge e) { return e.id; }
164 static Node nodeFromId(int id) { return Node(id);}
165 static Edge edgeFromId(int id) { return Edge(id);}
167 /// Adds a new node to the graph.
169 /// \warning It adds the new node to the front of the list.
170 /// (i.e. the lastly added node becomes the first.)
174 if(first_free_node==-1) {
176 nodes.push_back(NodeT());
179 first_free_node = nodes[n].next;
182 nodes[n].next = first_node;
183 if(first_node != -1) nodes[first_node].prev = n;
187 nodes[n].first_in = nodes[n].first_out = -1;
192 Edge addEdge(Node u, Node v) {
195 if (first_free_edge == -1) {
197 edges.push_back(EdgeT());
200 first_free_edge = edges[n].next_in;
203 edges[n].source = u.id;
204 edges[n].target = v.id;
206 edges[n].next_out = nodes[u.id].first_out;
207 if(nodes[u.id].first_out != -1) {
208 edges[nodes[u.id].first_out].prev_out = n;
211 edges[n].next_in = nodes[v.id].first_in;
212 if(nodes[v.id].first_in != -1) {
213 edges[nodes[v.id].first_in].prev_in = n;
216 edges[n].prev_in = edges[n].prev_out = -1;
218 nodes[u.id].first_out = nodes[v.id].first_in = n;
223 void erase(const Node& node) {
226 if(nodes[n].next != -1) {
227 nodes[nodes[n].next].prev = nodes[n].prev;
230 if(nodes[n].prev != -1) {
231 nodes[nodes[n].prev].next = nodes[n].next;
233 first_node = nodes[n].next;
236 nodes[n].next = first_free_node;
241 void erase(const Edge& edge) {
244 if(edges[n].next_in!=-1) {
245 edges[edges[n].next_in].prev_in = edges[n].prev_in;
248 if(edges[n].prev_in!=-1) {
249 edges[edges[n].prev_in].next_in = edges[n].next_in;
251 nodes[edges[n].target].first_in = edges[n].next_in;
255 if(edges[n].next_out!=-1) {
256 edges[edges[n].next_out].prev_out = edges[n].prev_out;
259 if(edges[n].prev_out!=-1) {
260 edges[edges[n].prev_out].next_out = edges[n].next_out;
262 nodes[edges[n].source].first_out = edges[n].next_out;
265 edges[n].next_in = first_free_edge;
273 first_node = first_free_node = first_free_edge = -1;
277 void _changeTarget(Edge e, Node n)
279 if(edges[e.id].next_in != -1)
280 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
281 if(edges[e.id].prev_in != -1)
282 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
283 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
284 if (nodes[n.id].first_in != -1) {
285 edges[nodes[n.id].first_in].prev_in = e.id;
287 edges[e.id].target = n.id;
288 edges[e.id].prev_in = -1;
289 edges[e.id].next_in = nodes[n.id].first_in;
290 nodes[n.id].first_in = e.id;
292 void _changeSource(Edge e, Node n)
294 if(edges[e.id].next_out != -1)
295 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
296 if(edges[e.id].prev_out != -1)
297 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
298 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
299 if (nodes[n.id].first_out != -1) {
300 edges[nodes[n.id].first_out].prev_out = e.id;
302 edges[e.id].source = n.id;
303 edges[e.id].prev_out = -1;
304 edges[e.id].next_out = nodes[n.id].first_out;
305 nodes[n.id].first_out = e.id;
310 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
312 /// \addtogroup graphs
315 ///A list graph class.
317 ///This is a simple and fast erasable graph implementation.
319 ///It addition that it conforms to the
320 ///\ref concept::ErasableGraph "ErasableGraph" concept,
321 ///it also provides several additional useful extra functionalities.
322 ///\sa concept::ErasableGraph.
324 class ListGraph : public ExtendedListGraphBase {
327 typedef ExtendedListGraphBase Parent;
329 /// Changes the target of \c e to \c n
331 /// Changes the target of \c e to \c n
333 ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
334 ///referencing the changed edge remain
335 ///valid. However <tt>InEdge</tt>'s are invalidated.
336 void changeTarget(Edge e, Node n) {
339 /// Changes the source of \c e to \c n
341 /// Changes the source of \c e to \c n
343 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
344 ///referencing the changed edge remain
345 ///valid. However <tt>OutEdge</tt>'s are invalidated.
346 void changeSource(Edge e, Node n) {
350 /// Invert the direction of an edge.
352 ///\note The <tt>Edge</tt>'s
353 ///referencing the changed edge remain
354 ///valid. However <tt>OutEdge</tt>'s and <tt>InEdge</tt>'s are invalidated.
355 void reverseEdge(Edge e) {
357 _changeTarget(e,source(e));
361 ///Using this it possible to avoid the superfluous memory allocation.
363 ///Using this it possible to avoid the superfluous memory allocation.
364 ///\todo more docs...
365 void reserveEdge(int n) { edges.reserve(n); };
367 ///Contract two nodes.
369 ///This function contracts two nodes.
371 ///Node \p b will be removed but instead of deleting
372 ///its neighboring edges, they will be joined to \p a.
373 ///The last parameter \p r controls whether to remove loops. \c true
374 ///means that loops will be removed.
376 ///\note The <tt>Edge</tt>s
377 ///referencing a moved edge remain
378 ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
379 ///may be invalidated.
380 void contract(Node a, Node b, bool r = true)
382 for(OutEdgeIt e(*this,b);e!=INVALID;) {
385 if(r && target(e)==a) erase(e);
386 else changeSource(e,a);
389 for(InEdgeIt e(*this,b);e!=INVALID;) {
392 if(r && source(e)==a) erase(e);
393 else changeTarget(e,a);
401 ///This function splits a node. First a new node is added to the graph,
402 ///then the source of each outgoing edge of \c n is moved to this new node.
403 ///If \c connect is \c true (this is the default value), then a new edge
404 ///from \c n to the newly created node is also added.
405 ///\return The newly created node.
407 ///\note The <tt>Edge</tt>s
408 ///referencing a moved edge remain
409 ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
410 ///may be invalidated.
411 ///\warning This functionality cannot be used together with the Snapshot
413 ///\todo It could be implemented in a bit faster way.
414 Node split(Node n, bool connect = true)
417 for(OutEdgeIt e(*this,n);e!=INVALID;) {
423 if(connect) addEdge(n,b);
429 ///This function splits an edge. First a new node \c b is added to the graph,
430 ///then the original edge is re-targetes to \c b. Finally an edge
431 ///from \c b to the original target is added.
432 ///\return The newly created node.
433 ///\warning This functionality cannot be used together with the Snapshot
438 addEdge(b,target(e));
443 ///Class to make a snapshot of the graph and to restrore to it later.
445 ///Class to make a snapshot of the graph and to restrore to it later.
447 ///The newly added nodes and edges can be removed using the
448 ///restore() function.
450 ///\warning Edge and node deletions cannot be restored.
451 ///\warning Snapshots cannot be nested.
452 class Snapshot : protected Parent::NodeNotifier::ObserverBase,
453 protected Parent::EdgeNotifier::ObserverBase
457 class UnsupportedOperation : public LogicError {
459 virtual const char* exceptionName() const {
460 return "lemon::ListGraph::Snapshot::UnsupportedOperation";
468 std::list<Node> added_nodes;
469 std::list<Edge> added_edges;
472 virtual void add(const Node& n) {
473 added_nodes.push_back(n);
475 virtual void erase(const Node&)
477 throw UnsupportedOperation();
479 virtual void add(const Edge& n) {
480 added_edges.push_back(n);
482 virtual void erase(const Edge&)
484 throw UnsupportedOperation();
487 ///\bug What is this used for?
489 virtual void build() {}
490 ///\bug What is this used for?
492 virtual void clear() {}
494 void regist(ListGraph &_g) {
496 Parent::NodeNotifier::ObserverBase::attach(g->getNotifier(Node()));
497 Parent::EdgeNotifier::ObserverBase::attach(g->getNotifier(Edge()));
501 Parent::NodeNotifier::ObserverBase::detach();
502 Parent::EdgeNotifier::ObserverBase::detach();
507 ///Default constructur.
509 ///Default constructur.
510 ///To actually make a snapshot you must call save().
513 ///Constructor that immediately makes a snapshot.
515 ///This constructor immediately makes a snapshot of the graph.
516 ///\param _g The graph we make a snapshot of.
517 Snapshot(ListGraph &_g) {
520 ///\bug Is it necessary?
529 ///Make a snapshot of the graph.
531 ///This function can be called more than once. In case of a repeated
532 ///call, the previous snapshot gets lost.
533 ///\param _g The graph we make the snapshot of.
534 void save(ListGraph &_g)
544 ///Undo the changes until the last snapshot.
546 ///Undo the changes until last snapshot created by save().
548 ///\todo This function might be called undo().
552 while(!added_edges.empty()) {
553 old_g.erase(added_edges.front());
554 added_edges.pop_front();
556 while(!added_nodes.empty()) {
557 old_g.erase(added_nodes.front());
558 added_nodes.pop_front();
567 /**************** Undirected List Graph ****************/
569 typedef UGraphExtender<UndirGraphExtender<ListGraphBase> >
570 ExtendedListUGraphBase;
572 /// \addtogroup graphs
575 ///An undirected list graph class.
577 ///This is a simple and fast erasable undirected graph implementation.
579 ///It conforms to the
580 ///\ref concept::UGraph "UGraph" concept.
582 ///\sa concept::UGraph.
584 ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
585 ///haven't been implemented yet.
587 class ListUGraph : public ExtendedListUGraphBase {
589 typedef ExtendedListUGraphBase Parent;
590 /// \brief Changes the target of \c e to \c n
592 /// Changes the target of \c e to \c n
594 /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
595 /// referencing the changed edge remain
596 /// valid. However <tt>InEdge</tt>'s are invalidated.
597 void changeTarget(UEdge e, Node n) {
600 /// Changes the source of \c e to \c n
602 /// Changes the source of \c e to \c n
604 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
605 ///referencing the changed edge remain
606 ///valid. However <tt>OutEdge</tt>'s are invalidated.
607 void changeSource(UEdge e, Node n) {
610 /// \brief Contract two nodes.
612 /// This function contracts two nodes.
614 /// Node \p b will be removed but instead of deleting
615 /// its neighboring edges, they will be joined to \p a.
616 /// The last parameter \p r controls whether to remove loops. \c true
617 /// means that loops will be removed.
619 /// \note The <tt>Edge</tt>s
620 /// referencing a moved edge remain
622 void contract(Node a, Node b, bool r = true) {
623 for(IncEdgeIt e(*this, b); e!=INVALID;) {
624 IncEdgeIt f = e; ++f;
625 if (r && runningNode(e) == a) {
627 } else if (source(e) == b) {
639 class ListBpUGraphBase {
642 class NodeSetError : public LogicError {
643 virtual const char* exceptionName() const {
644 return "lemon::ListBpUGraph::NodeSetError";
651 int first_edge, next_node;
655 int aNode, prev_out, next_out;
656 int bNode, prev_in, next_in;
659 std::vector<NodeT> aNodes;
660 std::vector<NodeT> bNodes;
662 std::vector<UEdgeT> edges;
665 int first_free_anode;
668 int first_free_bnode;
675 friend class ListBpUGraphBase;
679 explicit Node(int _id) : id(_id) {}
682 Node(Invalid) { id = -1; }
683 bool operator==(const Node i) const {return id==i.id;}
684 bool operator!=(const Node i) const {return id!=i.id;}
685 bool operator<(const Node i) const {return id<i.id;}
689 friend class ListBpUGraphBase;
693 explicit UEdge(int _id) { id = _id;}
696 UEdge (Invalid) { id = -1; }
697 bool operator==(const UEdge i) const {return id==i.id;}
698 bool operator!=(const UEdge i) const {return id!=i.id;}
699 bool operator<(const UEdge i) const {return id<i.id;}
703 : first_anode(-1), first_free_anode(-1),
704 first_bnode(-1), first_free_bnode(-1),
705 first_free_edge(-1) {}
707 void firstANode(Node& node) const {
708 node.id = first_anode != -1 ? (first_anode << 1) : -1;
710 void nextANode(Node& node) const {
711 node.id = aNodes[node.id >> 1].next_node;
714 void firstBNode(Node& node) const {
715 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
717 void nextBNode(Node& node) const {
718 node.id = bNodes[node.id >> 1].next_node;
721 void first(Node& node) const {
722 if (first_anode != -1) {
723 node.id = (first_anode << 1);
724 } else if (first_bnode != -1) {
725 node.id = (first_bnode << 1) + 1;
730 void next(Node& node) const {
732 node.id = aNodes[node.id >> 1].next_node;
734 if (first_bnode != -1) {
735 node.id = (first_bnode << 1) + 1;
739 node.id = bNodes[node.id >> 1].next_node;
743 void first(UEdge& edge) const {
744 int aNodeId = first_anode;
745 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
746 aNodeId = aNodes[aNodeId].next_node != -1 ?
747 aNodes[aNodeId].next_node >> 1 : -1;
750 edge.id = aNodes[aNodeId].first_edge;
755 void next(UEdge& edge) const {
756 int aNodeId = edges[edge.id].aNode >> 1;
757 edge.id = edges[edge.id].next_out;
759 aNodeId = aNodes[aNodeId].next_node != -1 ?
760 aNodes[aNodeId].next_node >> 1 : -1;
761 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
762 aNodeId = aNodes[aNodeId].next_node != -1 ?
763 aNodes[aNodeId].next_node >> 1 : -1;
766 edge.id = aNodes[aNodeId].first_edge;
773 void firstFromANode(UEdge& edge, const Node& node) const {
774 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
775 edge.id = aNodes[node.id >> 1].first_edge;
777 void nextFromANode(UEdge& edge) const {
778 edge.id = edges[edge.id].next_out;
781 void firstFromBNode(UEdge& edge, const Node& node) const {
782 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
783 edge.id = bNodes[node.id >> 1].first_edge;
785 void nextFromBNode(UEdge& edge) const {
786 edge.id = edges[edge.id].next_in;
789 static int id(const Node& node) {
792 static Node nodeFromId(int id) {
795 int maxNodeId() const {
796 return aNodes.size() > bNodes.size() ?
797 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
800 static int id(const UEdge& edge) {
803 static UEdge uEdgeFromId(int id) {
806 int maxUEdgeId() const {
810 static int aNodeId(const Node& node) {
813 static Node fromANodeId(int id) {
814 return Node(id << 1);
816 int maxANodeId() const {
817 return aNodes.size();
820 static int bNodeId(const Node& node) {
823 static Node fromBNodeId(int id) {
824 return Node((id << 1) + 1);
826 int maxBNodeId() const {
827 return bNodes.size();
830 Node aNode(const UEdge& edge) const {
831 return Node(edges[edge.id].aNode);
833 Node bNode(const UEdge& edge) const {
834 return Node(edges[edge.id].bNode);
837 static bool aNode(const Node& node) {
838 return (node.id & 1) == 0;
841 static bool bNode(const Node& node) {
842 return (node.id & 1) == 1;
847 if (first_free_anode == -1) {
848 aNodeId = aNodes.size();
849 aNodes.push_back(NodeT());
851 aNodeId = first_free_anode;
852 first_free_anode = aNodes[first_free_anode].next_node;
854 aNodes[aNodeId].next_node =
855 first_anode != -1 ? (first_anode << 1) : -1;
856 first_anode = aNodeId;
857 aNodes[aNodeId].first_edge = -1;
858 return Node(aNodeId << 1);
863 if (first_free_bnode == -1) {
864 bNodeId = bNodes.size();
865 bNodes.push_back(NodeT());
867 bNodeId = first_free_bnode;
868 first_free_bnode = bNodes[first_free_bnode].next_node;
870 bNodes[bNodeId].next_node =
871 first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
872 first_bnode = bNodeId;
873 bNodes[bNodeId].first_edge = -1;
874 return Node((bNodeId << 1) + 1);
877 UEdge addEdge(const Node& source, const Node& target) {
878 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
880 if (first_free_edge != -1) {
881 edgeId = first_free_edge;
882 first_free_edge = edges[edgeId].next_out;
884 edgeId = edges.size();
885 edges.push_back(UEdgeT());
887 if ((source.id & 1) == 0) {
888 edges[edgeId].aNode = source.id;
889 edges[edgeId].bNode = target.id;
891 edges[edgeId].aNode = target.id;
892 edges[edgeId].bNode = source.id;
894 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
895 edges[edgeId].prev_out = -1;
896 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
897 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
899 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
900 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
901 edges[edgeId].prev_in = -1;
902 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
903 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
905 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
906 return UEdge(edgeId);
909 void erase(const Node& node) {
911 int aNodeId = node.id >> 1;
912 aNodes[aNodeId].next_node = first_free_anode;
913 first_free_anode = aNodeId;
915 int bNodeId = node.id >> 1;
916 bNodes[bNodeId].next_node = first_free_bnode;
917 first_free_bnode = bNodeId;
921 void erase(const UEdge& edge) {
922 if (edges[edge.id].prev_out != -1) {
923 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
925 aNodes[edges[edge.id].aNode].first_edge = edges[edge.id].next_out;
927 if (edges[edge.id].next_out != -1) {
928 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
930 if (edges[edge.id].prev_in != -1) {
931 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
933 bNodes[edges[edge.id].bNode].first_edge = edges[edge.id].next_in;
935 if (edges[edge.id].next_in != -1) {
936 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
938 edges[edge.id].next_out = first_free_edge;
939 first_free_edge = edge.id;
947 first_free_anode = -1;
949 first_free_bnode = -1;
950 first_free_edge = -1;
956 typedef BpUGraphExtender< ListBpUGraphBase > ExtendedListBpUGraphBase;
960 /// \brief A smart bipartite undirected graph class.
962 /// This is a bipartite undirected graph implementation.
963 /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph"
965 /// \sa concept::BpUGraph.
967 class ListBpUGraph : public ExtendedListBpUGraphBase {};