Changes in the interface and new test program added.
9 ///\brief A simple two dimensional vector and a bounding box implementation
11 /// The class \ref hugo::xy "xy" implements
12 ///a two dimensional vector with the usual
15 /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine
16 /// the rectangular bounding box a set of \ref hugo::xy "xy"'s.
25 2 dimensional vector (plainvector) implementation
35 ///Default constructor: both coordinates become 0
38 ///Constructing the instance from coordinates
39 xy(T a, T b) : x(a), y(a) { }
42 ///Gives back the square of the norm of the vector
47 ///Increments the left hand side by u
48 xy<T>& operator +=(const xy<T>& u){
54 ///Decrements the left hand side by u
55 xy<T>& operator -=(const xy<T>& u){
61 ///Multiplying the left hand side with a scalar
62 xy<T>& operator *=(const T &u){
68 ///Dividing the left hand side by a scalar
69 xy<T>& operator /=(const T &u){
75 ///Returns the scalar product of two vectors
76 T operator *(const xy<T>& u){
80 ///Returns the sum of two vectors
81 xy<T> operator+(const xy<T> &u) const {
86 ///Returns the difference of two vectors
87 xy<T> operator-(const xy<T> &u) const {
92 ///Returns a vector multiplied by a scalar
93 xy<T> operator*(const T &u) const {
98 ///Returns a vector divided by a scalar
99 xy<T> operator/(const T &u) const {
105 bool operator==(const xy<T> &u){
106 return (x==u.x) && (y==u.y);
109 ///Testing inequality
110 bool operator!=(xy u){
111 return (x!=u.x) || (y!=u.y);
116 ///Reading a plainvector from a stream
119 std::istream& operator>>(std::istream &is, xy<T> &z)
126 ///Outputting a plainvector to a stream
129 std::ostream& operator<<(std::ostream &os, xy<T> z)
131 os << "(" << z.x << ", " << z.y << ")";
137 Implementation of a bounding box of plainvectors.
142 xy<T> bottom_left, top_right;
146 ///Default constructor: an empty bounding box
147 BoundingBox() { _empty = true; }
149 ///Constructing the instance from one point
150 BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
152 ///Is there any point added
157 ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined)
158 xy<T> bottomLeft() const {
162 ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined)
163 xy<T> topRight() const {
167 ///Checks whether a point is inside a bounding box
168 bool inside(const xy<T>& u){
172 return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
173 (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
177 ///Increments a bounding box with a point
178 BoundingBox& operator +=(const xy<T>& u){
180 bottom_left=top_right=u;
184 if (bottom_left.x > u.x) bottom_left.x = u.x;
185 if (bottom_left.y > u.y) bottom_left.y = u.y;
186 if (top_right.x < u.x) top_right.x = u.x;
187 if (top_right.y < u.y) top_right.y = u.y;
192 ///Sums a bounding box and a point
193 BoundingBox operator +(const xy<T>& u){
194 BoundingBox b = *this;
198 ///Increments a bounding box with an other bounding box
199 BoundingBox& operator +=(const BoundingBox &u){
201 *this += u.bottomLeft();
202 *this += u.topRight();
207 ///Sums two bounding boxes
208 BoundingBox operator +(const BoundingBox& u){
209 BoundingBox b = *this;
213 };//class Boundingbox