lemon/graph_adaptor.h
author deba
Fri, 30 Sep 2005 13:12:39 +0000
changeset 1691 6be54bcc14ec
parent 1681 84e43c7ca1e3
child 1697 4c593a4096da
permissions -rw-r--r--
Handling C x A -> A multiplication
     1 /* -*- C++ -*-
     2  * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_ADAPTOR_H
    18 #define LEMON_GRAPH_ADAPTOR_H
    19 
    20 ///\ingroup graph_adaptors
    21 ///\file
    22 ///\brief Several graph adaptors.
    23 ///
    24 ///This file contains several useful graph adaptor functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/erasable_graph_extender.h>
    31 #include <lemon/bits/clearable_graph_extender.h>
    32 #include <lemon/bits/extendable_graph_extender.h>
    33 #include <lemon/bits/iterable_graph_extender.h>
    34 #include <lemon/bits/alteration_notifier.h>
    35 #include <lemon/bits/default_map.h>
    36 #include <lemon/bits/undir_graph_extender.h>
    37 #include <iostream>
    38 
    39 namespace lemon {
    40 
    41   // Graph adaptors
    42 
    43   /*!
    44     \addtogroup graph_adaptors
    45     @{
    46    */
    47 
    48   /*! 
    49     Base type for the Graph Adaptors
    50     
    51     \warning Graph adaptors are in even more experimental state than the other
    52     parts of the lib. Use them at you own risk.
    53     
    54     This is the base type for most of LEMON graph adaptors. 
    55     This class implements a trivial graph adaptor i.e. it only wraps the 
    56     functions and types of the graph. The purpose of this class is to 
    57     make easier implementing graph adaptors. E.g. if an adaptor is 
    58     considered which differs from the wrapped graph only in some of its 
    59     functions or types, then it can be derived from GraphAdaptor, and only the 
    60     differences should be implemented.
    61   
    62     \author Marton Makai 
    63   */
    64   template<typename _Graph>
    65   class GraphAdaptorBase {
    66   public:
    67     typedef _Graph Graph;
    68     /// \todo Is it needed?
    69     typedef Graph BaseGraph;
    70     typedef Graph ParentGraph;
    71 
    72   protected:
    73     Graph* graph;
    74     GraphAdaptorBase() : graph(0) { }
    75     void setGraph(Graph& _graph) { graph=&_graph; }
    76 
    77   public:
    78     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    79  
    80     typedef typename Graph::Node Node;
    81     typedef typename Graph::Edge Edge;
    82    
    83     void first(Node& i) const { graph->first(i); }
    84     void first(Edge& i) const { graph->first(i); }
    85     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    86     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    87 
    88     void next(Node& i) const { graph->next(i); }
    89     void next(Edge& i) const { graph->next(i); }
    90     void nextIn(Edge& i) const { graph->nextIn(i); }
    91     void nextOut(Edge& i) const { graph->nextOut(i); }
    92 
    93     Node source(const Edge& e) const { return graph->source(e); }
    94     Node target(const Edge& e) const { return graph->target(e); }
    95 
    96     int nodeNum() const { return graph->nodeNum(); }
    97     int edgeNum() const { return graph->edgeNum(); }
    98   
    99     Node addNode() const { return Node(graph->addNode()); }
   100     Edge addEdge(const Node& source, const Node& target) const { 
   101       return Edge(graph->addEdge(source, target)); }
   102 
   103     void erase(const Node& i) const { graph->erase(i); }
   104     void erase(const Edge& i) const { graph->erase(i); }
   105   
   106     void clear() const { graph->clear(); }
   107     
   108     int id(const Node& v) const { return graph->id(v); }
   109     int id(const Edge& e) const { return graph->id(e); }
   110     
   111     Edge oppositeNode(const Edge& e) const { 
   112       return Edge(graph->opposite(e)); 
   113     }
   114 
   115     template <typename _Value>
   116     class NodeMap : public _Graph::template NodeMap<_Value> {
   117     public:
   118       typedef typename _Graph::template NodeMap<_Value> Parent;
   119       NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
   120       NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   121       : Parent(*gw.graph, value) { }
   122     };
   123 
   124     template <typename _Value>
   125     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   126     public:
   127       typedef typename _Graph::template EdgeMap<_Value> Parent;
   128       EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
   129       EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   130       : Parent(*gw.graph, value) { }
   131     };
   132 
   133   };
   134 
   135   template <typename _Graph>
   136   class GraphAdaptor :
   137     public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
   138   public:
   139     typedef _Graph Graph;
   140     typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   141   protected:
   142     GraphAdaptor() : Parent() { }
   143 
   144   public:
   145     GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   146   };
   147 
   148   template <typename _Graph>
   149   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   150   public:
   151     typedef _Graph Graph;
   152     typedef GraphAdaptorBase<_Graph> Parent;
   153   protected:
   154     RevGraphAdaptorBase() : Parent() { }
   155   public:
   156     typedef typename Parent::Node Node;
   157     typedef typename Parent::Edge Edge;
   158 
   159     //    using Parent::first;
   160     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   161     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   162 
   163     //    using Parent::next;
   164     void nextIn(Edge& i) const { Parent::nextOut(i); }
   165     void nextOut(Edge& i) const { Parent::nextIn(i); }
   166 
   167     Node source(const Edge& e) const { return Parent::target(e); }
   168     Node target(const Edge& e) const { return Parent::source(e); }
   169   };
   170     
   171 
   172   /// A graph adaptor which reverses the orientation of the edges.
   173 
   174   ///\warning Graph adaptors are in even more experimental state than the other
   175   ///parts of the lib. Use them at you own risk.
   176   ///
   177   /// Let \f$G=(V, A)\f$ be a directed graph and 
   178   /// suppose that a graph instange \c g of type 
   179   /// \c ListGraph implements \f$G\f$.
   180   /// \code
   181   /// ListGraph g;
   182   /// \endcode
   183   /// For each directed edge 
   184   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   185   /// reversing its orientation. 
   186   /// Then RevGraphAdaptor implements the graph structure with node-set 
   187   /// \f$V\f$ and edge-set 
   188   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   189   /// reversing the orientation of its edges. The following code shows how 
   190   /// such an instance can be constructed.
   191   /// \code
   192   /// RevGraphAdaptor<ListGraph> gw(g);
   193   /// \endcode
   194   ///\author Marton Makai
   195   template<typename _Graph>
   196   class RevGraphAdaptor : 
   197     public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
   198   public:
   199     typedef _Graph Graph;
   200     typedef IterableGraphExtender<
   201       RevGraphAdaptorBase<_Graph> > Parent;
   202   protected:
   203     RevGraphAdaptor() { }
   204   public:
   205     RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   206   };
   207 
   208   
   209   template <typename _Graph, typename NodeFilterMap, 
   210 	    typename EdgeFilterMap, bool checked = true>
   211   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   212   public:
   213     typedef _Graph Graph;
   214     typedef GraphAdaptorBase<_Graph> Parent;
   215   protected:
   216     NodeFilterMap* node_filter_map;
   217     EdgeFilterMap* edge_filter_map;
   218     SubGraphAdaptorBase() : Parent(), 
   219 			    node_filter_map(0), edge_filter_map(0) { }
   220 
   221     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   222       node_filter_map=&_node_filter_map;
   223     }
   224     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   225       edge_filter_map=&_edge_filter_map;
   226     }
   227 
   228   public:
   229 
   230     typedef typename Parent::Node Node;
   231     typedef typename Parent::Edge Edge;
   232 
   233     void first(Node& i) const { 
   234       Parent::first(i); 
   235       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   236     }
   237 
   238     void first(Edge& i) const { 
   239       Parent::first(i); 
   240       while (i!=INVALID && (!(*edge_filter_map)[i] 
   241 	     || !(*node_filter_map)[Parent::source(i)]
   242 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   243     }
   244 
   245     void firstIn(Edge& i, const Node& n) const { 
   246       Parent::firstIn(i, n); 
   247       while (i!=INVALID && (!(*edge_filter_map)[i] 
   248 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   249     }
   250 
   251     void firstOut(Edge& i, const Node& n) const { 
   252       Parent::firstOut(i, n); 
   253       while (i!=INVALID && (!(*edge_filter_map)[i] 
   254 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   255     }
   256 
   257     void next(Node& i) const { 
   258       Parent::next(i); 
   259       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   260     }
   261 
   262     void next(Edge& i) const { 
   263       Parent::next(i); 
   264       while (i!=INVALID && (!(*edge_filter_map)[i] 
   265 	     || !(*node_filter_map)[Parent::source(i)]
   266 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   267     }
   268 
   269     void nextIn(Edge& i) const { 
   270       Parent::nextIn(i); 
   271       while (i!=INVALID && (!(*edge_filter_map)[i] 
   272 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   273     }
   274 
   275     void nextOut(Edge& i) const { 
   276       Parent::nextOut(i); 
   277       while (i!=INVALID && (!(*edge_filter_map)[i] 
   278 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   279     }
   280 
   281     /// This function hides \c n in the graph, i.e. the iteration 
   282     /// jumps over it. This is done by simply setting the value of \c n  
   283     /// to be false in the corresponding node-map.
   284     void hide(const Node& n) const { node_filter_map->set(n, false); }
   285 
   286     /// This function hides \c e in the graph, i.e. the iteration 
   287     /// jumps over it. This is done by simply setting the value of \c e  
   288     /// to be false in the corresponding edge-map.
   289     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   290 
   291     /// The value of \c n is set to be true in the node-map which stores 
   292     /// hide information. If \c n was hidden previuosly, then it is shown 
   293     /// again
   294      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   295 
   296     /// The value of \c e is set to be true in the edge-map which stores 
   297     /// hide information. If \c e was hidden previuosly, then it is shown 
   298     /// again
   299     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   300 
   301     /// Returns true if \c n is hidden.
   302     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   303 
   304     /// Returns true if \c n is hidden.
   305     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   306 
   307     /// \warning This is a linear time operation and works only if s
   308     /// \c Graph::NodeIt is defined.
   309     /// \todo assign tags.
   310     int nodeNum() const { 
   311       int i=0;
   312       Node n;
   313       for (first(n); n!=INVALID; next(n)) ++i;
   314       return i; 
   315     }
   316 
   317     /// \warning This is a linear time operation and works only if 
   318     /// \c Graph::EdgeIt is defined.
   319     /// \todo assign tags.
   320     int edgeNum() const { 
   321       int i=0;
   322       Edge e;
   323       for (first(e); e!=INVALID; next(e)) ++i;
   324       return i; 
   325     }
   326   };
   327 
   328   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   329   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   330     : public GraphAdaptorBase<_Graph> {
   331   public:
   332     typedef _Graph Graph;
   333     typedef GraphAdaptorBase<_Graph> Parent;
   334   protected:
   335     NodeFilterMap* node_filter_map;
   336     EdgeFilterMap* edge_filter_map;
   337     SubGraphAdaptorBase() : Parent(), 
   338 			    node_filter_map(0), edge_filter_map(0) { }
   339 
   340     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   341       node_filter_map=&_node_filter_map;
   342     }
   343     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   344       edge_filter_map=&_edge_filter_map;
   345     }
   346 
   347   public:
   348 
   349     typedef typename Parent::Node Node;
   350     typedef typename Parent::Edge Edge;
   351 
   352     void first(Node& i) const { 
   353       Parent::first(i); 
   354       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   355     }
   356 
   357     void first(Edge& i) const { 
   358       Parent::first(i); 
   359       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   360     }
   361 
   362     void firstIn(Edge& i, const Node& n) const { 
   363       Parent::firstIn(i, n); 
   364       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   365     }
   366 
   367     void firstOut(Edge& i, const Node& n) const { 
   368       Parent::firstOut(i, n); 
   369       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   370     }
   371 
   372     void next(Node& i) const { 
   373       Parent::next(i); 
   374       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   375     }
   376     void next(Edge& i) const { 
   377       Parent::next(i); 
   378       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   379     }
   380     void nextIn(Edge& i) const { 
   381       Parent::nextIn(i); 
   382       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   383     }
   384 
   385     void nextOut(Edge& i) const { 
   386       Parent::nextOut(i); 
   387       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   388     }
   389 
   390     /// This function hides \c n in the graph, i.e. the iteration 
   391     /// jumps over it. This is done by simply setting the value of \c n  
   392     /// to be false in the corresponding node-map.
   393     void hide(const Node& n) const { node_filter_map->set(n, false); }
   394 
   395     /// This function hides \c e in the graph, i.e. the iteration 
   396     /// jumps over it. This is done by simply setting the value of \c e  
   397     /// to be false in the corresponding edge-map.
   398     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   399 
   400     /// The value of \c n is set to be true in the node-map which stores 
   401     /// hide information. If \c n was hidden previuosly, then it is shown 
   402     /// again
   403      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   404 
   405     /// The value of \c e is set to be true in the edge-map which stores 
   406     /// hide information. If \c e was hidden previuosly, then it is shown 
   407     /// again
   408     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   409 
   410     /// Returns true if \c n is hidden.
   411     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   412 
   413     /// Returns true if \c n is hidden.
   414     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   415 
   416     /// \warning This is a linear time operation and works only if s
   417     /// \c Graph::NodeIt is defined.
   418     /// \todo assign tags.
   419     int nodeNum() const { 
   420       int i=0;
   421       Node n;
   422       for (first(n); n!=INVALID; next(n)) ++i;
   423       return i; 
   424     }
   425 
   426     /// \warning This is a linear time operation and works only if 
   427     /// \c Graph::EdgeIt is defined.
   428     /// \todo assign tags.
   429     int edgeNum() const { 
   430       int i=0;
   431       Edge e;
   432       for (first(e); e!=INVALID; next(e)) ++i;
   433       return i; 
   434     }
   435   };
   436 
   437   /*! \brief A graph adaptor for hiding nodes and edges from a graph.
   438     
   439   \warning Graph adaptors are in even more experimental state than the other
   440   parts of the lib. Use them at you own risk.
   441   
   442   SubGraphAdaptor shows the graph with filtered node-set and 
   443   edge-set. 
   444   Let \f$G=(V, A)\f$ be a directed graph 
   445   and suppose that the graph instance \c g of type ListGraph implements 
   446   \f$G\f$. 
   447   Let moreover \f$b_V\f$ and 
   448   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   449   SubGraphAdaptor<...>::NodeIt iterates 
   450   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   451   SubGraphAdaptor<...>::EdgeIt iterates 
   452   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   453   SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
   454   only on edges leaving and entering a specific node which have true value.
   455 
   456   We have to note that this does not mean that an 
   457   induced subgraph is obtained, the node-iterator cares only the filter 
   458   on the node-set, and the edge-iterators care only the filter on the 
   459   edge-set. 
   460   \code
   461   typedef ListGraph Graph;
   462   Graph g;
   463   typedef Graph::Node Node;
   464   typedef Graph::Edge Edge;
   465   Node u=g.addNode(); //node of id 0
   466   Node v=g.addNode(); //node of id 1
   467   Node e=g.addEdge(u, v); //edge of id 0
   468   Node f=g.addEdge(v, u); //edge of id 1
   469   Graph::NodeMap<bool> nm(g, true);
   470   nm.set(u, false);
   471   Graph::EdgeMap<bool> em(g, true);
   472   em.set(e, false);
   473   typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   474   SubGW gw(g, nm, em);
   475   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   476   std::cout << ":-)" << std::endl;
   477   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   478   \endcode
   479   The output of the above code is the following.
   480   \code
   481   1
   482   :-)
   483   1
   484   \endcode
   485   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   486   \c Graph::Node that is why \c g.id(n) can be applied.
   487 
   488   For other examples see also the documentation of NodeSubGraphAdaptor and 
   489   EdgeSubGraphAdaptor.
   490 
   491   \author Marton Makai
   492   */
   493   template<typename _Graph, typename NodeFilterMap, 
   494 	   typename EdgeFilterMap, bool checked = true>
   495   class SubGraphAdaptor : 
   496     public IterableGraphExtender<
   497     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   498   public:
   499     typedef _Graph Graph;
   500     typedef IterableGraphExtender<
   501       SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   502   protected:
   503     SubGraphAdaptor() { }
   504   public:
   505     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   506 		    EdgeFilterMap& _edge_filter_map) { 
   507       setGraph(_graph);
   508       setNodeFilterMap(_node_filter_map);
   509       setEdgeFilterMap(_edge_filter_map);
   510     }
   511   };
   512 
   513 
   514 
   515   /*! \brief An adaptor for hiding nodes from a graph.
   516 
   517   \warning Graph adaptors are in even more experimental state than the other
   518   parts of the lib. Use them at you own risk.
   519   
   520   An adaptor for hiding nodes from a graph.
   521   This adaptor specializes SubGraphAdaptor in the way that only the node-set 
   522   can be filtered. Note that this does not mean of considering induced 
   523   subgraph, the edge-iterators consider the original edge-set.
   524   \author Marton Makai
   525   */
   526   template<typename Graph, typename NodeFilterMap, bool checked = true>
   527   class NodeSubGraphAdaptor : 
   528     public SubGraphAdaptor<Graph, NodeFilterMap, 
   529 			   ConstMap<typename Graph::Edge,bool>, checked> {
   530   public:
   531     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   532 			    ConstMap<typename Graph::Edge,bool> > Parent;
   533   protected:
   534     ConstMap<typename Graph::Edge, bool> const_true_map;
   535   public:
   536     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   537       Parent(), const_true_map(true) { 
   538       Parent::setGraph(_graph);
   539       Parent::setNodeFilterMap(_node_filter_map);
   540       Parent::setEdgeFilterMap(const_true_map);
   541     }
   542   };
   543 
   544 
   545   /*! \brief An adaptor for hiding edges from a graph.
   546 
   547   \warning Graph adaptors are in even more experimental state than the other
   548   parts of the lib. Use them at you own risk.
   549   
   550   An adaptor for hiding edges from a graph.
   551   This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
   552   can be filtered. The usefulness of this adaptor is demonstrated in the 
   553   problem of searching a maximum number of edge-disjoint shortest paths 
   554   between 
   555   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   556   non-negative edge-lengths. Note that 
   557   the comprehension of the presented solution 
   558   need's some elementary knowledge from combinatorial optimization. 
   559 
   560   If a single shortest path is to be 
   561   searched between \c s and \c t, then this can be done easily by 
   562   applying the Dijkstra algorithm. What happens, if a maximum number of 
   563   edge-disjoint shortest paths is to be computed. It can be proved that an 
   564   edge can be in a shortest path if and only if it is tight with respect to 
   565   the potential function computed by Dijkstra. Moreover, any path containing 
   566   only such edges is a shortest one. Thus we have to compute a maximum number 
   567   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   568   all the tight edges. The computation will be demonstrated on the following 
   569   graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   570   The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   571   If you are interested in more demo programs, you can use 
   572   \ref dim_to_dot.cc to generate .dot files from dimacs files. 
   573   The .dot file of the following figure was generated by  
   574   the demo program \ref dim_to_dot.cc.
   575 
   576   \dot
   577   digraph lemon_dot_example {
   578   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   579   n0 [ label="0 (s)" ];
   580   n1 [ label="1" ];
   581   n2 [ label="2" ];
   582   n3 [ label="3" ];
   583   n4 [ label="4" ];
   584   n5 [ label="5" ];
   585   n6 [ label="6 (t)" ];
   586   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   587   n5 ->  n6 [ label="9, length:4" ];
   588   n4 ->  n6 [ label="8, length:2" ];
   589   n3 ->  n5 [ label="7, length:1" ];
   590   n2 ->  n5 [ label="6, length:3" ];
   591   n2 ->  n6 [ label="5, length:5" ];
   592   n2 ->  n4 [ label="4, length:2" ];
   593   n1 ->  n4 [ label="3, length:3" ];
   594   n0 ->  n3 [ label="2, length:1" ];
   595   n0 ->  n2 [ label="1, length:2" ];
   596   n0 ->  n1 [ label="0, length:3" ];
   597   }
   598   \enddot
   599 
   600   \code
   601   Graph g;
   602   Node s, t;
   603   LengthMap length(g);
   604 
   605   readDimacs(std::cin, g, length, s, t);
   606 
   607   cout << "edges with lengths (of form id, source--length->target): " << endl;
   608   for(EdgeIt e(g); e!=INVALID; ++e) 
   609     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   610          << length[e] << "->" << g.id(g.target(e)) << endl;
   611 
   612   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   613   \endcode
   614   Next, the potential function is computed with Dijkstra.
   615   \code
   616   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   617   Dijkstra dijkstra(g, length);
   618   dijkstra.run(s);
   619   \endcode
   620   Next, we consrtruct a map which filters the edge-set to the tight edges.
   621   \code
   622   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   623     TightEdgeFilter;
   624   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   625   
   626   typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   627   SubGW gw(g, tight_edge_filter);
   628   \endcode
   629   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   630   with a max flow algorithm Preflow.
   631   \code
   632   ConstMap<Edge, int> const_1_map(1);
   633   Graph::EdgeMap<int> flow(g, 0);
   634 
   635   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   636     preflow(gw, s, t, const_1_map, flow);
   637   preflow.run();
   638   \endcode
   639   Last, the output is:
   640   \code  
   641   cout << "maximum number of edge-disjoint shortest path: " 
   642        << preflow.flowValue() << endl;
   643   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   644        << endl;
   645   for(EdgeIt e(g); e!=INVALID; ++e) 
   646     if (flow[e])
   647       cout << " " << g.id(g.source(e)) << "--" 
   648 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   649   \endcode
   650   The program has the following (expected :-)) output:
   651   \code
   652   edges with lengths (of form id, source--length->target):
   653    9, 5--4->6
   654    8, 4--2->6
   655    7, 3--1->5
   656    6, 2--3->5
   657    5, 2--5->6
   658    4, 2--2->4
   659    3, 1--3->4
   660    2, 0--1->3
   661    1, 0--2->2
   662    0, 0--3->1
   663   s: 0 t: 6
   664   maximum number of edge-disjoint shortest path: 2
   665   edges of the maximum number of edge-disjoint shortest s-t paths:
   666    9, 5--4->6
   667    8, 4--2->6
   668    7, 3--1->5
   669    4, 2--2->4
   670    2, 0--1->3
   671    1, 0--2->2
   672   \endcode
   673 
   674   \author Marton Makai
   675   */
   676   template<typename Graph, typename EdgeFilterMap>
   677   class EdgeSubGraphAdaptor : 
   678     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   679 			   EdgeFilterMap, false> {
   680   public:
   681     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   682 			    EdgeFilterMap, false> Parent;
   683   protected:
   684     ConstMap<typename Graph::Node, bool> const_true_map;
   685   public:
   686     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   687       Parent(), const_true_map(true) { 
   688       Parent::setGraph(_graph);
   689       Parent::setNodeFilterMap(const_true_map);
   690       Parent::setEdgeFilterMap(_edge_filter_map);
   691     }
   692   };
   693 
   694   template <typename _Graph>
   695   class UndirGraphAdaptorBase : 
   696     public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
   697   public:
   698     typedef _Graph Graph;
   699     typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   700   protected:
   701     UndirGraphAdaptorBase() : Parent() { }
   702   public:
   703     typedef typename Parent::UndirEdge UndirEdge;
   704     typedef typename Parent::Edge Edge;
   705     
   706     /// \bug Why cant an edge say that it is forward or not??? 
   707     /// By this, a pointer to the graph have to be stored
   708     /// The implementation
   709     template <typename T>
   710     class EdgeMap {
   711     protected:
   712       const UndirGraphAdaptorBase<_Graph>* g;
   713       template <typename TT> friend class EdgeMap;
   714       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   715     public:
   716       typedef T Value;
   717       typedef Edge Key;
   718       
   719       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), 
   720 	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
   721 
   722       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
   723 	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
   724       
   725       void set(Edge e, T a) { 
   726 	if (g->direction(e)) 
   727 	  forward_map.set(e, a); 
   728 	else 
   729 	  backward_map.set(e, a); 
   730       }
   731 
   732       T operator[](Edge e) const { 
   733 	if (g->direction(e)) 
   734 	  return forward_map[e]; 
   735 	else 
   736 	  return backward_map[e]; 
   737       }
   738     };
   739         
   740     template <typename T>
   741     class UndirEdgeMap {
   742       template <typename TT> friend class UndirEdgeMap;
   743       typename _Graph::template EdgeMap<T> map; 
   744     public:
   745       typedef T Value;
   746       typedef UndirEdge Key;
   747       
   748       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : 
   749 	map(*(g.graph)) { }
   750 
   751       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : 
   752 	map(*(g.graph), a) { }
   753       
   754       void set(UndirEdge e, T a) { 
   755 	map.set(e, a); 
   756       }
   757 
   758       T operator[](UndirEdge e) const { 
   759 	return map[e]; 
   760       }
   761     };
   762       
   763   };
   764 
   765   /// \brief An undirected graph is made from a directed graph by an adaptor
   766   ///
   767   /// Undocumented, untested!!!
   768   /// If somebody knows nice demo application, let's polulate it.
   769   /// 
   770   /// \author Marton Makai
   771   template<typename _Graph>
   772   class UndirGraphAdaptor : 
   773     public IterableUndirGraphExtender<
   774     UndirGraphAdaptorBase<_Graph> > {
   775   public:
   776     typedef _Graph Graph;
   777     typedef IterableUndirGraphExtender<
   778       UndirGraphAdaptorBase<_Graph> > Parent;
   779   protected:
   780     UndirGraphAdaptor() { }
   781   public:
   782     UndirGraphAdaptor(_Graph& _graph) { 
   783       setGraph(_graph);
   784     }
   785   };
   786 
   787   
   788   template <typename _Graph, 
   789 	    typename ForwardFilterMap, typename BackwardFilterMap>
   790   class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   791   public:
   792     typedef _Graph Graph;
   793     typedef GraphAdaptorBase<_Graph> Parent;
   794   protected:
   795     ForwardFilterMap* forward_filter;
   796     BackwardFilterMap* backward_filter;
   797     SubBidirGraphAdaptorBase() : Parent(), 
   798 				 forward_filter(0), backward_filter(0) { }
   799 
   800     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   801       forward_filter=&_forward_filter;
   802     }
   803     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   804       backward_filter=&_backward_filter;
   805     }
   806 
   807   public:
   808 //     SubGraphAdaptorBase(Graph& _graph, 
   809 // 			NodeFilterMap& _node_filter_map, 
   810 // 			EdgeFilterMap& _edge_filter_map) : 
   811 //       Parent(&_graph), 
   812 //       node_filter_map(&node_filter_map), 
   813 //       edge_filter_map(&edge_filter_map) { }
   814 
   815     typedef typename Parent::Node Node;
   816     typedef typename _Graph::Edge GraphEdge;
   817     template <typename T> class EdgeMap;
   818     /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
   819     /// _Graph::Edge. It contains an extra bool flag which is true 
   820     /// if and only if the 
   821     /// edge is the backward version of the original edge.
   822     class Edge : public _Graph::Edge {
   823       friend class SubBidirGraphAdaptorBase<
   824 	Graph, ForwardFilterMap, BackwardFilterMap>;
   825       template<typename T> friend class EdgeMap;
   826     protected:
   827       bool backward; //true, iff backward
   828     public:
   829       Edge() { }
   830       /// \todo =false is needed, or causes problems?
   831       /// If \c _backward is false, then we get an edge corresponding to the 
   832       /// original one, otherwise its oppositely directed pair is obtained.
   833       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   834 	_Graph::Edge(e), backward(_backward) { }
   835       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   836       bool operator==(const Edge& v) const { 
   837 	return (this->backward==v.backward && 
   838 		static_cast<typename _Graph::Edge>(*this)==
   839 		static_cast<typename _Graph::Edge>(v));
   840       } 
   841       bool operator!=(const Edge& v) const { 
   842 	return (this->backward!=v.backward || 
   843 		static_cast<typename _Graph::Edge>(*this)!=
   844 		static_cast<typename _Graph::Edge>(v));
   845       }
   846     };
   847 
   848     void first(Node& i) const { 
   849       Parent::first(i); 
   850     }
   851 
   852     void first(Edge& i) const { 
   853       Parent::first(i); 
   854       i.backward=false;
   855       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   856 	     !(*forward_filter)[i]) Parent::next(i);
   857       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   858 	Parent::first(i); 
   859 	i.backward=true;
   860 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   861 	       !(*backward_filter)[i]) Parent::next(i);
   862       }
   863     }
   864 
   865     void firstIn(Edge& i, const Node& n) const { 
   866       Parent::firstIn(i, n); 
   867       i.backward=false;
   868       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   869 	     !(*forward_filter)[i]) Parent::nextIn(i);
   870       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   871 	Parent::firstOut(i, n); 
   872 	i.backward=true;
   873 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   874 	       !(*backward_filter)[i]) Parent::nextOut(i);
   875       }
   876     }
   877 
   878     void firstOut(Edge& i, const Node& n) const { 
   879       Parent::firstOut(i, n); 
   880       i.backward=false;
   881       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   882 	     !(*forward_filter)[i]) Parent::nextOut(i);
   883       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   884 	Parent::firstIn(i, n); 
   885 	i.backward=true;
   886 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   887 	       !(*backward_filter)[i]) Parent::nextIn(i);
   888       }
   889     }
   890 
   891     void next(Node& i) const { 
   892       Parent::next(i); 
   893     }
   894 
   895     void next(Edge& i) const { 
   896       if (!(i.backward)) {
   897 	Parent::next(i);
   898 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   899 	       !(*forward_filter)[i]) Parent::next(i);
   900 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   901 	  Parent::first(i); 
   902 	  i.backward=true;
   903 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   904 		 !(*backward_filter)[i]) Parent::next(i);
   905 	}
   906       } else {
   907 	Parent::next(i);
   908 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   909 	       !(*backward_filter)[i]) Parent::next(i);
   910       }
   911     }
   912 
   913     void nextIn(Edge& i) const { 
   914       if (!(i.backward)) {
   915 	Node n=Parent::target(i);
   916 	Parent::nextIn(i);
   917 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   918 	       !(*forward_filter)[i]) Parent::nextIn(i);
   919 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   920 	  Parent::firstOut(i, n); 
   921 	  i.backward=true;
   922 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   923 		 !(*backward_filter)[i]) Parent::nextOut(i);
   924 	}
   925       } else {
   926 	Parent::nextOut(i);
   927 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   928 	       !(*backward_filter)[i]) Parent::nextOut(i);
   929       }
   930     }
   931 
   932     void nextOut(Edge& i) const { 
   933       if (!(i.backward)) {
   934 	Node n=Parent::source(i);
   935 	Parent::nextOut(i);
   936 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   937 	       !(*forward_filter)[i]) Parent::nextOut(i);
   938 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   939 	  Parent::firstIn(i, n); 
   940 	  i.backward=true;
   941 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   942 		 !(*backward_filter)[i]) Parent::nextIn(i);
   943 	}
   944       } else {
   945 	Parent::nextIn(i);
   946 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   947 	       !(*backward_filter)[i]) Parent::nextIn(i);
   948       }
   949     }
   950 
   951     Node source(Edge e) const { 
   952       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   953     Node target(Edge e) const { 
   954       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   955 
   956     /// Gives back the opposite edge.
   957     Edge opposite(const Edge& e) const { 
   958       Edge f=e;
   959       f.backward=!f.backward;
   960       return f;
   961     }
   962 
   963     /// \warning This is a linear time operation and works only if 
   964     /// \c Graph::EdgeIt is defined.
   965     /// \todo hmm
   966     int edgeNum() const { 
   967       int i=0;
   968       Edge e;
   969       for (first(e); e!=INVALID; next(e)) ++i;
   970       return i; 
   971     }
   972 
   973     bool forward(const Edge& e) const { return !e.backward; }
   974     bool backward(const Edge& e) const { return e.backward; }
   975 
   976     template <typename T>
   977     /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   978     /// _Graph::EdgeMap one for the forward edges and 
   979     /// one for the backward edges.
   980     class EdgeMap {
   981       template <typename TT> friend class EdgeMap;
   982       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   983     public:
   984       typedef T Value;
   985       typedef Edge Key;
   986 
   987       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   988 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   989 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   990 
   991       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   992 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   993 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   994       
   995       void set(Edge e, T a) { 
   996 	if (!e.backward) 
   997 	  forward_map.set(e, a); 
   998 	else 
   999 	  backward_map.set(e, a); 
  1000       }
  1001 
  1002 //       typename _Graph::template EdgeMap<T>::ConstReference 
  1003 //       operator[](Edge e) const { 
  1004 // 	if (!e.backward) 
  1005 // 	  return forward_map[e]; 
  1006 // 	else 
  1007 // 	  return backward_map[e]; 
  1008 //       }
  1009 
  1010 //      typename _Graph::template EdgeMap<T>::Reference 
  1011       T operator[](Edge e) const { 
  1012 	if (!e.backward) 
  1013 	  return forward_map[e]; 
  1014 	else 
  1015 	  return backward_map[e]; 
  1016       }
  1017 
  1018       void update() { 
  1019 	forward_map.update(); 
  1020 	backward_map.update();
  1021       }
  1022     };
  1023 
  1024   };
  1025 
  1026 
  1027   ///\brief An adaptor for composing a subgraph of a 
  1028   /// bidirected graph made from a directed one. 
  1029   ///
  1030   /// An adaptor for composing a subgraph of a 
  1031   /// bidirected graph made from a directed one. 
  1032   ///
  1033   ///\warning Graph adaptors are in even more experimental state than the other
  1034   ///parts of the lib. Use them at you own risk.
  1035   ///
  1036   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
  1037   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
  1038   /// reversing its orientation. We are given moreover two bool valued 
  1039   /// maps on the edge-set, 
  1040   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
  1041   /// SubBidirGraphAdaptor implements the graph structure with node-set 
  1042   /// \f$V\f$ and edge-set 
  1043   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
  1044   /// The purpose of writing + instead of union is because parallel 
  1045   /// edges can arise. (Similarly, antiparallel edges also can arise).
  1046   /// In other words, a subgraph of the bidirected graph obtained, which 
  1047   /// is given by orienting the edges of the original graph in both directions.
  1048   /// As the oppositely directed edges are logically different, 
  1049   /// the maps are able to attach different values for them. 
  1050   ///
  1051   /// An example for such a construction is \c RevGraphAdaptor where the 
  1052   /// forward_filter is everywhere false and the backward_filter is 
  1053   /// everywhere true. We note that for sake of efficiency, 
  1054   /// \c RevGraphAdaptor is implemented in a different way. 
  1055   /// But BidirGraphAdaptor is obtained from 
  1056   /// SubBidirGraphAdaptor by considering everywhere true 
  1057   /// valued maps both for forward_filter and backward_filter. 
  1058   ///
  1059   /// The most important application of SubBidirGraphAdaptor 
  1060   /// is ResGraphAdaptor, which stands for the residual graph in directed 
  1061   /// flow and circulation problems. 
  1062   /// As adaptors usually, the SubBidirGraphAdaptor implements the 
  1063   /// above mentioned graph structure without its physical storage, 
  1064   /// that is the whole stuff is stored in constant memory. 
  1065   template<typename _Graph, 
  1066 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1067   class SubBidirGraphAdaptor : 
  1068     public IterableGraphExtender<
  1069     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1070   public:
  1071     typedef _Graph Graph;
  1072     typedef IterableGraphExtender<
  1073       SubBidirGraphAdaptorBase<
  1074       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
  1075   protected:
  1076     SubBidirGraphAdaptor() { }
  1077   public:
  1078     SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
  1079 			 BackwardFilterMap& _backward_filter) { 
  1080       setGraph(_graph);
  1081       setForwardFilterMap(_forward_filter);
  1082       setBackwardFilterMap(_backward_filter);
  1083     }
  1084   };
  1085 
  1086 
  1087 
  1088   ///\brief An adaptor for composing bidirected graph from a directed one. 
  1089   ///
  1090   ///\warning Graph adaptors are in even more experimental state than the other
  1091   ///parts of the lib. Use them at you own risk.
  1092   ///
  1093   /// An adaptor for composing bidirected graph from a directed one. 
  1094   /// A bidirected graph is composed over the directed one without physical 
  1095   /// storage. As the oppositely directed edges are logically different ones 
  1096   /// the maps are able to attach different values for them.
  1097   template<typename Graph>
  1098   class BidirGraphAdaptor : 
  1099     public SubBidirGraphAdaptor<
  1100     Graph, 
  1101     ConstMap<typename Graph::Edge, bool>, 
  1102     ConstMap<typename Graph::Edge, bool> > {
  1103   public:
  1104     typedef  SubBidirGraphAdaptor<
  1105       Graph, 
  1106       ConstMap<typename Graph::Edge, bool>, 
  1107       ConstMap<typename Graph::Edge, bool> > Parent; 
  1108   protected:
  1109     ConstMap<typename Graph::Edge, bool> cm;
  1110 
  1111     BidirGraphAdaptor() : Parent(), cm(true) { 
  1112       Parent::setForwardFilterMap(cm);
  1113       Parent::setBackwardFilterMap(cm);
  1114     }
  1115   public:
  1116     BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
  1117       Parent::setGraph(_graph);
  1118       Parent::setForwardFilterMap(cm);
  1119       Parent::setBackwardFilterMap(cm);
  1120     }
  1121 
  1122     int edgeNum() const { 
  1123       return 2*this->graph->edgeNum();
  1124     }
  1125     //    KEEP_MAPS(Parent, BidirGraphAdaptor);
  1126   };
  1127 
  1128 
  1129   template<typename Graph, typename Number,
  1130 	   typename CapacityMap, typename FlowMap>
  1131   class ResForwardFilter {
  1132     //    const Graph* graph;
  1133     const CapacityMap* capacity;
  1134     const FlowMap* flow;
  1135   public:
  1136     ResForwardFilter(/*const Graph& _graph, */
  1137 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1138       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1139     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1140     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1141     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1142     bool operator[](const typename Graph::Edge& e) const {
  1143       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1144     }
  1145   };
  1146 
  1147   template<typename Graph, typename Number,
  1148 	   typename CapacityMap, typename FlowMap>
  1149   class ResBackwardFilter {
  1150     const CapacityMap* capacity;
  1151     const FlowMap* flow;
  1152   public:
  1153     ResBackwardFilter(/*const Graph& _graph,*/ 
  1154 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1155       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1156     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1157     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1158     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1159     bool operator[](const typename Graph::Edge& e) const {
  1160       return (Number(0) < Number((*flow)[e]));
  1161     }
  1162   };
  1163 
  1164   
  1165   /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
  1166 
  1167   An adaptor for composing the residual graph for directed flow and circulation problems. 
  1168   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1169   number type. Let moreover 
  1170   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1171   In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
  1172   and \f$c\f$ for a capacity function.   
  1173   Suppose that a graph instange \c g of type 
  1174   \c ListGraph implements \f$G\f$.
  1175   \code
  1176   ListGraph g;
  1177   \endcode
  1178   Then RevGraphAdaptor implements the graph structure with node-set 
  1179   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1180   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1181   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1182   i.e. the so called residual graph. 
  1183   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1184   multilicities are counted, i.e. if an edge is in both 
  1185   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
  1186   appears twice. 
  1187   The following code shows how 
  1188   such an instance can be constructed.
  1189   \code
  1190   typedef ListGraph Graph;
  1191   Graph::EdgeMap<int> f(g);
  1192   Graph::EdgeMap<int> c(g);
  1193   ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1194   \endcode
  1195   \author Marton Makai
  1196   */
  1197   template<typename Graph, typename Number, 
  1198 	   typename CapacityMap, typename FlowMap>
  1199   class ResGraphAdaptor : 
  1200     public SubBidirGraphAdaptor< 
  1201     Graph, 
  1202     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1203     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1204   public:
  1205     typedef SubBidirGraphAdaptor< 
  1206       Graph, 
  1207       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1208       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1209   protected:
  1210     const CapacityMap* capacity;
  1211     FlowMap* flow;
  1212     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1213     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1214     ResGraphAdaptor() : Parent(), 
  1215  			capacity(0), flow(0) { }
  1216     void setCapacityMap(const CapacityMap& _capacity) {
  1217       capacity=&_capacity;
  1218       forward_filter.setCapacity(_capacity);
  1219       backward_filter.setCapacity(_capacity);
  1220     }
  1221     void setFlowMap(FlowMap& _flow) {
  1222       flow=&_flow;
  1223       forward_filter.setFlow(_flow);
  1224       backward_filter.setFlow(_flow);
  1225     }
  1226   public:
  1227     ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
  1228 		       FlowMap& _flow) : 
  1229       Parent(), capacity(&_capacity), flow(&_flow), 
  1230       forward_filter(/*_graph,*/ _capacity, _flow), 
  1231       backward_filter(/*_graph,*/ _capacity, _flow) {
  1232       Parent::setGraph(_graph);
  1233       Parent::setForwardFilterMap(forward_filter);
  1234       Parent::setBackwardFilterMap(backward_filter);
  1235     }
  1236 
  1237     typedef typename Parent::Edge Edge;
  1238 
  1239     void augment(const Edge& e, Number a) const {
  1240       if (Parent::forward(e))  
  1241 	flow->set(e, (*flow)[e]+a);
  1242       else  
  1243 	flow->set(e, (*flow)[e]-a);
  1244     }
  1245 
  1246     /// \brief Residual capacity map.
  1247     ///
  1248     /// In generic residual graphs the residual capacity can be obtained 
  1249     /// as a map. 
  1250     class ResCap {
  1251     protected:
  1252       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1253     public:
  1254       typedef Number Value;
  1255       typedef Edge Key;
  1256       ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
  1257 	     _res_graph) : res_graph(&_res_graph) { }
  1258       Number operator[](const Edge& e) const { 
  1259 	if (res_graph->forward(e)) 
  1260 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1261 	else 
  1262 	  return (*(res_graph->flow))[e]; 
  1263       }
  1264     };
  1265 
  1266     //    KEEP_MAPS(Parent, ResGraphAdaptor);
  1267   };
  1268 
  1269 
  1270 
  1271   template <typename _Graph, typename FirstOutEdgesMap>
  1272   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1273   public:
  1274     typedef _Graph Graph;
  1275     typedef GraphAdaptorBase<_Graph> Parent;
  1276   protected:
  1277     FirstOutEdgesMap* first_out_edges;
  1278     ErasingFirstGraphAdaptorBase() : Parent(), 
  1279 				     first_out_edges(0) { }
  1280 
  1281     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1282       first_out_edges=&_first_out_edges;
  1283     }
  1284 
  1285   public:
  1286 
  1287     typedef typename Parent::Node Node;
  1288     typedef typename Parent::Edge Edge;
  1289 
  1290     void firstOut(Edge& i, const Node& n) const { 
  1291       i=(*first_out_edges)[n];
  1292     }
  1293 
  1294     void erase(const Edge& e) const {
  1295       Node n=source(e);
  1296       Edge f=e;
  1297       Parent::nextOut(f);
  1298       first_out_edges->set(n, f);
  1299     }    
  1300   };
  1301 
  1302 
  1303   /// For blocking flows.
  1304 
  1305   ///\warning Graph adaptors are in even more experimental state than the other
  1306   ///parts of the lib. Use them at you own risk.
  1307   ///
  1308   /// This graph adaptor is used for on-the-fly 
  1309   /// Dinits blocking flow computations.
  1310   /// For each node, an out-edge is stored which is used when the 
  1311   /// \code 
  1312   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1313   /// \endcode
  1314   /// is called. 
  1315   ///
  1316   /// \author Marton Makai
  1317   template <typename _Graph, typename FirstOutEdgesMap>
  1318   class ErasingFirstGraphAdaptor : 
  1319     public IterableGraphExtender<
  1320     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1321   public:
  1322     typedef _Graph Graph;
  1323     typedef IterableGraphExtender<
  1324       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1325     ErasingFirstGraphAdaptor(Graph& _graph, 
  1326 			     FirstOutEdgesMap& _first_out_edges) { 
  1327       setGraph(_graph);
  1328       setFirstOutEdgesMap(_first_out_edges);
  1329     } 
  1330 
  1331   };
  1332 
  1333   template <typename _Graph>
  1334   class NewEdgeSetAdaptorBase {
  1335   public:
  1336 
  1337     typedef _Graph Graph;
  1338     typedef typename Graph::Node Node;
  1339     typedef typename Graph::NodeIt NodeIt;
  1340 
  1341   protected:
  1342 
  1343     struct NodeT {
  1344       int first_out, first_in;
  1345       NodeT() : first_out(-1), first_in(-1) {}
  1346     };
  1347     
  1348     class NodesImpl : protected Graph::template NodeMap<NodeT> {
  1349 
  1350       typedef typename Graph::template NodeMap<NodeT> Parent;
  1351       typedef NewEdgeSetAdaptorBase<Graph> Adaptor;
  1352 
  1353       Adaptor& adaptor;
  1354 
  1355     public:
  1356 
  1357       NodesImpl(Adaptor& _adaptor, const Graph& _graph) 
  1358 	: Parent(_graph), adaptor(_adaptor) {}
  1359 
  1360       virtual ~NodesImpl() {}
  1361 
  1362       virtual void build() {
  1363 	Parent::build();
  1364       }
  1365 
  1366       virtual void clear() {
  1367 	adaptor._clear();
  1368 	Parent::clear();
  1369       }
  1370       
  1371       virtual void add(const Node& node) {
  1372 	Parent::add(node);
  1373 	adaptor._add(node);
  1374       }
  1375       
  1376       virtual void erase(const Node& node) {
  1377 	adaptor._erase(node);
  1378 	Parent::erase(node);
  1379       }
  1380 
  1381       NodeT& operator[](const Node& node) {
  1382 	return Parent::operator[](node);
  1383       }
  1384 
  1385       const NodeT& operator[](const Node& node) const {
  1386 	return Parent::operator[](node);
  1387       }
  1388       
  1389     };
  1390 
  1391     NodesImpl* nodes;
  1392 
  1393     struct EdgeT {
  1394       Node source, target;
  1395       int next_out, next_in;
  1396       int prev_out, prev_in;
  1397       EdgeT() : prev_out(-1), prev_in(-1) {}
  1398     };
  1399 
  1400     std::vector<EdgeT> edges;
  1401 
  1402     int first_edge;
  1403     int first_free_edge;
  1404 
  1405     virtual void _clear() = 0;
  1406     virtual void _add(const Node& node) = 0;
  1407     virtual void _erase(const Node& node) = 0;
  1408     
  1409     const Graph* graph;
  1410 
  1411     void initalize(const Graph& _graph, NodesImpl& _nodes) {
  1412       graph = &_graph;
  1413       nodes = &_nodes;
  1414     }
  1415     
  1416   public:
  1417 
  1418     class Edge {
  1419       friend class NewEdgeSetAdaptorBase<Graph>;
  1420     protected:
  1421       Edge(int _id) : id(_id) {}
  1422       int id;
  1423     public:
  1424       Edge() {}
  1425       Edge(Invalid) : id(-1) {}
  1426       bool operator==(const Edge& edge) const { return id == edge.id; }
  1427       bool operator!=(const Edge& edge) const { return id != edge.id; }
  1428       bool operator<(const Edge& edge) const { return id < edge.id; }
  1429     };
  1430 
  1431     NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} 
  1432     virtual ~NewEdgeSetAdaptorBase() {}
  1433 
  1434     Edge addEdge(const Node& source, const Node& target) {
  1435       int n;
  1436       if (first_free_edge == -1) {
  1437 	n = edges.size();
  1438 	edges.push_back(EdgeT());
  1439       } else {
  1440 	n = first_free_edge;
  1441 	first_free_edge = edges[first_free_edge].next_in;
  1442       }
  1443       edges[n].next_in = (*nodes)[target].first_in;
  1444       (*nodes)[target].first_in = n;
  1445       edges[n].next_out = (*nodes)[source].first_out;
  1446       (*nodes)[source].first_out = n;
  1447       edges[n].source = source;
  1448       edges[n].target = target;
  1449       return Edge(n);
  1450     }
  1451 
  1452     void erase(const Edge& edge) {
  1453       int n = edge.id;
  1454       if (edges[n].prev_in != -1) {
  1455 	edges[edges[n].prev_in].next_in = edges[n].next_in;
  1456       } else {
  1457 	(*nodes)[edges[n].target].first_in = edges[n].next_in;
  1458       }
  1459       if (edges[n].next_in != -1) {
  1460 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
  1461       }
  1462 
  1463       if (edges[n].prev_out != -1) {
  1464 	edges[edges[n].prev_out].next_out = edges[n].next_out;
  1465       } else {
  1466 	(*nodes)[edges[n].source].first_out = edges[n].next_out;
  1467       }
  1468       if (edges[n].next_out != -1) {
  1469 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
  1470       }
  1471            
  1472     }
  1473 
  1474     void first(Node& node) const {
  1475       graph->first(node);
  1476     }
  1477 
  1478     void next(Node& node) const {
  1479       graph->next(node);
  1480     }
  1481 
  1482     void first(Edge& edge) const {
  1483       Node node;
  1484       for (first(node); node != INVALID && (*nodes)[node].first_in == -1; 
  1485 	   next(node));
  1486       edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
  1487     }
  1488 
  1489     void next(Edge& edge) const {
  1490       if (edges[edge.id].next_in != -1) {
  1491 	edge.id = edges[edge.id].next_in;
  1492       } else {
  1493 	Node node = edges[edge.id].target;
  1494 	for (next(node); node != INVALID && (*nodes)[node].first_in == -1; 
  1495 	     next(node));
  1496 	edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
  1497       }      
  1498     }
  1499 
  1500     void firstOut(Edge& edge, const Node& node) const {
  1501       edge.id = (*nodes)[node].first_out;    
  1502     }
  1503     
  1504     void nextOut(Edge& edge) const {
  1505       edge.id = edges[edge.id].next_out;        
  1506     }
  1507 
  1508     void firstIn(Edge& edge, const Node& node) const {
  1509       edge.id = (*nodes)[node].first_in;          
  1510     }
  1511 
  1512     void nextIn(Edge& edge) const {
  1513       edge.id = edges[edge.id].next_in;    
  1514     }
  1515 
  1516     int id(const Node& node) const { return graph->id(node); }
  1517     int id(const Edge& edge) const { return edge.id; }
  1518 
  1519     Node fromId(int id, Node) const { return graph->fromId(id, Node()); }
  1520     Edge fromId(int id, Edge) const { return Edge(id); }
  1521 
  1522     int maxId(Node) const { return graph->maxId(Node()); };
  1523     int maxId(Edge) const { return edges.size() - 1; }
  1524 
  1525     Node source(const Edge& edge) const { return edges[edge.id].source;}
  1526     Node target(const Edge& edge) const { return edges[edge.id].target;}
  1527 
  1528   };
  1529 
  1530 
  1531   /// \brief Graph adaptor using a node set of another graph and an
  1532   /// own edge set.
  1533   ///
  1534   /// This structure can be used to establish another graph over a node set
  1535   /// of an existing one. The node iterator will go through the nodes of the
  1536   /// original graph.
  1537   ///
  1538   /// \param _Graph The type of the graph which shares its node set with 
  1539   /// this class. Its interface must conform to the \ref concept::StaticGraph
  1540   /// "StaticGraph" concept.
  1541   ///
  1542   /// In the edge extension and removing it conforms to the 
  1543   /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
  1544   template <typename _Graph>
  1545   class NewEdgeSetAdaptor :
  1546     public ErasableGraphExtender<
  1547     ClearableGraphExtender<
  1548     ExtendableGraphExtender<
  1549     MappableGraphExtender<
  1550     IterableGraphExtender<
  1551     AlterableGraphExtender<
  1552     NewEdgeSetAdaptorBase<_Graph> > > > > > > {
  1553 
  1554   public:
  1555 
  1556     typedef ErasableGraphExtender<
  1557       ClearableGraphExtender<
  1558       ExtendableGraphExtender<
  1559       MappableGraphExtender<
  1560       IterableGraphExtender<
  1561       AlterableGraphExtender<
  1562       NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent;
  1563     
  1564 
  1565     typedef typename Parent::Node Node;
  1566     typedef typename Parent::Edge Edge;
  1567 
  1568   private:
  1569 
  1570     virtual void _clear() {
  1571       Parent::edges.clear();
  1572       Parent::first_edge = -1;
  1573       Parent::first_free_edge = -1;
  1574       Parent::getNotifier(Edge()).clear();
  1575       Parent::getNotifier(Node()).clear();
  1576     }
  1577 
  1578     virtual void _add(const Node& node) {
  1579       Parent::getNotifier(Node()).add(node);
  1580     }
  1581 
  1582     virtual void _erase(const Node& node) {
  1583       Edge edge;
  1584       Parent::firstOut(edge, node);
  1585       while (edge != INVALID) {
  1586 	Parent::erase(edge);
  1587 	Parent::firstOut(edge, node);
  1588       }
  1589 
  1590       Parent::firstIn(edge, node);
  1591       while (edge != INVALID) {
  1592 	Parent::erase(edge);
  1593 	Parent::firstIn(edge, node);
  1594       }
  1595       
  1596       Parent::getNotifier(Node()).erase(node);
  1597     }
  1598 
  1599 
  1600     typedef typename Parent::NodesImpl NodesImpl;
  1601 
  1602     NodesImpl nodes;
  1603     
  1604   public:
  1605 
  1606     /// \brief Constructor of the adaptor.
  1607     /// 
  1608     /// Constructor of the adaptor.
  1609     NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
  1610       Parent::initalize(_graph, nodes);
  1611     }
  1612 
  1613     void clear() {
  1614       Parent::getNotifier(Edge()).clear();      
  1615 
  1616       Parent::edges.clear();
  1617       Parent::first_edge = -1;
  1618       Parent::first_free_edge = -1;
  1619     }
  1620     
  1621   };
  1622 
  1623   /// \brief Graph adaptor using a node set of another graph and an
  1624   /// own undir edge set.
  1625   ///
  1626   /// This structure can be used to establish another undirected graph over 
  1627   /// a node set of an existing one. The node iterator will go through the 
  1628   /// nodes of the original graph.
  1629   ///
  1630   /// \param _Graph The type of the graph which shares its node set with 
  1631   /// this class. Its interface must conform to the \ref concept::StaticGraph
  1632   /// "StaticGraph" concept.
  1633   ///
  1634   /// In the edge extension and removing it conforms to the 
  1635   /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
  1636   template <typename _Graph>
  1637   class NewUndirEdgeSetAdaptor :
  1638     public ErasableUndirGraphExtender<
  1639     ClearableUndirGraphExtender<
  1640     ExtendableUndirGraphExtender<
  1641     MappableUndirGraphExtender<
  1642     IterableUndirGraphExtender<
  1643     AlterableUndirGraphExtender<
  1644     UndirGraphExtender<
  1645     NewEdgeSetAdaptorBase<_Graph> > > > > > > > {
  1646 
  1647   public:
  1648 
  1649     typedef ErasableUndirGraphExtender<
  1650       ClearableUndirGraphExtender<
  1651       ExtendableUndirGraphExtender<
  1652       MappableUndirGraphExtender<
  1653       IterableUndirGraphExtender<
  1654       AlterableUndirGraphExtender<
  1655       UndirGraphExtender<
  1656       NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent;
  1657     
  1658 
  1659     typedef typename Parent::Node Node;
  1660     typedef typename Parent::Edge Edge;
  1661     typedef typename Parent::UndirEdge UndirEdge;
  1662 
  1663   private:
  1664 
  1665     virtual void _clear() {
  1666       Parent::edges.clear();
  1667       Parent::first_edge = -1;
  1668       Parent::first_free_edge = -1;
  1669       Parent::getNotifier(Edge()).clear();
  1670       Parent::getNotifier(Node()).clear();
  1671     }
  1672 
  1673     virtual void _add(const Node& node) {
  1674       Parent::getNotifier(Node()).add(node);
  1675     }
  1676 
  1677     virtual void _erase(const Node& node) {
  1678       Edge edge;
  1679       Parent::firstOut(edge, node);
  1680       while (edge != INVALID) {
  1681 	Parent::erase(edge);
  1682 	Parent::firstOut(edge, node);
  1683       }
  1684 
  1685       Parent::firstIn(edge, node);
  1686       while (edge != INVALID) {
  1687 	Parent::erase(edge);
  1688 	Parent::firstIn(edge, node);
  1689       }
  1690       
  1691       Parent::getNotifier(Node()).erase(node);
  1692     }
  1693 
  1694     typedef typename Parent::NodesImpl NodesImpl;
  1695 
  1696     NodesImpl nodes;
  1697     
  1698   public:
  1699 
  1700 
  1701     /// \brief Constructor of the adaptor.
  1702     /// 
  1703     /// Constructor of the adaptor.
  1704     NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
  1705       Parent::initalize(_graph, nodes);
  1706     }
  1707 
  1708     void clear() {
  1709       Parent::getNotifier(Edge()).clear();      
  1710       Parent::getNotifier(UndirEdge()).clear();      
  1711 
  1712       Parent::edges.clear();
  1713       Parent::first_edge = -1;
  1714       Parent::first_free_edge = -1;
  1715     }
  1716     
  1717   };
  1718 
  1719   ///@}
  1720 
  1721 } //namespace lemon
  1722 
  1723 #endif //LEMON_GRAPH_ADAPTOR_H
  1724