src/lemon/bezier.h
author athos
Thu, 07 Apr 2005 15:22:03 +0000
changeset 1319 6e277ba3fc76
parent 1084 320a0f083ca1
child 1359 1581f961cfaa
permissions -rw-r--r--
Cplex interface has improved a lot.
     1 /* -*- C++ -*-
     2  * src/lemon/bezier.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BEZIER_H
    18 #define LEMON_BEZIER_H
    19 
    20 ///\ingroup misc
    21 ///\file
    22 ///\brief Classes to compute with Bezier curves.
    23 ///
    24 ///Up to now this file is used internally by \ref graph_to_eps.h
    25 ///
    26 ///\author Alpar Juttner
    27 
    28 #include<lemon/xy.h>
    29 
    30 namespace lemon {
    31 
    32 class BezierBase {
    33 public:
    34   typedef xy<double> xy;
    35 protected:
    36   static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
    37 };
    38 
    39 class Bezier1 : public BezierBase
    40 {
    41 public:
    42   xy p1,p2;
    43 
    44   Bezier1() {}
    45   Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
    46   
    47   xy operator()(double t) const
    48   {
    49     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
    50     return conv(p1,p2,t);
    51   }
    52   Bezier1 before(double t) const
    53   {
    54     return Bezier1(p1,conv(p1,p2,t));
    55   }
    56   
    57   Bezier1 after(double t) const
    58   {
    59     return Bezier1(conv(p1,p2,t),p2);
    60   }
    61   Bezier1 revert() { return Bezier1(p2,p1);}
    62   Bezier1 operator()(double a,double b) { return before(b).after(a/b); }
    63   xy grad() { return p2-p1; }
    64   xy grad(double t) { return grad(); }
    65 
    66 };
    67 
    68 class Bezier2 : public BezierBase
    69 {
    70 public:
    71   xy p1,p2,p3;
    72 
    73   Bezier2() {}
    74   Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
    75   Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
    76   xy operator()(double t) const
    77   {
    78     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
    79     return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
    80   }
    81   Bezier2 before(double t) const
    82   {
    83     xy q(conv(p1,p2,t));
    84     xy r(conv(p2,p3,t));
    85     return Bezier2(p1,q,conv(q,r,t));
    86   }
    87   
    88   Bezier2 after(double t) const
    89   {
    90     xy q(conv(p1,p2,t));
    91     xy r(conv(p2,p3,t));
    92     return Bezier2(conv(q,r,t),r,p3);
    93   }
    94   Bezier2 revert() { return Bezier2(p3,p2,p1);}
    95   Bezier2 operator()(double a,double b) { return before(b).after(a/b); }
    96   Bezier1 grad() { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
    97   xy grad(double t) { return grad()(t); }  
    98 };
    99 
   100 class Bezier3 : public BezierBase
   101 {
   102 public:
   103   xy p1,p2,p3,p4;
   104 
   105   Bezier3() {}
   106   Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
   107   Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
   108 			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
   109   Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
   110 			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
   111   
   112   xy operator()(double t) const 
   113     {
   114       //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
   115       return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
   116 	(3*t*t*(1-t))*p3+(t*t*t)*p4;
   117     }
   118   Bezier3 before(double t) const
   119     {
   120       xy p(conv(p1,p2,t));
   121       xy q(conv(p2,p3,t));
   122       xy r(conv(p3,p4,t));
   123       xy a(conv(p,q,t));
   124       xy b(conv(q,r,t));
   125       xy c(conv(a,b,t));
   126       return Bezier3(p1,p,a,c);
   127     }
   128   
   129   Bezier3 after(double t) const
   130     {
   131       xy p(conv(p1,p2,t));
   132       xy q(conv(p2,p3,t));
   133       xy r(conv(p3,p4,t));
   134       xy a(conv(p,q,t));
   135       xy b(conv(q,r,t));
   136       xy c(conv(a,b,t));
   137       return Bezier3(c,b,r,p4);
   138     }
   139   Bezier3 revert() { return Bezier3(p4,p3,p2,p1);}
   140   Bezier3 operator()(double a,double b) { return before(b).after(a/b); }
   141   Bezier2 grad() { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
   142   xy grad(double t) { return grad()(t); }
   143 };
   144 
   145 } //END OF NAMESPACE LEMON
   146 
   147 #endif // LEMON_BEZIER_H