lemon/floyd_warshall.h
author ladanyi
Wed, 21 Jun 2006 08:42:01 +0000
changeset 2105 6e687c525503
parent 1993 2115143eceea
child 2111 ea1fa1bc3f6d
permissions -rw-r--r--
Moved the po directory to glemon/trunk.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FLOYD_WARSHALL_H
    20 #define LEMON_FLOYD_WARSHALL_H
    21 
    22 ///\ingroup flowalgs
    23 /// \file
    24 /// \brief FloydWarshall algorithm.
    25 ///
    26 
    27 #include <lemon/list_graph.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/bits/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/matrix_maps.h>
    32 #include <lemon/maps.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the FloydWarshall algorithm class.
    39   ///  
    40   /// It defines all computational operations and constants which are
    41   /// used in the Floyd-Warshall algorithm. The default implementation
    42   /// is based on the numeric_limits class. If the numeric type does not
    43   /// have infinity value then the maximum value is used as extremal
    44   /// infinity value.
    45   template <
    46     typename Value, 
    47     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    48   struct FloydWarshallDefaultOperationTraits {
    49     /// \brief Gives back the zero value of the type.
    50     static Value zero() {
    51       return static_cast<Value>(0);
    52     }
    53     /// \brief Gives back the positive infinity value of the type.
    54     static Value infinity() {
    55       return std::numeric_limits<Value>::infinity();
    56     }
    57     /// \brief Gives back the sum of the given two elements.
    58     static Value plus(const Value& left, const Value& right) {
    59       return left + right;
    60     }
    61     /// \brief Gives back true only if the first value less than the second.
    62     static bool less(const Value& left, const Value& right) {
    63       return left < right;
    64     }
    65   };
    66 
    67   template <typename Value>
    68   struct FloydWarshallDefaultOperationTraits<Value, false> {
    69     static Value zero() {
    70       return static_cast<Value>(0);
    71     }
    72     static Value infinity() {
    73       return std::numeric_limits<Value>::max();
    74     }
    75     static Value plus(const Value& left, const Value& right) {
    76       if (left == infinity() || right == infinity()) return infinity();
    77       return left + right;
    78     }
    79     static bool less(const Value& left, const Value& right) {
    80       return left < right;
    81     }
    82   };
    83   
    84   /// \brief Default traits class of FloydWarshall class.
    85   ///
    86   /// Default traits class of FloydWarshall class.
    87   /// \param _Graph Graph type.
    88   /// \param _LegthMap Type of length map.
    89   template<class _Graph, class _LengthMap>
    90   struct FloydWarshallDefaultTraits {
    91     /// The graph type the algorithm runs on. 
    92     typedef _Graph Graph;
    93 
    94     /// \brief The type of the map that stores the edge lengths.
    95     ///
    96     /// The type of the map that stores the edge lengths.
    97     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    98     typedef _LengthMap LengthMap;
    99 
   100     // The type of the length of the edges.
   101     typedef typename _LengthMap::Value Value;
   102 
   103     /// \brief Operation traits for floyd-warshall algorithm.
   104     ///
   105     /// It defines the infinity type on the given Value type
   106     /// and the used operation.
   107     /// \see FloydWarshallDefaultOperationTraits
   108     typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
   109  
   110     /// \brief The type of the matrix map that stores the last edges of the 
   111     /// shortest paths.
   112     /// 
   113     /// The type of the map that stores the last edges of the shortest paths.
   114     /// It must be a matrix map with \c Graph::Edge value type.
   115     ///
   116     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   117 			     typename Graph::Edge> PredMap;
   118 
   119     /// \brief Instantiates a PredMap.
   120     /// 
   121     /// This function instantiates a \ref PredMap. 
   122     /// \param graph is the graph,
   123     /// to which we would like to define the PredMap.
   124     /// \todo The graph alone may be insufficient for the initialization
   125     static PredMap *createPredMap(const _Graph& graph) {
   126       return new PredMap(graph);
   127     }
   128 
   129     /// \brief The type of the map that stores the dists of the nodes.
   130     ///
   131     /// The type of the map that stores the dists of the nodes.
   132     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   133     ///
   134     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   135 
   136     /// \brief Instantiates a DistMap.
   137     ///
   138     /// This function instantiates a \ref DistMap. 
   139     /// \param graph is the graph, to which we would like to define the 
   140     /// \ref DistMap
   141     static DistMap *createDistMap(const _Graph& graph) {
   142       return new DistMap(graph);
   143     }
   144 
   145   };
   146   
   147   /// \brief %FloydWarshall algorithm class.
   148   ///
   149   /// \ingroup flowalgs
   150   /// This class provides an efficient implementation of \c Floyd-Warshall 
   151   /// algorithm. The edge lengths are passed to the algorithm using a
   152   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   153   /// kind of length.
   154   ///
   155   /// The algorithm solves the shortest path problem for each pair
   156   /// of node when the edges can have negative length but the graph should
   157   /// not contain cycles with negative sum of length. If we can assume
   158   /// that all edge is non-negative in the graph then the dijkstra algorithm
   159   /// should be used from each node rather and if the graph is sparse and
   160   /// there are negative circles then the johnson algorithm.
   161   ///
   162   /// The complexity of this algorithm is \f$ O(n^3+e) \f$.
   163   ///
   164   /// The type of the length is determined by the
   165   /// \ref concept::ReadMap::Value "Value" of the length map.
   166   ///
   167   /// \param _Graph The graph type the algorithm runs on. The default value
   168   /// is \ref ListGraph. The value of _Graph is not used directly by
   169   /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
   170   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   171   /// edges. It is read once for each edge, so the map may involve in
   172   /// relatively time consuming process to compute the edge length if
   173   /// it is necessary. The default map type is \ref
   174   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   175   /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
   176   /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
   177   /// various data types used by the algorithm.  The default traits
   178   /// class is \ref FloydWarshallDefaultTraits
   179   /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
   180   /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
   181   /// traits class.
   182   ///
   183   /// \author Balazs Dezso
   184 
   185 #ifdef DOXYGEN
   186   template <typename _Graph, typename _LengthMap typename _Traits >
   187 #else
   188   template <typename _Graph=ListGraph,
   189 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   190 	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
   191 #endif
   192   class FloydWarshall {
   193   public:
   194     
   195     /// \brief \ref Exception for uninitialized parameters.
   196     ///
   197     /// This error represents problems in the initialization
   198     /// of the parameters of the algorithms.
   199 
   200     class UninitializedParameter : public lemon::UninitializedParameter {
   201     public:
   202       virtual const char* exceptionName() const {
   203 	return "lemon::FloydWarshall::UninitializedParameter";
   204       }
   205     };
   206 
   207     typedef _Traits Traits;
   208     ///The type of the underlying graph.
   209     typedef typename _Traits::Graph Graph;
   210 
   211     typedef typename Graph::Node Node;
   212     typedef typename Graph::NodeIt NodeIt;
   213     typedef typename Graph::Edge Edge;
   214     typedef typename Graph::EdgeIt EdgeIt;
   215     
   216     /// \brief The type of the length of the edges.
   217     typedef typename _Traits::LengthMap::Value Value;
   218     /// \brief The type of the map that stores the edge lengths.
   219     typedef typename _Traits::LengthMap LengthMap;
   220     /// \brief The type of the map that stores the last
   221     /// edges of the shortest paths. The type of the PredMap
   222     /// is a matrix map for Edges
   223     typedef typename _Traits::PredMap PredMap;
   224     /// \brief The type of the map that stores the dists of the nodes.
   225     /// The type of the DistMap is a matrix map for Values
   226     typedef typename _Traits::DistMap DistMap;
   227     /// \brief The operation traits.
   228     typedef typename _Traits::OperationTraits OperationTraits;
   229   private:
   230     /// Pointer to the underlying graph.
   231     const Graph *graph;
   232     /// Pointer to the length map
   233     const LengthMap *length;
   234     ///Pointer to the map of predecessors edges.
   235     PredMap *_pred;
   236     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   237     bool local_pred;
   238     ///Pointer to the map of distances.
   239     DistMap *_dist;
   240     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   241     bool local_dist;
   242 
   243     /// Creates the maps if necessary.
   244     void create_maps() {
   245       if(!_pred) {
   246 	local_pred = true;
   247 	_pred = Traits::createPredMap(*graph);
   248       }
   249       if(!_dist) {
   250 	local_dist = true;
   251 	_dist = Traits::createDistMap(*graph);
   252       }
   253     }
   254     
   255   public :
   256  
   257     /// \name Named template parameters
   258 
   259     ///@{
   260 
   261     template <class T>
   262     struct DefPredMapTraits : public Traits {
   263       typedef T PredMap;
   264       static PredMap *createPredMap(const Graph& graph) {
   265 	throw UninitializedParameter();
   266       }
   267     };
   268 
   269     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   270     /// type
   271     /// \ref named-templ-param "Named parameter" for setting PredMap type
   272     ///
   273     template <class T>
   274     struct DefPredMap 
   275       : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
   276       typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
   277     };
   278     
   279     template <class T>
   280     struct DefDistMapTraits : public Traits {
   281       typedef T DistMap;
   282       static DistMap *createDistMap(const Graph& graph) {
   283 	throw UninitializedParameter();
   284       }
   285     };
   286     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   287     /// type
   288     ///
   289     /// \ref named-templ-param "Named parameter" for setting DistMap type
   290     ///
   291     template <class T>
   292     struct DefDistMap 
   293       : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
   294       typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
   295     };
   296     
   297     template <class T>
   298     struct DefOperationTraitsTraits : public Traits {
   299       typedef T OperationTraits;
   300     };
   301     
   302     /// \brief \ref named-templ-param "Named parameter" for setting 
   303     /// OperationTraits type
   304     ///
   305     /// \ref named-templ-param "Named parameter" for setting PredMap type
   306     template <class T>
   307     struct DefOperationTraits
   308       : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   309       typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
   310       Create;
   311     };
   312     
   313     ///@}
   314 
   315   protected:
   316 
   317     FloydWarshall() {}
   318 
   319   public:      
   320 
   321     typedef FloydWarshall Create;
   322     
   323     /// \brief Constructor.
   324     ///
   325     /// \param _graph the graph the algorithm will run on.
   326     /// \param _length the length map used by the algorithm.
   327     FloydWarshall(const Graph& _graph, const LengthMap& _length) :
   328       graph(&_graph), length(&_length),
   329       _pred(0), local_pred(false),
   330       _dist(0), local_dist(false) {}
   331     
   332     ///Destructor.
   333     ~FloydWarshall() {
   334       if(local_pred) delete _pred;
   335       if(local_dist) delete _dist;
   336     }
   337 
   338     /// \brief Sets the length map.
   339     ///
   340     /// Sets the length map.
   341     /// \return \c (*this)
   342     FloydWarshall &lengthMap(const LengthMap &m) {
   343       length = &m;
   344       return *this;
   345     }
   346 
   347     /// \brief Sets the map storing the predecessor edges.
   348     ///
   349     /// Sets the map storing the predecessor edges.
   350     /// If you don't use this function before calling \ref run(),
   351     /// it will allocate one. The destuctor deallocates this
   352     /// automatically allocated map, of course.
   353     /// \return \c (*this)
   354     FloydWarshall &predMap(PredMap &m) {
   355       if(local_pred) {
   356 	delete _pred;
   357 	local_pred=false;
   358       }
   359       _pred = &m;
   360       return *this;
   361     }
   362 
   363     /// \brief Sets the map storing the distances calculated by the algorithm.
   364     ///
   365     /// Sets the map storing the distances calculated by the algorithm.
   366     /// If you don't use this function before calling \ref run(),
   367     /// it will allocate one. The destuctor deallocates this
   368     /// automatically allocated map, of course.
   369     /// \return \c (*this)
   370     FloydWarshall &distMap(DistMap &m) {
   371       if(local_dist) {
   372 	delete _dist;
   373 	local_dist=false;
   374       }
   375       _dist = &m;
   376       return *this;
   377     }
   378 
   379     ///\name Execution control
   380     /// The simplest way to execute the algorithm is to use
   381     /// one of the member functions called \c run(...).
   382     /// \n
   383     /// If you need more control on the execution,
   384     /// Finally \ref start() will perform the actual path
   385     /// computation.
   386 
   387     ///@{
   388 
   389     /// \brief Initializes the internal data structures.
   390     /// 
   391     /// Initializes the internal data structures.
   392     void init() {
   393       create_maps();
   394       for (NodeIt it(*graph); it != INVALID; ++it) {
   395 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   396 	  _pred->set(it, jt, INVALID);
   397 	  _dist->set(it, jt, OperationTraits::infinity());
   398 	}
   399 	_dist->set(it, it, OperationTraits::zero());
   400       }
   401       for (EdgeIt it(*graph); it != INVALID; ++it) {
   402 	Node source = graph->source(it);
   403 	Node target = graph->target(it);	
   404 	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
   405 	  _dist->set(source, target, (*length)[it]);
   406 	  _pred->set(source, target, it);
   407 	}
   408       }
   409     }
   410     
   411     /// \brief Executes the algorithm.
   412     ///
   413     /// This method runs the %FloydWarshall algorithm in order to compute 
   414     /// the shortest path to each node pairs. The algorithm 
   415     /// computes 
   416     /// - The shortest path tree for each node.
   417     /// - The distance between each node pairs.
   418     void start() {
   419       for (NodeIt kt(*graph); kt != INVALID; ++kt) {
   420 	for (NodeIt it(*graph); it != INVALID; ++it) {
   421 	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   422 	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
   423 						  (*_dist)(kt, jt));
   424 	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
   425 	      _dist->set(it, jt, relaxed);
   426 	      _pred->set(it, jt, (*_pred)(kt, jt));
   427 	    }
   428 	  }
   429 	}
   430       }
   431     }
   432 
   433     /// \brief Executes the algorithm and checks the negative cycles.
   434     ///
   435     /// This method runs the %FloydWarshall algorithm in order to compute 
   436     /// the shortest path to each node pairs. If there is a negative cycle 
   437     /// in the graph it gives back false. 
   438     /// The algorithm computes 
   439     /// - The shortest path tree for each node.
   440     /// - The distance between each node pairs.
   441     bool checkedStart() {
   442       start();
   443       for (NodeIt it(*graph); it != INVALID; ++it) {
   444 	if (OperationTraits::less((*dist)(it, it), OperationTraits::zero())) {
   445 	  return false;
   446 	}
   447       }
   448       return true;
   449     }
   450     
   451     /// \brief Runs %FloydWarshall algorithm.
   452     ///    
   453     /// This method runs the %FloydWarshall algorithm from a each node
   454     /// in order to compute the shortest path to each node pairs. 
   455     /// The algorithm computes
   456     /// - The shortest path tree for each node.
   457     /// - The distance between each node pairs.
   458     ///
   459     /// \note d.run(s) is just a shortcut of the following code.
   460     ///\code
   461     ///  d.init();
   462     ///  d.start();
   463     ///\endcode
   464     void run() {
   465       init();
   466       start();
   467     }
   468     
   469     ///@}
   470 
   471     /// \name Query Functions
   472     /// The result of the %FloydWarshall algorithm can be obtained using these
   473     /// functions.\n
   474     /// Before the use of these functions,
   475     /// either run() or start() must be called.
   476     
   477     ///@{
   478 
   479     /// \brief Copies the shortest path to \c t into \c p
   480     ///    
   481     /// This function copies the shortest path to \c t into \c p.
   482     /// If it \c t is a source itself or unreachable, then it does not
   483     /// alter \c p.
   484     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   485     /// \c false otherwise.
   486     /// \sa DirPath
   487     template <typename Path>
   488     bool getPath(Path &p, Node source, Node target) {
   489       if (connected(source, target)) {
   490 	p.clear();
   491 	typename Path::Builder b(target);
   492 	for(b.setStartNode(target); predEdge(source, target) != INVALID;
   493 	    target = predNode(target)) {
   494 	  b.pushFront(predEdge(source, target));
   495 	}
   496 	b.commit();
   497 	return true;
   498       }
   499       return false;
   500     }
   501 	  
   502     /// \brief The distance between two nodes.
   503     ///
   504     /// Returns the distance between two nodes.
   505     /// \pre \ref run() must be called before using this function.
   506     /// \warning If node \c v in unreachable from the root the return value
   507     /// of this funcion is undefined.
   508     Value dist(Node source, Node target) const { 
   509       return (*_dist)(source, target); 
   510     }
   511 
   512     /// \brief Returns the 'previous edge' of the shortest path tree.
   513     ///
   514     /// For the node \c node it returns the 'previous edge' of the shortest 
   515     /// path tree to direction of the node \c root 
   516     /// i.e. it returns the last edge of a shortest path from the node \c root 
   517     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   518     /// or if \c node=root. The shortest path tree used here is equal to the 
   519     /// shortest path tree used in \ref predNode(). 
   520     /// \pre \ref run() must be called before using this function.
   521     Edge predEdge(Node root, Node node) const { 
   522       return (*_pred)(root, node); 
   523     }
   524 
   525     /// \brief Returns the 'previous node' of the shortest path tree.
   526     ///
   527     /// For a node \c node it returns the 'previous node' of the shortest path 
   528     /// tree to direction of the node \c root, i.e. it returns the last but 
   529     /// one node from a shortest path from the \c root to \c node. It is 
   530     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   531     /// The shortest path tree used here is equal to the 
   532     /// shortest path tree used in \ref predEdge().  
   533     /// \pre \ref run() must be called before using this function.
   534     Node predNode(Node root, Node node) const { 
   535       return (*_pred)(root, node) == INVALID ? 
   536       INVALID : graph->source((*_pred)(root, node)); 
   537     }
   538     
   539     /// \brief Returns a reference to the matrix node map of distances.
   540     ///
   541     /// Returns a reference to the matrix node map of distances. 
   542     ///
   543     /// \pre \ref run() must be called before using this function.
   544     const DistMap &distMap() const { return *_dist;}
   545  
   546     /// \brief Returns a reference to the shortest path tree map.
   547     ///
   548     /// Returns a reference to the matrix node map of the edges of the
   549     /// shortest path tree.
   550     /// \pre \ref run() must be called before using this function.
   551     const PredMap &predMap() const { return *_pred;}
   552  
   553     /// \brief Checks if a node is reachable from the root.
   554     ///
   555     /// Returns \c true if \c v is reachable from the root.
   556     /// \pre \ref run() must be called before using this function.
   557     ///
   558     bool connected(Node source, Node target) { 
   559       return (*_dist)(source, target) != OperationTraits::infinity(); 
   560     }
   561     
   562     ///@}
   563   };
   564  
   565 } //END OF NAMESPACE LEMON
   566 
   567 #endif
   568