lemon/dynamic_tree.h
author kpeter
Wed, 05 Dec 2007 13:03:19 +0000
changeset 2535 716024e7c080
parent 2514 57143c09dc20
child 2553 bfced05fa852
permissions -rw-r--r--
Redesigned CapacityScaling algorithm with almost the same interface.
The new version does not use the ResidualGraphAdaptor for performance reasons.
Scaling can be enabled and disabled with a parameter of the run() function.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 #ifndef LEMON_DYNAMIC_TREE_H
    19 #define LEMON_DYNAMIC_TREE_H
    20 
    21 /// \ingroup auxdata
    22 /// \file
    23 /// \brief The dynamic tree data structure of Sleator and Tarjan.
    24 ///
    25 
    26 #include <vector>
    27 #include <limits>
    28 #include <lemon/tolerance.h>
    29 
    30 namespace lemon {
    31 
    32   /// \ingroup auxdata
    33   ///
    34   /// \brief The dynamic tree data structure of Sleator and Tarjan.
    35   ///
    36   /// This class provides an implementation of the dynamic tree data
    37   /// structure for maintaining a set of node-disjoint rooted
    38   /// trees. Each item has an associated value, and the item with
    39   /// minimum value can be find in \f$O(\log(n)\f$ on the path from a
    40   /// node to the its root, and the items on such path can be
    41   /// increased or decreased globally with a certain value in the same
    42   /// running time. We regard a tree edge as directed toward the root,
    43   /// that is from child to parent. Its structure can be modified by
    44   /// two basic operations: \e link(v,w) adds an edge between a root v
    45   /// and a node w in a different component; \e cut(v) removes the
    46   /// edge between v and its parent.
    47   /// 
    48   /// \param _Value The value type of the items.  
    49   /// \param _ItemIntMap Converts item type of node to integer.
    50   /// \param _Tolerance The tolerance class to handle computation
    51   /// problems.
    52   /// \param _enableSize If true then the data structre manatain the
    53   /// size of each tree. The feature is used in \ref GoldbergTarjan
    54   /// algorithm. The default value is true.
    55   ///
    56   /// \author Hamori Tamas
    57 #ifdef DOXYGEN
    58   template <typename _Value, typename _ItemIntMap, 
    59 	    typename _Tolerance, bool _enableSize>
    60 #else
    61   template <typename _Value, typename _ItemIntMap, 
    62 	    typename _Tolerance = lemon::Tolerance<_Value>,
    63 	    bool _enableSize = true>
    64 #endif
    65   class DynamicTree {
    66   public:
    67     /// \brief The integer map on the items.
    68     typedef _ItemIntMap ItemIntMap;
    69     /// \brief The item type of nodes.
    70     typedef typename ItemIntMap::Key Item;
    71     /// \brief The value type of the algorithms.
    72     typedef _Value Value;
    73     /// \brief The tolerance used by the algorithm.
    74     typedef _Tolerance Tolerance;
    75 
    76   private:
    77   
    78     class ItemData;
    79 
    80     std::vector<ItemData> _data;
    81     ItemIntMap &_iim;
    82     Value _max_value;
    83     Tolerance _tolerance;
    84 
    85   public:
    86     /// \brief The constructor of the class.
    87     ///
    88     /// \param iim The integer map on the items. 
    89     /// \param tolerance Tolerance class.
    90     DynamicTree(ItemIntMap &iim, const Tolerance& tolerance = Tolerance())
    91       : _iim(iim), _max_value(std::numeric_limits<Value>::max()), 
    92 	_tolerance(tolerance) {}
    93   
    94     ~DynamicTree() {}
    95 
    96     /// \brief Clears the data structure
    97     ///
    98     /// Clears the data structure
    99     void clear() {
   100       _data.clear();
   101     }
   102 
   103     /// \brief Sets the tolerance used by algorithm.
   104     ///
   105     /// Sets the tolerance used by algorithm.
   106     void tolerance(const Tolerance& tolerance) const {
   107       _tolerance = tolerance;
   108       return *this;
   109     } 
   110   
   111     /// \brief Returns the tolerance used by algorithm.
   112     ///
   113     /// Returns the tolerance used by algorithm.
   114     const Tolerance& tolerance() const {
   115       return tolerance;
   116     } 
   117   
   118     /// \brief Create a new tree containing a single node with cost zero.
   119     void makeTree(const Item &item) {
   120       _data[makePath(item)].successor = -1;
   121     }
   122     
   123     /// \brief Return the root of the tree containing node with itemtype
   124     /// \e item.
   125     Item findRoot(const Item &item) {
   126       return _data[findTail(expose(_iim[item]))].id;
   127     }
   128     
   129     /// \brief Return the the value of nodes in the tree containing
   130     /// node with itemtype \e item.
   131     int findSize(const Item &item) {
   132       return _data[expose(_iim[item])].size;
   133     }
   134     
   135     /// \brief Return the minimum cost containing node.
   136     /// 
   137     /// Return into \e d the minimum cost on the tree path from \e item
   138     /// to findRoot(item).  Return the last item (closest to its root)
   139     /// on this path of the minimum cost.
   140     Item findCost(const Item &item, Value& d){
   141       return _data[findPathCost(expose(_iim[item]),d)].id;
   142     }
   143     
   144     /// \brief Add \e x value to the cost of every node on the path from
   145     /// \e item to findRoot(item).
   146     void addCost(const Item &item, Value x) {
   147       addPathCost(expose(_iim[item]), x);
   148     }
   149     
   150     /// \brief Combine the trees containing nodes \e item1 and \e item2
   151     /// by adding an edge from \e item1 \e item2.
   152     /// 
   153     /// This operation assumes that \e item1 is root and \e item2 is in
   154     /// a different tree.
   155     void link(const Item &item1, const Item &item2){
   156       int v = _iim[item1];
   157       int w = _iim[item2];
   158       int p = expose(w);
   159       join(-1, expose(v), p);
   160       _data[v].successor = -1;
   161       _data[v].size += _data[p].size;
   162 
   163     }    
   164     
   165     /// \brief Divide the tree containing node \e item into two trees by
   166     /// deleting the edge out of \e item.
   167     /// 
   168     /// This operation assumes that \e item is not a tree root.
   169     void cut(const Item &item) {
   170       int v = _iim[item];
   171       int p, q;
   172       expose(v);
   173       split(p, v, q);
   174       if (p != -1) {
   175 	_data[p].successor = v;
   176       }
   177       _data[v].size -= _data[q].size;
   178       if (q != -1) {
   179 	_data[q].successor = _data[v].successor;
   180       }
   181       _data[v].successor = -1;
   182     }
   183 
   184     ///\brief 
   185     Item parent(const Item &item){
   186       return _data[_iim[item].p].id;
   187     }
   188 
   189     ///\brief Return the upper bound of the costs.
   190     Value maxValue() const {
   191       return _max_value;
   192     }
   193     
   194   private:
   195 
   196     int makePath(const Item &item) {
   197       _iim.set(item, _data.size());
   198       ItemData v(item);
   199       _data.push_back(v);
   200       return _iim[item];
   201     }
   202 
   203     int findPath(int v) {
   204       splay(v);
   205       return v;
   206     }
   207     
   208     int findPathCost(int p, Value &d) {
   209       while ((_data[p].right != -1 && 
   210 	      !_tolerance.less(0, _data[_data[p].right].dmin)) || 
   211 	     (_data[p].left != -1 && _tolerance.less(0, _data[p].dcost))) {
   212 	if (_data[p].right != -1 && 
   213 	    !_tolerance.less(0, _data[_data[p].right].dmin)) {
   214 	  p = _data[p].right;
   215 	} else if (_data[p].left != -1 && 
   216 		   !_tolerance.less(0, _data[_data[p].left].dmin)) {
   217 	  p = _data[p].left;
   218 	}
   219       }
   220       splay(p);
   221       d = _data[p].dmin;
   222       return p; 
   223     }
   224 
   225     int findTail(int p){
   226       while (_data[p].right != -1) {
   227 	p = _data[p].right;
   228       }
   229       splay(p);
   230       return p;
   231     }
   232     
   233     void addPathCost(int p, Value x) {
   234       if (!_tolerance.less(x, _max_value)) {
   235 	_data[p].dmin = x;
   236 	_data[p].dcost = x;
   237       } else if (!_tolerance.less(-x, _max_value)) {
   238 	_data[p].dmin = 0;
   239 	_data[p].dcost = 0;
   240       } else {
   241 	_data[p].dmin += x;
   242       }
   243     }
   244 
   245     void join(int p, int v, int q) {
   246       Value min = _max_value;
   247       Value pmin = _max_value;
   248       Value vmin = _data[v].dmin;
   249       Value qmin = _max_value;
   250       if (p != -1){
   251 	pmin = _data[p].dmin;
   252       }
   253       if (q != -1){
   254 	qmin = _data[q].dmin;
   255       }
   256         
   257       if (_tolerance.less(vmin, qmin)) {
   258 	if (_tolerance.less(vmin,pmin)) {
   259 	  min = vmin;
   260 	} else {
   261 	  min = pmin;
   262 	}
   263       } else if (_tolerance.less(qmin,pmin)) {
   264 	min = qmin;
   265       } else {
   266 	min = pmin;
   267       }
   268 
   269       if (p != -1){
   270 	_data[p].parent = v;
   271 	_data[p].dmin -= min;
   272       }
   273       if (q!=-1){
   274 	_data[q].parent = v;
   275 	if (_tolerance.less(_data[q].dmin,_max_value)) {
   276 	  _data[q].dmin -= min;
   277 	}
   278       }
   279       _data[v].left = p;
   280       _data[v].right = q;
   281       if (_tolerance.less(min,_max_value)) {
   282 	_data[v].dcost = _data[v].dmin - min;
   283       }
   284       _data[v].dmin = min;
   285     }
   286 
   287     void split(int &p, int v, int &q){
   288       splay(v);
   289       p = -1;
   290       if (_data[v].left != -1){
   291 	p = _data[v].left;
   292 	_data[p].dmin += _data[v].dmin;
   293 	_data[p].parent = -1;
   294 	_data[v].left = -1;
   295       }
   296       q = -1;
   297       if (_data[v].right != -1) {
   298 	q=_data[v].right;
   299 	if (_tolerance.less(_data[q].dmin, _max_value)) {
   300 	  _data[q].dmin += _data[v].dmin;
   301 	}
   302 	_data[q].parent = -1;
   303 	_data[v].right = -1;
   304       } 
   305       if (_tolerance.less(_data[v].dcost, _max_value)) {
   306 	_data[v].dmin += _data[v].dcost;
   307 	_data[v].dcost = 0;
   308       } else {
   309 	_data[v].dmin = _data[v].dcost;
   310       }
   311     }
   312  
   313     int expose(int v) {
   314       int p, q, r, w;
   315       p = -1;
   316       while (v != -1) {
   317 	w = _data[findPath(v)].successor;
   318 	split(q, v, r);
   319 	if (q != -1) {
   320 	  _data[q].successor = v;
   321 	}
   322 	join(p, v, r);
   323 	p = v;
   324 	v = w;
   325       }
   326       _data[p].successor = -1;
   327       return p;
   328     }
   329 
   330     void splay(int v) {
   331       while (_data[v].parent != -1) {
   332 	if (v == _data[_data[v].parent].left) {
   333 	  if (_data[_data[v].parent].parent == -1) {
   334 	    zig(v);
   335 	  } else {
   336 	    if (_data[v].parent == _data[_data[_data[v].parent].parent].left) {
   337 	      zig(_data[v].parent);
   338 	      zig(v);
   339 	    } else {
   340 	      zig(v);
   341 	      zag(v);
   342 	    }
   343 	  }
   344 	} else {
   345 	  if (_data[_data[v].parent].parent == -1) {
   346 	    zag(v);
   347 	  } else {
   348 	    if (_data[v].parent == _data[_data[_data[v].parent].parent].left) {
   349 	      zag(v);
   350 	      zig(v);
   351 	    } else {
   352 	      zag(_data[v].parent);
   353 	      zag(v);
   354 	    }
   355 	  }
   356 	}
   357       }
   358     }
   359 
   360 
   361     void zig(int v) {
   362       Value min = _data[_data[v].parent].dmin;
   363       int a = _data[v].parent;
   364         
   365       Value aa = _data[a].dcost;
   366       if (_tolerance.less(aa, _max_value)) { 
   367 	aa += min;
   368       }
   369 
   370 
   371       int b = v;
   372       Value ab = min + _data[b].dmin;
   373       Value bb = _data[b].dcost;
   374       if (_tolerance.less(bb, _max_value)) { 
   375 	bb += ab;
   376       }
   377 
   378       int c = -1;
   379       Value cc = _max_value;
   380       if (_data[a].right != -1) {
   381 	c = _data[a].right;
   382 	cc = _data[c].dmin;
   383 	if (_tolerance.less(cc, _max_value)) {
   384 	  cc += min;
   385 	}
   386       }
   387 
   388       int d = -1;
   389       Value dd = _max_value;
   390       if (_data[v].left != -1){
   391 	d = _data[v].left;
   392 	dd = ab + _data[d].dmin;
   393       }
   394 
   395       int e = -1;
   396       Value ee = _max_value;
   397       if (_data[v].right != -1) {
   398 	e = _data[v].right;
   399 	ee = ab + _data[e].dmin;
   400       }
   401 
   402       Value min2;
   403       if (_tolerance.less(0, _data[b].dmin) || 
   404 	  (e != -1 && !_tolerance.less(0, _data[e].dmin))) {
   405 	min2 = min;
   406       } else {
   407 	if (_tolerance.less(aa, cc)) {
   408 	  if (_tolerance.less(aa, ee)) {
   409 	    min2 = aa;
   410 	  } else {
   411 	    min2 = ee;
   412 	  }
   413 	} else if (_tolerance.less(cc, ee)) {
   414 	  min2 = cc;
   415 	} else {
   416 	  min2 = ee;
   417 	}
   418       }
   419         
   420       _data[a].dcost = aa;
   421       if (_tolerance.less(aa, _max_value)) { 
   422 	_data[a].dcost -= min2;
   423       }
   424       _data[a].dmin = min2;
   425       if (_tolerance.less(min2,_max_value)) { 
   426 	_data[a].dmin -= min; 
   427       }
   428       _data[a].size -= _data[b].size;
   429       _data[b].dcost = bb;
   430       if (_tolerance.less(bb, _max_value)) { 
   431 	_data[b].dcost -= min;
   432       }
   433       _data[b].dmin = min;
   434       _data[b].size += _data[a].size;
   435       if (c != -1) {
   436 	_data[c].dmin = cc;
   437 	if (_tolerance.less(cc, _max_value)) {
   438 	  _data[c].dmin -= min2;
   439 	}
   440       }
   441       if (d != -1) {
   442 	_data[d].dmin = dd - min;
   443 	_data[a].size += _data[d].size;
   444 	_data[b].size -= _data[d].size;
   445       }
   446       if (e != -1) {
   447 	_data[e].dmin = ee - min2;
   448       }
   449         
   450       int w = _data[v].parent;
   451       _data[v].successor = _data[w].successor;
   452       _data[w].successor = -1;
   453       _data[v].parent = _data[w].parent;
   454       _data[w].parent = v;
   455       _data[w].left = _data[v].right;
   456       _data[v].right = w;
   457       if (_data[v].parent != -1){
   458 	if (_data[_data[v].parent].right == w) {
   459 	  _data[_data[v].parent].right = v;
   460 	} else {
   461 	  _data[_data[v].parent].left = v;
   462 	}
   463       }
   464       if (_data[w].left != -1){
   465 	_data[_data[w].left].parent = w;
   466       }
   467     }
   468 
   469 
   470     void zag(int v) {
   471 
   472       Value min = _data[_data[v].parent].dmin;
   473 
   474       int a = _data[v].parent;
   475       Value aa = _data[a].dcost;
   476       if (_tolerance.less(aa, _max_value)) { 
   477 	aa += min;
   478       }
   479         
   480       int b = v;
   481       Value ab = min + _data[b].dmin;
   482       Value bb = _data[b].dcost;
   483       if (_tolerance.less(bb, _max_value)) {
   484 	bb += ab;
   485       }
   486 
   487       int c = -1;
   488       Value cc = _max_value;
   489       if (_data[a].left != -1){
   490 	c = _data[a].left;
   491 	cc = min + _data[c].dmin;
   492       }
   493 
   494       int d = -1;
   495       Value dd = _max_value;
   496       if (_data[v].right!=-1) {
   497 	d = _data[v].right;
   498 	dd = _data[d].dmin;
   499 	if (_tolerance.less(dd, _max_value)) {
   500 	  dd += ab;
   501 	}
   502       }
   503 
   504       int e = -1;
   505       Value ee = _max_value;
   506       if (_data[v].left != -1){
   507 	e = _data[v].left;
   508 	ee = ab + _data[e].dmin;
   509       }
   510 
   511       Value min2;
   512       if (_tolerance.less(0, _data[b].dmin) || 
   513 	  (e != -1 && !_tolerance.less(0, _data[e].dmin))) {
   514 	min2 = min;
   515       } else {
   516 	if (_tolerance.less(aa, cc)) {
   517 	  if (_tolerance.less(aa, ee)) {
   518 	    min2 = aa;
   519 	  } else {
   520 	    min2 = ee;
   521 	  }
   522 	} else if (_tolerance.less(cc, ee)) {
   523 	  min2 = cc;
   524 	} else {
   525 	  min2 = ee;
   526 	}
   527       }
   528       _data[a].dcost = aa;
   529       if (_tolerance.less(aa, _max_value)) { 
   530 	_data[a].dcost -= min2;
   531       }
   532       _data[a].dmin = min2;
   533       if (_tolerance.less(min2, _max_value)) {
   534 	_data[a].dmin -= min;
   535       }
   536       _data[a].size -= _data[b].size;
   537       _data[b].dcost = bb;
   538       if (_tolerance.less(bb, _max_value)) { 
   539 	_data[b].dcost -= min;
   540       }
   541       _data[b].dmin = min;
   542       _data[b].size += _data[a].size;
   543       if (c != -1) {
   544 	_data[c].dmin = cc - min2;
   545       }
   546       if (d != -1) {
   547 	_data[d].dmin = dd;
   548 	_data[a].size += _data[d].size;
   549 	_data[b].size -= _data[d].size;
   550 	if (_tolerance.less(dd, _max_value)) {
   551 	  _data[d].dmin -= min;
   552 	}
   553       }
   554       if (e != -1) {
   555 	_data[e].dmin = ee - min2;
   556       }
   557         
   558       int w = _data[v].parent;
   559       _data[v].successor = _data[w].successor;
   560       _data[w].successor = -1;
   561       _data[v].parent = _data[w].parent;
   562       _data[w].parent = v;
   563       _data[w].right = _data[v].left;
   564       _data[v].left = w;
   565       if (_data[v].parent != -1){
   566 	if (_data[_data[v].parent].left == w) {
   567 	  _data[_data[v].parent].left = v;
   568 	} else {
   569 	  _data[_data[v].parent].right = v;
   570 	}
   571       }
   572       if (_data[w].right != -1){
   573 	_data[_data[w].right].parent = w;
   574       }
   575     }
   576 
   577   private:
   578 
   579     class ItemData {
   580     public:
   581       Item id;
   582       int size;
   583       int successor;
   584       int parent;
   585       int left;
   586       int right;
   587       Value dmin;
   588       Value dcost;
   589         
   590     public:
   591       ItemData(const Item &item)
   592 	: id(item), size(1), successor(), parent(-1), 
   593 	  left(-1), right(-1), dmin(0), dcost(0) {}
   594     };
   595      
   596   };
   597 
   598   template <typename _Value, typename _ItemIntMap, typename _Tolerance>
   599   class DynamicTree<_Value, _ItemIntMap, _Tolerance, false> {
   600   public:
   601     typedef _ItemIntMap ItemIntMap;
   602     typedef typename ItemIntMap::Key Item;
   603     typedef _Value Value;
   604     typedef _Tolerance Tolerance;
   605 
   606   private:
   607   
   608     class ItemData;
   609 
   610     std::vector<ItemData> _data;
   611     ItemIntMap &_iim;
   612     Value _max_value;
   613     Tolerance _tolerance;
   614 
   615   public:
   616     DynamicTree(ItemIntMap &iim, const Tolerance& tolerance = Tolerance())
   617       : _iim(iim), _max_value(std::numeric_limits<Value>::max()), 
   618 	_tolerance(tolerance) {}
   619   
   620     ~DynamicTree() {}
   621 
   622     void clear() {
   623       _data.clear();
   624     }
   625 
   626     void tolerance(const Tolerance& tolerance) const {
   627       _tolerance = tolerance;
   628       return *this;
   629     } 
   630   
   631     const Tolerance& tolerance() const {
   632       return tolerance;
   633     } 
   634   
   635     void makeTree(const Item &item) {
   636       _data[makePath(item)].successor = -1;
   637     }
   638     
   639     Item findRoot(const Item &item) {
   640       return _data[findTail(expose(_iim[item]))].id;
   641     }
   642     
   643     Item findCost(const Item &item, Value& d){
   644       return _data[findPathCost(expose(_iim[item]),d)].id;
   645     }
   646     
   647     void addCost(const Item &item, Value x){
   648       addPathCost(expose(_iim[item]), x);
   649     }
   650     
   651     void link(const Item &item1, const Item &item2){
   652       int v = _iim[item1];
   653       int w = _iim[item2];
   654       int p = expose(w);
   655       join(-1, expose(v), p);
   656       _data[v].successor = -1;
   657     }    
   658     
   659     void cut(const Item &item) {
   660       int v = _iim[item];
   661       int p, q;
   662       expose(v);
   663       split(p, v, q);
   664       if (p != -1) {
   665 	_data[p].successor = v;
   666       }
   667       if (q != -1) {
   668 	_data[q].successor = _data[v].successor;
   669       }
   670       _data[v].successor = -1;
   671     }
   672 
   673     Item parent(const Item &item){
   674       return _data[_iim[item].p].id;
   675     }
   676 
   677     Value maxValue() const {
   678       return _max_value;
   679     }
   680     
   681   private:
   682 
   683     int makePath(const Item &item) {
   684       _iim.set(item, _data.size());
   685       ItemData v(item);
   686       _data.push_back(v);
   687       return _iim[item];
   688     }
   689 
   690     int findPath(int v) {
   691       splay(v);
   692       return v;
   693     }
   694     
   695     int findPathCost(int p, Value &d) {
   696       while ((_data[p].right != -1 && 
   697 	      !_tolerance.less(0, _data[_data[p].right].dmin)) || 
   698 	     (_data[p].left != -1 && _tolerance.less(0, _data[p].dcost))) {
   699 	if (_data[p].right != -1 && 
   700 	    !_tolerance.less(0, _data[_data[p].right].dmin)) {
   701 	  p = _data[p].right;
   702 	} else if (_data[p].left != -1 && 
   703 		   !_tolerance.less(0, _data[_data[p].left].dmin)){
   704 	  p = _data[p].left;
   705 	}
   706       }
   707       splay(p);
   708       d = _data[p].dmin;
   709       return p; 
   710     }
   711 
   712     int findTail(int p) {
   713       while (_data[p].right != -1) {
   714 	p = _data[p].right;
   715       }
   716       splay(p);
   717       return p;
   718     }
   719     
   720     void addPathCost(int p, Value x) {
   721       if (!_tolerance.less(x, _max_value)) {
   722 	_data[p].dmin = x;_data[p].dcost = x;
   723       } else if (!_tolerance.less(-x, _max_value)) {
   724 	_data[p].dmin = 0;
   725 	_data[p].dcost = 0;
   726       } else {
   727 	_data[p].dmin += x;
   728       }
   729     }
   730 
   731     void join(int p, int v, int q) {
   732       Value min = _max_value;
   733       Value pmin = _max_value;
   734       Value vmin = _data[v].dmin;
   735       Value qmin = _max_value;
   736       if (p != -1){
   737 	pmin = _data[p].dmin;
   738       }
   739       if (q != -1){
   740 	qmin = _data[q].dmin;
   741       }
   742         
   743       if (_tolerance.less(vmin, qmin)) {
   744 	if (_tolerance.less(vmin,pmin)) {
   745 	  min = vmin;
   746 	} else {
   747 	  min = pmin;
   748 	}
   749       } else if (_tolerance.less(qmin,pmin)) {
   750 	min = qmin;
   751       } else {
   752 	min = pmin;
   753       }
   754 
   755       if (p != -1){
   756 	_data[p].parent = v;
   757 	_data[p].dmin -= min;
   758       }
   759       if (q != -1){
   760 	_data[q].parent = v;
   761 	if (_tolerance.less(_data[q].dmin,_max_value)) {
   762 	  _data[q].dmin -= min;
   763 	}
   764       }
   765       _data[v].left = p;
   766       _data[v].right = q;
   767       if (_tolerance.less(min, _max_value)) {
   768 	_data[v].dcost = _data[v].dmin - min;
   769       }
   770       _data[v].dmin = min;
   771     }
   772 
   773     void split(int &p, int v, int &q){
   774       splay(v);
   775       p = -1;
   776       if (_data[v].left != -1){
   777 	p = _data[v].left;
   778 	_data[p].dmin += _data[v].dmin;
   779 	_data[p].parent = -1;
   780 	_data[v].left = -1;
   781       }
   782       q = -1;
   783       if (_data[v].right != -1) {
   784 	q=_data[v].right;
   785 	if (_tolerance.less(_data[q].dmin, _max_value)) {
   786 	  _data[q].dmin += _data[v].dmin;
   787 	}
   788 	_data[q].parent = -1;
   789 	_data[v].right = -1;
   790       } 
   791       if (_tolerance.less(_data[v].dcost, _max_value)) {
   792 	_data[v].dmin += _data[v].dcost;
   793 	_data[v].dcost = 0;
   794       } else {
   795 	_data[v].dmin = _data[v].dcost;
   796       }
   797     }
   798  
   799     int expose(int v) {
   800       int p, q, r, w;
   801       p = -1;
   802       while (v != -1) {
   803 	w = _data[findPath(v)].successor;
   804 	split(q, v, r);
   805 	if (q != -1) {
   806 	  _data[q].successor = v;
   807 	}
   808 	join(p, v, r);
   809 	p = v;
   810 	v = w;
   811       }
   812       _data[p].successor = -1;
   813       return p;
   814     }
   815 
   816     void splay(int v) {
   817       while (_data[v].parent != -1) {
   818 	if (v == _data[_data[v].parent].left) {
   819 	  if (_data[_data[v].parent].parent == -1) {
   820 	    zig(v);
   821 	  } else {
   822 	    if (_data[v].parent == _data[_data[_data[v].parent].parent].left) {
   823 	      zig(_data[v].parent);
   824 	      zig(v);
   825 	    } else {
   826 	      zig(v);
   827 	      zag(v);
   828 	    }
   829 	  }
   830 	} else {
   831 	  if (_data[_data[v].parent].parent == -1) {
   832 	    zag(v);
   833 	  } else {
   834 	    if (_data[v].parent == _data[_data[_data[v].parent].parent].left) {
   835 	      zag(v);
   836 	      zig(v);
   837 	    } else {
   838 	      zag(_data[v].parent);
   839 	      zag(v);
   840 	    }
   841 	  }
   842 	}
   843       }
   844     }
   845 
   846 
   847     void zig(int v) {
   848       Value min = _data[_data[v].parent].dmin;
   849       int a = _data[v].parent;
   850         
   851       Value aa = _data[a].dcost;
   852       if (_tolerance.less(aa, _max_value)) { 
   853 	aa+= min;
   854       }
   855 
   856 
   857       int b = v;
   858       Value ab = min + _data[b].dmin;
   859       Value bb = _data[b].dcost;
   860       if (_tolerance.less(bb, _max_value)) { 
   861 	bb+= ab;
   862       }
   863 
   864       int c = -1;
   865       Value cc = _max_value;
   866       if (_data[a].right != -1) {
   867 	c = _data[a].right;
   868 	cc = _data[c].dmin;
   869 	if (_tolerance.less(cc, _max_value)) {
   870 	  cc+=min;
   871 	}
   872       }
   873 
   874       int d = -1;
   875       Value dd = _max_value;
   876       if (_data[v].left != -1){
   877 	d = _data[v].left;
   878 	dd = ab + _data[d].dmin;
   879       }
   880 
   881       int e = -1;
   882       Value ee = _max_value;
   883       if (_data[v].right != -1) {
   884 	e = _data[v].right;
   885 	ee = ab + _data[e].dmin;
   886       }
   887 
   888       Value min2;
   889       if (_tolerance.less(0, _data[b].dmin) || 
   890 	  (e != -1 && !_tolerance.less(0, _data[e].dmin))) {
   891 	min2 = min;
   892       } else {
   893 	if (_tolerance.less(aa, cc)) {
   894 	  if (_tolerance.less(aa, ee)) {
   895 	    min2 = aa;
   896 	  } else {
   897 	    min2 = ee;
   898 	  }
   899 	} else if (_tolerance.less(cc, ee)) {
   900 	  min2 = cc;
   901 	} else {
   902 	  min2 = ee;
   903 	}
   904       }
   905         
   906       _data[a].dcost = aa;
   907       if (_tolerance.less(aa, _max_value)) { 
   908 	_data[a].dcost -= min2;
   909       }
   910       _data[a].dmin = min2;
   911       if (_tolerance.less(min2,_max_value)) { 
   912 	_data[a].dmin -= min; 
   913       }
   914       _data[b].dcost = bb;
   915       if (_tolerance.less(bb, _max_value)) { 
   916 	_data[b].dcost -= min;
   917       }
   918       _data[b].dmin = min;
   919       if (c != -1) {
   920 	_data[c].dmin = cc;
   921 	if (_tolerance.less(cc, _max_value)) {
   922 	  _data[c].dmin -= min2;
   923 	}
   924       }
   925       if (d != -1) {
   926 	_data[d].dmin = dd - min;
   927       }
   928       if (e != -1) {
   929 	_data[e].dmin = ee - min2;
   930       }
   931         
   932       int w = _data[v].parent;
   933       _data[v].successor = _data[w].successor;
   934       _data[w].successor = -1;
   935       _data[v].parent = _data[w].parent;
   936       _data[w].parent = v;
   937       _data[w].left = _data[v].right;
   938       _data[v].right = w;
   939       if (_data[v].parent != -1){
   940 	if (_data[_data[v].parent].right == w) {
   941 	  _data[_data[v].parent].right = v;
   942 	} else {
   943 	  _data[_data[v].parent].left = v;
   944 	}
   945       }
   946       if (_data[w].left != -1){
   947 	_data[_data[w].left].parent = w;
   948       }
   949     }
   950 
   951 
   952     void zag(int v) {
   953 
   954       Value min = _data[_data[v].parent].dmin;
   955 
   956       int a = _data[v].parent;
   957       Value aa = _data[a].dcost;
   958       if (_tolerance.less(aa, _max_value)) { 
   959 	aa += min;
   960       }
   961         
   962       int b = v;
   963       Value ab = min + _data[b].dmin;
   964       Value bb = _data[b].dcost;
   965       if (_tolerance.less(bb, _max_value)) {
   966 	bb += ab;
   967       }
   968 
   969       int c = -1;
   970       Value cc = _max_value;
   971       if (_data[a].left != -1){
   972 	c = _data[a].left;
   973 	cc = min + _data[c].dmin;
   974       }
   975 
   976       int d = -1;
   977       Value dd = _max_value;
   978       if (_data[v].right!=-1) {
   979 	d = _data[v].right;
   980 	dd = _data[d].dmin;
   981 	if (_tolerance.less(dd, _max_value)) {
   982 	  dd += ab;
   983 	}
   984       }
   985 
   986       int e = -1;
   987       Value ee = _max_value;
   988       if (_data[v].left != -1){
   989 	e = _data[v].left;
   990 	ee = ab + _data[e].dmin;
   991       }
   992 
   993       Value min2;
   994       if (_tolerance.less(0, _data[b].dmin) || 
   995 	  (e != -1 && !_tolerance.less(0, _data[e].dmin))) {
   996 	min2 = min;
   997       } else {
   998 	if (_tolerance.less(aa, cc)) {
   999 	  if (_tolerance.less(aa, ee)) {
  1000 	    min2 = aa;
  1001 	  } else {
  1002 	    min2 = ee;
  1003 	  }
  1004 	} else if (_tolerance.less(cc, ee)) {
  1005 	  min2 = cc;
  1006 	} else {
  1007 	  min2 = ee;
  1008 	}
  1009       }
  1010       _data[a].dcost = aa;
  1011       if (_tolerance.less(aa, _max_value)) { 
  1012 	_data[a].dcost -= min2;
  1013       }
  1014       _data[a].dmin = min2;
  1015       if (_tolerance.less(min2, _max_value)) {
  1016 	_data[a].dmin -= min;
  1017       }
  1018       _data[b].dcost = bb;
  1019       if (_tolerance.less(bb, _max_value)) { 
  1020 	_data[b].dcost -= min;
  1021       }
  1022       _data[b].dmin = min;
  1023       if (c != -1) {
  1024 	_data[c].dmin = cc - min2;
  1025       }
  1026       if (d != -1) {
  1027 	_data[d].dmin = dd;
  1028 	if (_tolerance.less(dd, _max_value)) {
  1029 	  _data[d].dmin -= min;
  1030 	}
  1031       }
  1032       if (e != -1) {
  1033 	_data[e].dmin = ee - min2;
  1034       }
  1035         
  1036       int w = _data[v].parent;
  1037       _data[v].successor = _data[w].successor;
  1038       _data[w].successor = -1;
  1039       _data[v].parent = _data[w].parent;
  1040       _data[w].parent = v;
  1041       _data[w].right = _data[v].left;
  1042       _data[v].left = w;
  1043       if (_data[v].parent != -1){
  1044 	if (_data[_data[v].parent].left == w) {
  1045 	  _data[_data[v].parent].left = v;
  1046 	} else {
  1047 	  _data[_data[v].parent].right = v;
  1048 	}
  1049       }
  1050       if (_data[w].right != -1){
  1051 	_data[_data[w].right].parent = w;
  1052       }
  1053     }
  1054 
  1055   private:
  1056 
  1057     class ItemData {
  1058     public:
  1059       Item id;
  1060       int successor;
  1061       int parent;
  1062       int left;
  1063       int right;
  1064       Value dmin;
  1065       Value dcost;
  1066         
  1067     public:
  1068       ItemData(const Item &item)
  1069 	: id(item), successor(), parent(-1), 
  1070 	  left(-1), right(-1), dmin(0), dcost(0) {}
  1071     };
  1072      
  1073   };
  1074 
  1075 }
  1076 
  1077 #endif