Small fixes and doc improvements in MinMeanCycle.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_PR_BIPARTITE_MATCHING
20 #define LEMON_PR_BIPARTITE_MATCHING
22 #include <lemon/graph_utils.h>
23 #include <lemon/iterable_maps.h>
26 #include <lemon/elevator.h>
30 ///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
34 ///Max cardinality matching algorithm based on push-relabel principle
37 ///Bipartite Max Cardinality Matching algorithm. This class uses the
38 ///push-relabel principle which in several cases has better runtime
39 ///performance than the augmenting path solutions.
41 ///\author Alpar Juttner
43 class PrBipartiteMatching {
44 typedef typename Graph::Node Node;
45 typedef typename Graph::ANodeIt ANodeIt;
46 typedef typename Graph::BNodeIt BNodeIt;
47 typedef typename Graph::UEdge UEdge;
48 typedef typename Graph::UEdgeIt UEdgeIt;
49 typedef typename Graph::IncEdgeIt IncEdgeIt;
56 typename Graph::template ANodeMap<typename Graph::UEdge> _matching;
57 Elevator<Graph,typename Graph::BNode> _levels;
58 typename Graph::template BNodeMap<int> _cov;
66 PrBipartiteMatching(const Graph &g) :
68 _node_num(countBNodes(g)),
75 /// \name Execution control
76 /// The simplest way to execute the algorithm is to use one of the
77 /// member functions called \c run(). \n
78 /// If you need more control on the execution, first
79 /// you must call \ref init() and then one variant of the start()
84 ///Initialize the data structures
86 ///This function constructs a prematching first, which is a
87 ///regular matching on the A-side of the graph, but on the B-side
88 ///each node could cover more matching edges. After that, the
89 ///B-nodes which multiple matched, will be pushed into the lowest
90 ///level of the Elevator. The remaning B-nodes will be pushed to
91 ///the consequent levels respect to a Bfs on following graph: the
92 ///nodes are the B-nodes of the original bipartite graph and two
93 ///nodes are adjacent if a node can pass over a matching edge to
94 ///an other node. The source of the Bfs are the lowest level
95 ///nodes. Last, the reached B-nodes without covered matching edge
99 _empty_level=_node_num;
100 for(ANodeIt n(_g);n!=INVALID;++n)
101 if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
102 ++_cov[_g.bNode(_matching[n])];
106 for(BNodeIt n(_g);n!=INVALID;++n)
108 _levels.initAddItem(n);
115 int nlev=_levels[n]+1;
116 for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
117 Node m=_g.runningNode(e);
118 if(e==_matching[m]) {
119 for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
120 Node r=_g.runningNode(f);
121 if(_levels[r]>nlev) {
122 for(;nlev>hlev;hlev++)
123 _levels.initNewLevel();
124 _levels.initAddItem(r);
131 _levels.initFinish();
132 for(BNodeIt n(_g);n!=INVALID;++n)
133 if(_cov[n]<1&&_levels[n]<_node_num)
137 ///Start the main phase of the algorithm
139 ///This algorithm calculates the maximum matching with the
140 ///push-relabel principle. This function should be called just
141 ///after the init() function which already set the initial
142 ///prematching, the level function on the B-nodes and the active,
143 ///ie. unmatched B-nodes.
145 ///The algorithm always takes highest active B-node, and it try to
146 ///find a B-node which is eligible to pass over one of it's
147 ///matching edge. This condition holds when the B-node is one
148 ///level lower, and the opposite node of it's matching edge is
149 ///adjacent to the highest active node. In this case the current
150 ///node steals the matching edge and becomes inactive. If there is
151 ///not eligible node then the highest active node should be lift
152 ///to the next proper level.
154 ///The nodes should not lift higher than the number of the
155 ///B-nodes, if a node reach this level it remains unmatched. If
156 ///during the execution one level becomes empty the nodes above it
157 ///can be deactivated and lift to the highest level.
161 Node last_activated=INVALID;
162 while((act=_levels.highestActive())!=INVALID) {
163 last_activated=INVALID;
164 int actlevel=_levels[act];
167 int nlevel=_node_num;
170 for(IncEdgeIt tbedge(_g,act);
171 tbedge!=INVALID && nlevel>=actlevel;
173 if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
180 if(nlevel<_node_num) {
182 _levels.liftHighestActive(nlevel+1);
183 bact=_g.bNode(_matching[_g.aNode(bedge)]);
185 _levels.activate(bact);
188 _matching[_g.aNode(bedge)]=bedge;
190 _levels.deactivate(act);
193 _levels.liftHighestActiveToTop();
196 if(_levels.emptyLevel(actlevel))
197 _levels.liftToTop(actlevel);
200 for(ANodeIt n(_g);n!=INVALID;++n) {
201 if (_matching[n]==INVALID)continue;
202 if (_cov[_g.bNode(_matching[n])]>1) {
203 _cov[_g.bNode(_matching[n])]--;
204 _matching[n]=INVALID;
211 ///Start the algorithm to find a perfect matching
213 ///This function is close to identical to the simple start()
214 ///member function but it calculates just perfect matching.
215 ///However, the perfect property is only checked on the B-side of
218 ///The main difference between the two function is the handling of
219 ///the empty levels. The simple start() function let the nodes
220 ///above the empty levels unmatched while this variant if it find
221 ///an empty level immediately terminates and gives back false
223 bool startPerfect() {
226 Node last_activated=INVALID;
227 while((act=_levels.highestActive())!=INVALID) {
228 last_activated=INVALID;
229 int actlevel=_levels[act];
232 int nlevel=_node_num;
235 for(IncEdgeIt tbedge(_g,act);
236 tbedge!=INVALID && nlevel>=actlevel;
238 if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
245 if(nlevel<_node_num) {
247 _levels.liftHighestActive(nlevel+1);
248 bact=_g.bNode(_matching[_g.aNode(bedge)]);
250 _levels.activate(bact);
253 _matching[_g.aNode(bedge)]=bedge;
255 _levels.deactivate(act);
258 _levels.liftHighestActiveToTop();
261 if(_levels.emptyLevel(actlevel))
262 _empty_level=actlevel;
265 _matching_size = _node_num;
269 ///Runs the algorithm
271 ///Just a shortcut for the next code:
281 ///Runs the algorithm to find a perfect matching
283 ///Just a shortcut for the next code:
289 ///\note If the two nodesets of the graph have different size then
290 ///this algorithm checks the perfect property on the B-side.
293 return startPerfect();
296 ///Runs the algorithm to find a perfect matching
298 ///Just a shortcut for the next code:
304 ///\note It checks that the size of the two nodesets are equal.
305 bool checkedRunPerfect() {
306 if (countANodes(_g) != _node_num) return false;
308 return startPerfect();
313 /// \name Query Functions
314 /// The result of the %Matching algorithm can be obtained using these
316 /// Before the use of these functions,
317 /// either run() or start() must be called.
320 ///Set true all matching uedge in the map.
322 ///Set true all matching uedge in the map. It does not change the
323 ///value mapped to the other uedges.
324 ///\return The number of the matching edges.
325 template <typename MatchingMap>
326 int quickMatching(MatchingMap& mm) const {
327 for (ANodeIt n(_g);n!=INVALID;++n) {
328 if (_matching[n]!=INVALID) mm.set(_matching[n],true);
330 return _matching_size;
333 ///Set true all matching uedge in the map and the others to false.
335 ///Set true all matching uedge in the map and the others to false.
336 ///\return The number of the matching edges.
337 template<class MatchingMap>
338 int matching(MatchingMap& mm) const {
339 for (UEdgeIt e(_g);e!=INVALID;++e) {
340 mm.set(e,e==_matching[_g.aNode(e)]);
342 return _matching_size;
345 ///Gives back the matching in an ANodeMap.
347 ///Gives back the matching in an ANodeMap. The parameter should
348 ///be a write ANodeMap of UEdge values.
349 ///\return The number of the matching edges.
350 template<class MatchingMap>
351 int aMatching(MatchingMap& mm) const {
352 for (ANodeIt n(_g);n!=INVALID;++n) {
353 mm.set(n,_matching[n]);
355 return _matching_size;
358 ///Gives back the matching in a BNodeMap.
360 ///Gives back the matching in a BNodeMap. The parameter should
361 ///be a write BNodeMap of UEdge values.
362 ///\return The number of the matching edges.
363 template<class MatchingMap>
364 int bMatching(MatchingMap& mm) const {
365 for (BNodeIt n(_g);n!=INVALID;++n) {
368 for (ANodeIt n(_g);n!=INVALID;++n) {
369 if (_matching[n]!=INVALID)
370 mm.set(_g.bNode(_matching[n]),_matching[n]);
372 return _matching_size;
376 ///Returns true if the given uedge is in the matching.
378 ///It returns true if the given uedge is in the matching.
380 bool matchingEdge(const UEdge& e) const {
381 return _matching[_g.aNode(e)]==e;
384 ///Returns the matching edge from the node.
386 ///Returns the matching edge from the node. If there is not such
387 ///edge it gives back \c INVALID.
388 ///\note If the parameter node is a B-node then the running time is
389 ///propotional to the degree of the node.
390 UEdge matchingEdge(const Node& n) const {
394 for (IncEdgeIt e(_g,n);e!=INVALID;++e)
395 if (e==_matching[_g.aNode(e)]) return e;
400 ///Gives back the number of the matching edges.
402 ///Gives back the number of the matching edges.
403 int matchingSize() const {
404 return _matching_size;
407 ///Gives back a barrier on the A-nodes
409 ///The barrier is s subset of the nodes on the same side of the
410 ///graph. If we tried to find a perfect matching and it failed
411 ///then the barrier size will be greater than its neighbours. If
412 ///the maximum matching searched then the barrier size minus its
413 ///neighbours will be exactly the unmatched nodes on the A-side.
414 ///\retval bar A WriteMap on the ANodes with bool value.
415 template<class BarrierMap>
416 void aBarrier(BarrierMap &bar) const
418 for(ANodeIt n(_g);n!=INVALID;++n)
419 bar.set(n,_matching[n]==INVALID ||
420 _levels[_g.bNode(_matching[n])]<_empty_level);
423 ///Gives back a barrier on the B-nodes
425 ///The barrier is s subset of the nodes on the same side of the
426 ///graph. If we tried to find a perfect matching and it failed
427 ///then the barrier size will be greater than its neighbours. If
428 ///the maximum matching searched then the barrier size minus its
429 ///neighbours will be exactly the unmatched nodes on the B-side.
430 ///\retval bar A WriteMap on the BNodes with bool value.
431 template<class BarrierMap>
432 void bBarrier(BarrierMap &bar) const
434 for(BNodeIt n(_g);n!=INVALID;++n) bar.set(n,_levels[n]>=_empty_level);
437 ///Returns a minimum covering of the nodes.
439 ///The minimum covering set problem is the dual solution of the
440 ///maximum bipartite matching. It provides a solution for this
441 ///problem what is proof of the optimality of the matching.
442 ///\param covering NodeMap of bool values, the nodes of the cover
443 ///set will set true while the others false.
444 ///\return The size of the cover set.
445 ///\note This function can be called just after the algorithm have
446 ///already found a matching.
447 template<class CoverMap>
448 int coverSet(CoverMap& covering) const {
450 for(BNodeIt n(_g);n!=INVALID;++n) {
451 if (_levels[n]<_empty_level) { covering.set(n,true); ++ret; }
452 else covering.set(n,false);
454 for(ANodeIt n(_g);n!=INVALID;++n) {
455 if (_matching[n]!=INVALID &&
456 _levels[_g.bNode(_matching[n])]>=_empty_level)
457 { covering.set(n,true); ++ret; }
458 else covering.set(n,false);
469 ///Maximum cardinality of the matchings in a bipartite graph
472 ///This function finds the maximum cardinality of the matchings
473 ///in a bipartite graph \c g.
474 ///\param g An undirected bipartite graph.
475 ///\return The cardinality of the maximum matching.
477 ///\note The the implementation is based
478 ///on the push-relabel principle.
479 template<class Graph>
480 int prBipartiteMatching(const Graph &g)
482 PrBipartiteMatching<Graph> bpm(g);
484 return bpm.matchingSize();
487 ///Maximum cardinality matching in a bipartite graph
490 ///This function finds a maximum cardinality matching
491 ///in a bipartite graph \c g.
492 ///\param g An undirected bipartite graph.
493 ///\retval matching A write ANodeMap of value type \c UEdge.
494 /// The found edges will be returned in this map,
495 /// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
496 /// that covers the node \c n.
497 ///\return The cardinality of the maximum matching.
499 ///\note The the implementation is based
500 ///on the push-relabel principle.
501 template<class Graph,class MT>
502 int prBipartiteMatching(const Graph &g,MT &matching)
504 PrBipartiteMatching<Graph> bpm(g);
506 bpm.aMatching(matching);
507 return bpm.matchingSize();
510 ///Maximum cardinality matching in a bipartite graph
513 ///This function finds a maximum cardinality matching
514 ///in a bipartite graph \c g.
515 ///\param g An undirected bipartite graph.
516 ///\retval matching A write ANodeMap of value type \c UEdge.
517 /// The found edges will be returned in this map,
518 /// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
519 /// that covers the node \c n.
520 ///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
521 /// exactly once for each BNode. The nodes with \c true value represent
522 /// a barrier \e B, i.e. the cardinality of \e B minus the number of its
523 /// neighbor is equal to the number of the <tt>BNode</tt>s minus the
524 /// cardinality of the maximum matching.
525 ///\return The cardinality of the maximum matching.
527 ///\note The the implementation is based
528 ///on the push-relabel principle.
529 template<class Graph,class MT, class GT>
530 int prBipartiteMatching(const Graph &g,MT &matching,GT &barrier)
532 PrBipartiteMatching<Graph> bpm(g);
534 bpm.aMatching(matching);
535 bpm.bBarrier(barrier);
536 return bpm.matchingSize();
539 ///Perfect matching in a bipartite graph
542 ///This function checks whether the bipartite graph \c g
543 ///has a perfect matching.
544 ///\param g An undirected bipartite graph.
545 ///\return \c true iff \c g has a perfect matching.
547 ///\note The the implementation is based
548 ///on the push-relabel principle.
549 template<class Graph>
550 bool prPerfectBipartiteMatching(const Graph &g)
552 PrBipartiteMatching<Graph> bpm(g);
554 return bpm.checkedRunPerfect();
557 ///Perfect matching in a bipartite graph
560 ///This function finds a perfect matching in a bipartite graph \c g.
561 ///\param g An undirected bipartite graph.
562 ///\retval matching A write ANodeMap of value type \c UEdge.
563 /// The found edges will be returned in this map,
564 /// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
565 /// that covers the node \c n.
566 /// The values are unchanged if the graph
567 /// has no perfect matching.
568 ///\return \c true iff \c g has a perfect matching.
570 ///\note The the implementation is based
571 ///on the push-relabel principle.
572 template<class Graph,class MT>
573 bool prPerfectBipartiteMatching(const Graph &g,MT &matching)
575 PrBipartiteMatching<Graph> bpm(g);
576 bool ret = bpm.checkedRunPerfect();
577 if (ret) bpm.aMatching(matching);
581 ///Perfect matching in a bipartite graph
584 ///This function finds a perfect matching in a bipartite graph \c g.
585 ///\param g An undirected bipartite graph.
586 ///\retval matching A write ANodeMap of value type \c UEdge.
587 /// The found edges will be returned in this map,
588 /// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
589 /// that covers the node \c n.
590 /// The values are unchanged if the graph
591 /// has no perfect matching.
592 ///\retval barrier A \c bool WriteMap on the BNodes. The map will only
593 /// be set if \c g has no perfect matching. In this case it is set
594 /// exactly once for each BNode. The nodes with \c true value represent
595 /// a barrier, i.e. a subset \e B a of BNodes with the property that
596 /// the cardinality of \e B is greater than the number of its neighbors.
597 ///\return \c true iff \c g has a perfect matching.
599 ///\note The the implementation is based
600 ///on the push-relabel principle.
601 template<class Graph,class MT, class GT>
602 bool prPerfectBipartiteMatching(const Graph &g,MT &matching,GT &barrier)
604 PrBipartiteMatching<Graph> bpm(g);
605 bool ret=bpm.checkedRunPerfect();
607 bpm.aMatching(matching);
609 bpm.bBarrier(barrier);