src/hugo/max_flow.h
author alpar
Tue, 27 Jul 2004 16:02:51 +0000
changeset 740 7237eaaf5d84
parent 726 835ebe1b3250
child 745 d976ba609099
permissions -rw-r--r--
It is really obsolete, but containes interesting stuffs.
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_NO_STACK_H
     3 #define HUGO_MAX_FLOW_NO_STACK_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 //#include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <hugo/invalid.h>
    11 #include <hugo/maps.h>
    12 
    13 /// \file
    14 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
    15 /// \ingroup galgs
    16 
    17 namespace hugo {
    18 
    19   /// \addtogroup galgs
    20   /// @{                                                                                                                                        
    21   ///Maximum flow algorithms class.
    22 
    23   ///This class provides various algorithms for finding a flow of
    24   ///maximum value in a directed graph. The \e source node, the \e
    25   ///target node, the \e capacity of the edges and the \e starting \e
    26   ///flow value of the edges should be passed to the algorithm through the
    27   ///constructor. It is possible to change these quantities using the
    28   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    29   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    30   ///the class \ref resetFlow should be called. 
    31 
    32   ///After running an algorithm of the class, the actual flow value 
    33   ///can be obtained by calling \ref flowValue(). The minimum
    34   ///value cut can be written into a \c node map of \c bools by
    35   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    36   ///the inclusionwise minimum and maximum of the minimum value
    37   ///cuts, resp.)                                                                                                                               
    38   ///\param Graph The directed graph type the algorithm runs on.
    39   ///\param Num The number type of the capacities and the flow values.
    40   ///\param CapMap The capacity map type.
    41   ///\param FlowMap The flow map type.                                                                                                           
    42   ///\author Marton Makai, Jacint Szabo 
    43   template <typename Graph, typename Num,
    44 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    45             typename FlowMap=typename Graph::template EdgeMap<Num> >
    46   class MaxFlow {
    47   protected:
    48     typedef typename Graph::Node Node;
    49     typedef typename Graph::NodeIt NodeIt;
    50     typedef typename Graph::EdgeIt EdgeIt;
    51     typedef typename Graph::OutEdgeIt OutEdgeIt;
    52     typedef typename Graph::InEdgeIt InEdgeIt;
    53 
    54     //    typedef typename std::vector<std::stack<Node> > VecStack;
    55     typedef typename std::vector<Node> VecFirst;
    56     typedef typename Graph::template NodeMap<Node> NNMap;
    57     typedef typename std::vector<Node> VecNode;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64     int n;      //the number of nodes of G
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    70     typedef typename Graph::template NodeMap<int> ReachedMap;
    71 
    72 
    73     //level works as a bool map in augmenting path algorithms and is
    74     //used by bfs for storing reached information.  In preflow, it
    75     //shows the levels of nodes.     
    76     ReachedMap level;
    77 
    78     //excess is needed only in preflow
    79     typename Graph::template NodeMap<Num> excess;
    80 
    81     // constants used for heuristics
    82     static const int H0=20;
    83     static const int H1=1;
    84 
    85   public:
    86 
    87     ///Indicates the property of the starting flow.
    88 
    89     ///Indicates the property of the starting flow. The meanings are as follows:
    90     ///- \c ZERO_FLOW: constant zero flow
    91     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    92     ///the sum of the out-flows in every node except the \e source and
    93     ///the \e target.
    94     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    95     ///least the sum of the out-flows in every node except the \e source.
    96     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    97     ///set to the constant zero flow in the beginning of the algorithm in this case.
    98     enum FlowEnum{
    99       ZERO_FLOW,
   100       GEN_FLOW,
   101       PRE_FLOW,
   102       NO_FLOW
   103     };
   104 
   105     enum StatusEnum {
   106       AFTER_NOTHING,
   107       AFTER_AUGMENTING,
   108       AFTER_FAST_AUGMENTING, 
   109       AFTER_PRE_FLOW_PHASE_1,      
   110       AFTER_PRE_FLOW_PHASE_2
   111     };
   112 
   113     /// Don not needle this flag only if necessary.
   114     StatusEnum status;
   115 
   116 //     int number_of_augmentations;
   117 
   118 
   119 //     template<typename IntMap>
   120 //     class TrickyReachedMap {
   121 //     protected:
   122 //       IntMap* map;
   123 //       int* number_of_augmentations;
   124 //     public:
   125 //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   126 // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   127 //       void set(const Node& n, bool b) {
   128 // 	if (b)
   129 // 	  map->set(n, *number_of_augmentations);
   130 // 	else 
   131 // 	  map->set(n, *number_of_augmentations-1);
   132 //       }
   133 //       bool operator[](const Node& n) const { 
   134 // 	return (*map)[n]==*number_of_augmentations; 
   135 //       }
   136 //     };
   137     
   138     ///Constructor
   139 
   140     ///\todo Document, please.
   141     ///
   142     MaxFlow(const Graph& _G, Node _s, Node _t,
   143 		   const CapMap& _capacity, FlowMap& _flow) :
   144       g(&_G), s(_s), t(_t), capacity(&_capacity),
   145       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   146       status(AFTER_NOTHING) { }
   147 
   148     ///Runs a maximum flow algorithm.
   149 
   150     ///Runs a preflow algorithm, which is the fastest maximum flow
   151     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   152     ///\pre The starting flow must be
   153     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   154     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   155     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   156     /// - any map if \c fe is NO_FLOW.
   157     void run(FlowEnum fe=ZERO_FLOW) {
   158       preflow(fe);
   159     }
   160 
   161                                                                               
   162     ///Runs a preflow algorithm.  
   163 
   164     ///Runs a preflow algorithm. The preflow algorithms provide the
   165     ///fastest way to compute a maximum flow in a directed graph.
   166     ///\pre The starting flow must be
   167     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   168     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   169     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   170     /// - any map if \c fe is NO_FLOW.
   171     ///
   172     ///\todo NO_FLOW should be the default flow.
   173     void preflow(FlowEnum fe) {
   174       preflowPhase1(fe);
   175       preflowPhase2();
   176     }
   177     // Heuristics:
   178     //   2 phase
   179     //   gap
   180     //   list 'level_list' on the nodes on level i implemented by hand
   181     //   stack 'active' on the active nodes on level i                                                                                    
   182     //   runs heuristic 'highest label' for H1*n relabels
   183     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   184     //   Parameters H0 and H1 are initialized to 20 and 1.
   185 
   186     ///Runs the first phase of the preflow algorithm.
   187 
   188     ///The preflow algorithm consists of two phases, this method runs the
   189     ///first phase. After the first phase the maximum flow value and a
   190     ///minimum value cut can already be computed, though a maximum flow
   191     ///is net yet obtained. So after calling this method \ref flowValue
   192     ///and \ref actMinCut gives proper results.
   193     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   194     ///give minimum value cuts unless calling \ref preflowPhase2.
   195     ///\pre The starting flow must be
   196     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   197     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   198     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   199     /// - any map if \c fe is NO_FLOW.
   200     void preflowPhase1(FlowEnum fe)
   201     {
   202 
   203       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   204       int heur1=(int)(H1*n);  //time while running 'highest label'
   205       int heur=heur1;         //starting time interval (#of relabels)
   206       int numrelabel=0;
   207 
   208       bool what_heur=1;
   209       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   210 
   211       bool end=false;
   212       //Needed for 'bound decrease', true means no active nodes are above bound
   213       //b.
   214 
   215       int k=n-2;  //bound on the highest level under n containing a node
   216       int b=k;    //bound on the highest level under n of an active node
   217 
   218       VecFirst first(n, INVALID);
   219       NNMap next(*g, INVALID); //maybe INVALID is not needed
   220       //    VecStack active(n);
   221 
   222       NNMap left(*g, INVALID);
   223       NNMap right(*g, INVALID);
   224       VecNode level_list(n,INVALID);
   225       //List of the nodes in level i<n, set to n.
   226 
   227       NodeIt v;
   228       for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   229       //setting each node to level n
   230 
   231       if ( fe == NO_FLOW ) {
   232 	EdgeIt e;
   233 	for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   234       }
   235 
   236       switch (fe) { //computing the excess
   237       case PRE_FLOW:
   238 	{
   239 	  NodeIt v;
   240 	  for(g->first(v); g->valid(v); g->next(v)) {
   241 	    Num exc=0;
   242 
   243 	    InEdgeIt e;
   244 	    for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   245 	    OutEdgeIt f;
   246 	    for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   247 
   248 	    excess.set(v,exc);
   249 
   250 	    //putting the active nodes into the stack
   251 	    int lev=level[v];
   252 	    if ( exc > 0 && lev < n && v != t ) 
   253 	      {
   254 		next.set(v,first[lev]);
   255 		first[lev]=v;
   256 	      }
   257 	    //	  active[lev].push(v);
   258 	  }
   259 	  break;
   260 	}
   261       case GEN_FLOW:
   262 	{
   263 	  NodeIt v;
   264 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   265 
   266 	  Num exc=0;
   267 	  InEdgeIt e;
   268 	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   269 	  OutEdgeIt f;
   270 	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   271 	  excess.set(t,exc);
   272 	  break;
   273 	}
   274       case ZERO_FLOW:
   275       case NO_FLOW:
   276 	{
   277 	  NodeIt v;
   278 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   279 	  break;
   280 	}
   281       }
   282 
   283       preflowPreproc(fe, next, first,/*active*/ level_list, left, right);
   284       //End of preprocessing
   285 
   286 
   287       //Push/relabel on the highest level active nodes.
   288       while ( true ) {
   289 	if ( b == 0 ) {
   290 	  if ( !what_heur && !end && k > 0 ) {
   291 	    b=k;
   292 	    end=true;
   293 	  } else break;
   294 	}
   295 
   296 	if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
   297 	else {
   298 	  end=false;
   299 	  Node w=first[b];
   300 	  first[b]=next[w];
   301 	  /*	Node w=active[b].top();
   302 		active[b].pop();*/
   303 	  int newlevel=push(w,/*active*/next, first);
   304 	  if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list,
   305 				       left, right, b, k, what_heur);
   306 
   307 	  ++numrelabel;
   308 	  if ( numrelabel >= heur ) {
   309 	    numrelabel=0;
   310 	    if ( what_heur ) {
   311 	      what_heur=0;
   312 	      heur=heur0;
   313 	      end=false;
   314 	    } else {
   315 	      what_heur=1;
   316 	      heur=heur1;
   317 	      b=k;
   318 	    }
   319 	  }
   320 	}
   321       }
   322 
   323       status=AFTER_PRE_FLOW_PHASE_1;
   324     }
   325 
   326 
   327     ///Runs the second phase of the preflow algorithm.
   328 
   329     ///The preflow algorithm consists of two phases, this method runs
   330     ///the second phase. After calling \ref preflowPhase1 and then
   331     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   332     ///\ref minMinCut and \ref maxMinCut give proper results.
   333     ///\pre \ref preflowPhase1 must be called before.
   334     void preflowPhase2()
   335     {
   336 
   337       int k=n-2;  //bound on the highest level under n containing a node
   338       int b=k;    //bound on the highest level under n of an active node
   339 
   340     
   341       VecFirst first(n, INVALID);
   342       NNMap next(*g, INVALID); //maybe INVALID is not needed
   343       //    VecStack active(n);
   344       level.set(s,0);
   345       std::queue<Node> bfs_queue;
   346       bfs_queue.push(s);
   347 
   348       while (!bfs_queue.empty()) {
   349 
   350 	Node v=bfs_queue.front();
   351 	bfs_queue.pop();
   352 	int l=level[v]+1;
   353 
   354 	InEdgeIt e;
   355 	for(g->first(e,v); g->valid(e); g->next(e)) {
   356 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   357 	  Node u=g->tail(e);
   358 	  if ( level[u] >= n ) {
   359 	    bfs_queue.push(u);
   360 	    level.set(u, l);
   361 	    if ( excess[u] > 0 ) {
   362 	      next.set(u,first[l]);
   363 	      first[l]=u;
   364 	      //active[l].push(u);
   365 	    }
   366 	  }
   367 	}
   368 
   369 	OutEdgeIt f;
   370 	for(g->first(f,v); g->valid(f); g->next(f)) {
   371 	  if ( 0 >= (*flow)[f] ) continue;
   372 	  Node u=g->head(f);
   373 	  if ( level[u] >= n ) {
   374 	    bfs_queue.push(u);
   375 	    level.set(u, l);
   376 	    if ( excess[u] > 0 ) {
   377 	      next.set(u,first[l]);
   378 	      first[l]=u;
   379 	      //active[l].push(u);
   380 	    }
   381 	  }
   382 	}
   383       }
   384       b=n-2;
   385 
   386       while ( true ) {
   387 
   388 	if ( b == 0 ) break;
   389 
   390 	if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
   391 	else {
   392 
   393 	  Node w=first[b];
   394 	  first[b]=next[w];
   395 	  /*	Node w=active[b].top();
   396 		active[b].pop();*/
   397 	  int newlevel=push(w,next, first/*active*/);
   398 
   399 	  //relabel
   400 	  if ( excess[w] > 0 ) {
   401 	    level.set(w,++newlevel);
   402 	    next.set(w,first[newlevel]);
   403 	    first[newlevel]=w;
   404 	    //active[newlevel].push(w);
   405 	    b=newlevel;
   406 	  }
   407 	}  // if stack[b] is nonempty
   408       } // while(true)
   409 
   410       status=AFTER_PRE_FLOW_PHASE_2;
   411     }
   412 
   413 
   414     /// Returns the maximum value of a flow.
   415 
   416     /// Returns the maximum value of a flow, by counting the 
   417     /// over-flow of the target node \ref t.
   418     /// It can be called already after running \ref preflowPhase1.
   419     Num flowValue() const {
   420       Num a=0;
   421       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
   422       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
   423 
   424       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   425     }
   426 
   427     ///Returns a minimum value cut after calling \ref preflowPhase1.
   428 
   429     ///After the first phase of the preflow algorithm the maximum flow
   430     ///value and a minimum value cut can already be computed. This
   431     ///method can be called after running \ref preflowPhase1 for
   432     ///obtaining a minimum value cut.
   433     /// \warning Gives proper result only right after calling \ref
   434     /// preflowPhase1.
   435     /// \todo We have to make some status variable which shows the
   436     /// actual state
   437     /// of the class. This enables us to determine which methods are valid
   438     /// for MinCut computation
   439     template<typename _CutMap>
   440     void actMinCut(_CutMap& M) const {
   441       NodeIt v;
   442       switch (status) {
   443       case AFTER_PRE_FLOW_PHASE_1:
   444 	for(g->first(v); g->valid(v); g->next(v)) {
   445 	  if (level[v] < n) {
   446 	    M.set(v, false);
   447 	  } else {
   448 	    M.set(v, true);
   449 	  }
   450 	}
   451 	break;
   452       case AFTER_PRE_FLOW_PHASE_2:
   453       case AFTER_NOTHING:
   454 	minMinCut(M);
   455 	break;
   456       }
   457     }
   458 
   459     ///Returns the inclusionwise minimum of the minimum value cuts.
   460 
   461     ///Sets \c M to the characteristic vector of the minimum value cut
   462     ///which is inclusionwise minimum. It is computed by processing
   463     ///a bfs from the source node \c s in the residual graph.
   464     ///\pre M should be a node map of bools initialized to false.
   465     ///\pre \c flow must be a maximum flow.
   466     template<typename _CutMap>
   467     void minMinCut(_CutMap& M) const {
   468       std::queue<Node> queue;
   469 
   470       M.set(s,true);
   471       queue.push(s);
   472 
   473       while (!queue.empty()) {
   474         Node w=queue.front();
   475 	queue.pop();
   476 
   477 	OutEdgeIt e;
   478 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   479 	  Node v=g->head(e);
   480 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   481 	    queue.push(v);
   482 	    M.set(v, true);
   483 	  }
   484 	}
   485 
   486 	InEdgeIt f;
   487 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   488 	  Node v=g->tail(f);
   489 	  if (!M[v] && (*flow)[f] > 0 ) {
   490 	    queue.push(v);
   491 	    M.set(v, true);
   492 	  }
   493 	}
   494       }
   495     }
   496 
   497     ///Returns the inclusionwise maximum of the minimum value cuts.
   498 
   499     ///Sets \c M to the characteristic vector of the minimum value cut
   500     ///which is inclusionwise maximum. It is computed by processing a
   501     ///backward bfs from the target node \c t in the residual graph.
   502     ///\pre M should be a node map of bools initialized to false.
   503     ///\pre \c flow must be a maximum flow. 
   504     template<typename _CutMap>
   505     void maxMinCut(_CutMap& M) const {
   506 
   507       NodeIt v;
   508       for(g->first(v) ; g->valid(v); g->next(v)) {
   509 	M.set(v, true);
   510       }
   511 
   512       std::queue<Node> queue;
   513 
   514       M.set(t,false);
   515       queue.push(t);
   516 
   517       while (!queue.empty()) {
   518         Node w=queue.front();
   519 	queue.pop();
   520 
   521 	InEdgeIt e;
   522 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   523 	  Node v=g->tail(e);
   524 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   525 	    queue.push(v);
   526 	    M.set(v, false);
   527 	  }
   528 	}
   529 
   530 	OutEdgeIt f;
   531 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   532 	  Node v=g->head(f);
   533 	  if (M[v] && (*flow)[f] > 0 ) {
   534 	    queue.push(v);
   535 	    M.set(v, false);
   536 	  }
   537 	}
   538       }
   539     }
   540 
   541     ///Returns a minimum value cut.
   542 
   543     ///Sets \c M to the characteristic vector of a minimum value cut.
   544     ///\pre M should be a node map of bools initialized to false.
   545     ///\pre \c flow must be a maximum flow.    
   546     template<typename CutMap>
   547     void minCut(CutMap& M) const { minMinCut(M); }
   548 
   549     ///Resets the source node to \c _s.
   550 
   551     ///Resets the source node to \c _s.
   552     /// 
   553     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   554 
   555     ///Resets the target node to \c _t.
   556 
   557     ///Resets the target node to \c _t.
   558     ///
   559     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   560 
   561     /// Resets the edge map of the capacities to _cap.
   562 
   563     /// Resets the edge map of the capacities to _cap.
   564     /// 
   565     void resetCap(const CapMap& _cap)
   566     { capacity=&_cap; status=AFTER_NOTHING; }
   567 
   568     /// Resets the edge map of the flows to _flow.
   569 
   570     /// Resets the edge map of the flows to _flow.
   571     /// 
   572     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   573 
   574 
   575   private:
   576 
   577     int push(Node w, NNMap& next, VecFirst& first) {
   578 
   579       int lev=level[w];
   580       Num exc=excess[w];
   581       int newlevel=n;       //bound on the next level of w
   582 
   583       OutEdgeIt e;
   584       for(g->first(e,w); g->valid(e); g->next(e)) {
   585 
   586 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   587 	Node v=g->head(e);
   588 
   589 	if( lev > level[v] ) { //Push is allowed now
   590 
   591 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   592 	    next.set(v,first[level[v]]);
   593 	    first[level[v]]=v;
   594 	    //	    int lev_v=level[v];
   595 	    //active[lev_v].push(v);
   596 	  }
   597 
   598 	  Num cap=(*capacity)[e];
   599 	  Num flo=(*flow)[e];
   600 	  Num remcap=cap-flo;
   601 
   602 	  if ( remcap >= exc ) { //A nonsaturating push.
   603 
   604 	    flow->set(e, flo+exc);
   605 	    excess.set(v, excess[v]+exc);
   606 	    exc=0;
   607 	    break;
   608 
   609 	  } else { //A saturating push.
   610 	    flow->set(e, cap);
   611 	    excess.set(v, excess[v]+remcap);
   612 	    exc-=remcap;
   613 	  }
   614 	} else if ( newlevel > level[v] ) newlevel = level[v];
   615       } //for out edges wv
   616 
   617       if ( exc > 0 ) {
   618 	InEdgeIt e;
   619 	for(g->first(e,w); g->valid(e); g->next(e)) {
   620 
   621 	  if( (*flow)[e] <= 0 ) continue;
   622 	  Node v=g->tail(e);
   623 
   624 	  if( lev > level[v] ) { //Push is allowed now
   625 
   626 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   627 	      next.set(v,first[level[v]]);
   628 	      first[level[v]]=v;
   629 	      //int lev_v=level[v];
   630 	      //active[lev_v].push(v);
   631 	    }
   632 
   633 	    Num flo=(*flow)[e];
   634 
   635 	    if ( flo >= exc ) { //A nonsaturating push.
   636 
   637 	      flow->set(e, flo-exc);
   638 	      excess.set(v, excess[v]+exc);
   639 	      exc=0;
   640 	      break;
   641 	    } else {  //A saturating push.
   642 
   643 	      excess.set(v, excess[v]+flo);
   644 	      exc-=flo;
   645 	      flow->set(e,0);
   646 	    }
   647 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   648 	} //for in edges vw
   649 
   650       } // if w still has excess after the out edge for cycle
   651 
   652       excess.set(w, exc);
   653 
   654       return newlevel;
   655     }
   656 
   657 
   658     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
   659 			VecNode& level_list, NNMap& left, NNMap& right)
   660     {
   661       std::queue<Node> bfs_queue;
   662 
   663       switch (fe) {
   664       case NO_FLOW:   //flow is already set to const zero in this case
   665       case ZERO_FLOW:
   666 	{
   667 	  //Reverse_bfs from t, to find the starting level.
   668 	  level.set(t,0);
   669 	  bfs_queue.push(t);
   670 
   671 	  while (!bfs_queue.empty()) {
   672 
   673 	    Node v=bfs_queue.front();
   674 	    bfs_queue.pop();
   675 	    int l=level[v]+1;
   676 
   677 	    InEdgeIt e;
   678 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   679 	      Node w=g->tail(e);
   680 	      if ( level[w] == n && w != s ) {
   681 		bfs_queue.push(w);
   682 		Node z=level_list[l];
   683 		if ( g->valid(z) ) left.set(z,w);
   684 		right.set(w,z);
   685 		level_list[l]=w;
   686 		level.set(w, l);
   687 	      }
   688 	    }
   689 	  }
   690 
   691 	  //the starting flow
   692 	  OutEdgeIt e;
   693 	  for(g->first(e,s); g->valid(e); g->next(e))
   694 	    {
   695 	      Num c=(*capacity)[e];
   696 	      if ( c <= 0 ) continue;
   697 	      Node w=g->head(e);
   698 	      if ( level[w] < n ) {
   699 		if ( excess[w] <= 0 && w!=t ) 
   700 		  {
   701 		    next.set(w,first[level[w]]);
   702 		    first[level[w]]=w;
   703 		    //active[level[w]].push(w);
   704 		  }
   705 		flow->set(e, c);
   706 		excess.set(w, excess[w]+c);
   707 	      }
   708 	    }
   709 	  break;
   710 	}
   711 
   712       case GEN_FLOW:
   713       case PRE_FLOW:
   714 	{
   715 	  //Reverse_bfs from t in the residual graph,
   716 	  //to find the starting level.
   717 	  level.set(t,0);
   718 	  bfs_queue.push(t);
   719 
   720 	  while (!bfs_queue.empty()) {
   721 
   722 	    Node v=bfs_queue.front();
   723 	    bfs_queue.pop();
   724 	    int l=level[v]+1;
   725 
   726 	    InEdgeIt e;
   727 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   728 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   729 	      Node w=g->tail(e);
   730 	      if ( level[w] == n && w != s ) {
   731 		bfs_queue.push(w);
   732 		Node z=level_list[l];
   733 		if ( g->valid(z) ) left.set(z,w);
   734 		right.set(w,z);
   735 		level_list[l]=w;
   736 		level.set(w, l);
   737 	      }
   738 	    }
   739 
   740 	    OutEdgeIt f;
   741 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   742 	      if ( 0 >= (*flow)[f] ) continue;
   743 	      Node w=g->head(f);
   744 	      if ( level[w] == n && w != s ) {
   745 		bfs_queue.push(w);
   746 		Node z=level_list[l];
   747 		if ( g->valid(z) ) left.set(z,w);
   748 		right.set(w,z);
   749 		level_list[l]=w;
   750 		level.set(w, l);
   751 	      }
   752 	    }
   753 	  }
   754 
   755 
   756 	  //the starting flow
   757 	  OutEdgeIt e;
   758 	  for(g->first(e,s); g->valid(e); g->next(e))
   759 	    {
   760 	      Num rem=(*capacity)[e]-(*flow)[e];
   761 	      if ( rem <= 0 ) continue;
   762 	      Node w=g->head(e);
   763 	      if ( level[w] < n ) {
   764 		if ( excess[w] <= 0 && w!=t )
   765 		  {
   766 		    next.set(w,first[level[w]]);
   767 		    first[level[w]]=w;
   768 		    //active[level[w]].push(w);
   769 		  }   
   770 		flow->set(e, (*capacity)[e]);
   771 		excess.set(w, excess[w]+rem);
   772 	      }
   773 	    }
   774 
   775 	  InEdgeIt f;
   776 	  for(g->first(f,s); g->valid(f); g->next(f))
   777 	    {
   778 	      if ( (*flow)[f] <= 0 ) continue;
   779 	      Node w=g->tail(f);
   780 	      if ( level[w] < n ) {
   781 		if ( excess[w] <= 0 && w!=t )
   782 		  {
   783 		    next.set(w,first[level[w]]);
   784 		    first[level[w]]=w;
   785 		    //active[level[w]].push(w);
   786 		  }   
   787 		excess.set(w, excess[w]+(*flow)[f]);
   788 		flow->set(f, 0);
   789 	      }
   790 	    }
   791 	  break;
   792 	} //case PRE_FLOW
   793       }
   794     } //preflowPreproc
   795 
   796 
   797 
   798     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
   799 		 VecNode& level_list, NNMap& left,
   800 		 NNMap& right, int& b, int& k, bool what_heur )
   801     {
   802 
   803       Num lev=level[w];
   804 
   805       Node right_n=right[w];
   806       Node left_n=left[w];
   807 
   808       //unlacing starts
   809       if ( g->valid(right_n) ) {
   810 	if ( g->valid(left_n) ) {
   811 	  right.set(left_n, right_n);
   812 	  left.set(right_n, left_n);
   813 	} else {
   814 	  level_list[lev]=right_n;
   815 	  left.set(right_n, INVALID);
   816 	}
   817       } else {
   818 	if ( g->valid(left_n) ) {
   819 	  right.set(left_n, INVALID);
   820 	} else {
   821 	  level_list[lev]=INVALID;
   822 	}
   823       }
   824       //unlacing ends
   825 
   826       if ( !g->valid(level_list[lev]) ) {
   827 
   828 	//gapping starts
   829 	for (int i=lev; i!=k ; ) {
   830 	  Node v=level_list[++i];
   831 	  while ( g->valid(v) ) {
   832 	    level.set(v,n);
   833 	    v=right[v];
   834 	  }
   835 	  level_list[i]=INVALID;
   836 	  if ( !what_heur ) first[i]=INVALID;
   837 	  /*{
   838 	    while ( !active[i].empty() ) {
   839 	    active[i].pop();    //FIXME: ezt szebben kene
   840 	    }
   841 	    }*/
   842 	}
   843 
   844 	level.set(w,n);
   845 	b=lev-1;
   846 	k=b;
   847 	//gapping ends
   848 
   849       } else {
   850 
   851 	if ( newlevel == n ) level.set(w,n);
   852 	else {
   853 	  level.set(w,++newlevel);
   854 	  next.set(w,first[newlevel]);
   855 	  first[newlevel]=w;
   856 	  //	  active[newlevel].push(w);
   857 	  if ( what_heur ) b=newlevel;
   858 	  if ( k < newlevel ) ++k;      //now k=newlevel
   859 	  Node z=level_list[newlevel];
   860 	  if ( g->valid(z) ) left.set(z,w);
   861 	  right.set(w,z);
   862 	  left.set(w,INVALID);
   863 	  level_list[newlevel]=w;
   864 	}
   865       }
   866     } //relabel
   867   };  //class MaxFlow
   868 } //namespace hugo
   869 
   870 #endif //HUGO_MAX_FLOW_H
   871 
   872 
   873 
   874