src/work/johanna/kruskal.h
author alpar
Tue, 27 Jul 2004 16:02:51 +0000
changeset 740 7237eaaf5d84
parent 682 1ea8162ce638
child 755 a8c2e828ce0b
permissions -rw-r--r--
It is really obsolete, but containes interesting stuffs.
     1 // -*- c++ -*- //
     2 #ifndef HUGO_KRUSKAL_H
     3 #define HUGO_KRUSKAL_H
     4 
     5 #include <algorithm>
     6 #include <hugo/unionfind.h>
     7 
     8 ///\file
     9 ///\brief Kruskal's algorithm to compute a minimum cost tree
    10 
    11 namespace hugo {
    12 
    13   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    14 
    15   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    16   /// \param G The graph the algorithm runs on.
    17   /// \param in This object is used to describe the edge costs. It must
    18   /// be an STL 'forward container'
    19   /// with value_type <tt> std::pair<Graph::Edge,X> </tt>,
    20   /// where X is the type of the costs. It must contain every edge in
    21   /// cost-ascending order.
    22   /// \retval out This must be a writeable EdgeMap. After running the algorithm
    23   /// this will contain the found minimum cost spanning tree: the value of an
    24   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    25   /// be set to \c false. The value of each edge will be set exactly once.\n
    26   /// For the sake of simplicity, there is a helper class KruskalPairVec,
    27   /// which converts a
    28   /// simple EdgeMap to an input of this form. Alternatively, you can use
    29   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    30   /// the edge costs are given by an EdgeMap.
    31   /// \return The cost of the found tree.
    32 
    33   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
    34   typename InputEdgeOrder::value_type::second_type
    35   kruskal(Graph const& G, InputEdgeOrder const& in, 
    36 		 OutBoolMap& out)
    37   {
    38     typedef typename InputEdgeOrder::value_type::second_type EdgeCost;
    39     typedef typename Graph::template NodeMap<int> NodeIntMap;
    40     typedef typename Graph::Node Node;
    41 
    42     NodeIntMap comp(G, -1);
    43     UnionFind<Node,NodeIntMap> uf(comp); 
    44       
    45     EdgeCost tot_cost = 0;
    46     for (typename InputEdgeOrder::const_iterator p = in.begin(); 
    47 	 p!=in.end(); ++p ) {
    48       if ( uf.join(G.head((*p).first),
    49 		   G.tail((*p).first)) ) {
    50 	out.set((*p).first, true);
    51 	tot_cost += (*p).second;
    52       }
    53       else {
    54 	out.set((*p).first, false);
    55       }
    56     }
    57     return tot_cost;
    58   }
    59 
    60   /* A work-around for running Kruskal with const-reference bool maps... */
    61 
    62   template<typename Map>
    63   class NonConstMapWr {
    64     const Map &m;
    65   public:
    66     typedef typename Map::ValueType ValueType;
    67 
    68     NonConstMapWr(const Map &_m) : m(_m) {}
    69 
    70     template<typename KeyType>
    71     void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
    72   };
    73 
    74   template <typename Graph, typename InputEdgeOrder, typename OutBoolMap>
    75   inline
    76   typename InputEdgeOrder::ValueType
    77   kruskal(Graph const& G, InputEdgeOrder const& edges, 
    78 	  OutBoolMap const& out_map)
    79   {
    80     NonConstMapWr<OutBoolMap> map_wr(out_map);
    81     return kruskal(G, edges, map_wr);
    82   }  
    83 
    84   
    85   /* ** ** Output-objektumok: egyszeruen extra bool mapek ** ** */
    86   
    87   /// A writable bool-map that makes a sequence of "true" keys
    88 
    89   /// A writable bool-map that creates a sequence out of keys that receives
    90   /// the value "true".
    91   /// \warning Not a regular property map, as it doesn't know its KeyType
    92 
    93   template<typename Iterator>
    94   class SequenceOutput {
    95     mutable Iterator it;
    96 
    97   public:
    98     typedef bool ValueType;
    99 
   100     SequenceOutput(Iterator const &_it) : it(_it) {}
   101 
   102     template<typename KeyType>
   103     void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
   104   };
   105 
   106   template<typename Iterator>
   107   inline
   108   SequenceOutput<Iterator>
   109   makeSequenceOutput(Iterator it) {
   110     return SequenceOutput<Iterator>(it);
   111   }
   112 
   113   /* ** ** InputSource -ok ** ** */
   114 
   115   /// Kruskal input source.
   116 
   117   /// Kruskal input source.
   118   ///
   119   template<typename Graph, typename Map>
   120   class KruskalPairVec
   121     : public std::vector< std::pair<typename Graph::Edge,
   122 				    typename Map::ValueType> > {
   123     
   124   public:
   125     typedef std::vector< std::pair<typename Graph::Edge,
   126 				   typename Map::ValueType> > Parent;
   127     typedef typename Parent::value_type value_type;
   128 //     typedef Key KeyType;
   129 //     typedef Val ValueType;
   130 //     typedef std::pair<Key,Val> PairType;
   131 //     typedef typename Parent::iterator iterator;
   132 //     typedef typename Parent::const_iterator const_iterator;
   133 
   134   private:
   135     class comparePair {
   136     public:
   137       bool operator()(const value_type& a,
   138 		      const value_type& b) {
   139 	return a.second < b.second;
   140       }
   141     };
   142 
   143   public:
   144 
   145     // FIXME: kell ez?
   146     // KruskalPairVec(Parent const& p) : Parent(p) {}
   147     
   148     void sort() {
   149       std::sort(this->begin(), this->end(), comparePair());
   150     }
   151 
   152     // FIXME: nem nagyon illik ez ide...
   153     KruskalPairVec(Graph const& G, Map const& m) {
   154       typedef typename Graph::EdgeIt EdgeIt;
   155       
   156       this->clear();
   157       for(EdgeIt e(G);G.valid(e);G.next(e)) {
   158 	// for (EdgeIt e=G.template first<EdgeIt>(); G.valid(e); G.next(e)) {
   159 	push_back(make_pair(e, m[e]));
   160       }
   161       sort();
   162     }
   163 
   164 //     Key const& first(const_iterator i) const { return i->first; }
   165 //     Key& first(iterator i) { return i->first; }
   166 
   167 //     Val const& second(const_iterator i) const { return i->second; }
   168 //     Val& second(iterator i) { return i->second; }
   169   };
   170 
   171 
   172 //   template <typename Map>
   173 //   class KruskalMapVec : public std::vector<typename Map::KeyType> {
   174 //   public:
   175     
   176 //     typedef typename Map::KeyType KeyType;
   177 //     typedef typename Map::ValueType ValueType;
   178 
   179 //     typedef typename std::vector<KeyType> Parent;
   180 //     typedef typename Parent::iterator iterator;
   181 //     typedef typename Parent::const_iterator const_iterator;
   182 
   183 //   private:
   184 
   185 //     const Map &m;
   186 
   187 //     class compareKeys {
   188 //       const Map &m;
   189 //     public:
   190 //       compareKeys(Map const &_m) : m(_m) {}
   191 //       bool operator()(KeyType const& a, KeyType const& b) {
   192 // 	return m[a] < m[b];
   193 //       }
   194 //     };
   195 
   196 //   public:
   197 
   198 //     KruskalMapVec(Map const& _m) : m(_m) {}
   199 
   200 //     void sort() {
   201 //       std::sort(begin(), end(), compareKeys(m));
   202 //     }
   203 
   204 //     // FIXME: nem nagyon illik ez ide...
   205 //     template<typename Graph>
   206 //     KruskalMapVec(Graph const& G, Map const& _m) : m(_m) {
   207 //       typedef typename Graph::EdgeIt EdgeIt;
   208 
   209 //       clear();
   210 //       for(EdgeIt e(G);G.valid(e);G.next(e)) {
   211 //       // for (EdgeIt e=G.template first<EdgeIt>(); G.valid(e); G.next(e)) 
   212 // 	push_back(e);
   213 //       }
   214 //       sort();
   215 //     }
   216 
   217 //     KeyType const& first(const_iterator i) const { return *i; }
   218 //     KeyType& first(iterator i) { return *i; }
   219 
   220 //     ValueType const& second(const_iterator i) const { return m[*i]; }
   221 //     ValueType& second(iterator i) { return m[*i]; }
   222 //   };
   223 
   224   /* ** ** Wrapper fuggvenyek ** ** */
   225 
   226 
   227   /// \brief Wrapper to Kruskal().
   228   /// Input is from an EdgeMap, output is a plain boolmap.
   229 
   230   ///\todo some more words would be nice here.
   231   ///
   232   template <typename Graph, typename EdgeCostMap, typename RetEdgeBoolMap>
   233   inline
   234   typename EdgeCostMap::ValueType
   235   kruskalEdgeMap(Graph const& G,
   236 			EdgeCostMap const& edge_costs,
   237 			RetEdgeBoolMap &ret_bool_map) {
   238     
   239     typedef KruskalPairVec<Graph,EdgeCostMap> InputVec;
   240     
   241     InputVec iv(G, edge_costs);
   242     return kruskal(G, iv, ret_bool_map);
   243   }
   244 
   245 
   246   /// \brief Wrapper to Kruskal().
   247   /// Input is from an EdgeMap, output is to a sequence.
   248 
   249   ///\todo it does not follow the naming convention.
   250   ///
   251   template <typename Graph, typename EdgeCostMap, typename RetIterator>
   252   inline
   253   typename EdgeCostMap::ValueType
   254   kruskalEdgeMap_IteratorOut(const Graph& G,
   255 			     const EdgeCostMap& edge_costs,
   256 			     RetIterator ret_iterator)
   257   {
   258     typedef typename EdgeCostMap::ValueType ValueType;
   259     
   260     typedef SequenceOutput<RetIterator> OutMap;
   261     OutMap out(ret_iterator);
   262 
   263     typedef KruskalPairVec<Graph, EdgeCostMap> InputVec;
   264 
   265     InputVec iv(G, edge_costs);
   266 
   267     return kruskal(G, iv, out);
   268   }
   269 
   270 
   271 } //namespace hugo
   272 
   273 #endif //HUGO_KRUSKAL_H